В Α Phosphotransacylase (pduL homologs) tree Aldehyde Dehydrogenase (pduP homologs) tree PDU/PDU2 ΡV ΡV EUT PDU/PDU2 0.13 0.28 0.97 (20:0 ¥ 0.1 EUT2 0.35 GRE Actinobacteria Firmicutes Fusobacteria

0.3

Firmicutes
Firmicutes
Fusobacteria
Planctomycetes
Proteobacteria
Synergistetes
Verrucomicrobia
Gemmatimonadetes
¶ Ignavibacteria
§ Spirochaetes
¥ Unclassified

GRE

0.2

EUT2

Figure S1. Individual gene trees for (A) PduL homologs and (B) PduP homologs. Bootstrap values of nodes separated clades of differing function of the associated metabolosomes. Scale bars indicate number of substitutions per amino acid position.

Figure S2. Results of pairwise comparisons of BMC-related enzymes from *P. limnophilus* and *C. phytofermentans*. The proposed degradation pathway of L-fucose in *C. phytofermentans* is shown in the center, flanked by *C. phytofermentans* (left) and *P. limnophilus* (right) genes identified by their locus tags; *C. phytofermentans* genes predicted to catalyze each reaction shown were used as queries to search the *P. limnophilus* genome for homologs using BLASTP. Genes shown in parentheses did not yield best bidirectional hits. Genes marked with an asterisk contain a predicted BMC targeting peptide sequence. Boxes are drawn around genes that are within a BMC locus.

Figure S3. Description of mutants used in this study. A) Homologous recombination to make the $\Delta plim_1104$ mutant, with primer pair OE197, 198 shown in orange arrows, and primer pair OE106, 109 shown in gray arrows. B) PCR genotyping to confirm the mutant. A BglII restriction site in the *plim_1104* gene was used to differentiate between the two genotypes. C) $\Delta pvmJ$ mutant, with primer pair OE206, 192 depicted with orange arrows used for D) PCR genotyping. E) $\Delta pvmN$ mutant, with primer pair OE149, 215 shown in orange arrows, used for F) PCR genotyping, with a KpnI restriction site in the *pvmN* gene used to differentiate genotypes. G) $\Delta pvmDE$ mutant, with primer pair OE149, 215 shown in orange arrows, used for F) PCR genotyping, with a KpnI restriction site in the *pvmN* gene used to differentiate genotypes. G) $\Delta pvmDE$ mutant, with primer pair OE286, 296 shown in orange arrows, used for H) PCR genotyping, with the EagI restriction site in the *npt* gene used to differentiate genotypes.

$A_{mutant} - A_{wt}$			nositivo
A _{wt}	X (A _{mutant} - A _{wt})		positive

PM1	1	2	3	4	5		6	
A	Negative Control	L-Arabinose	N-Acetyl-D-Glucosami	ne D-Saccharic a	icid Succinic	acid	D-Galactose	
в	D-Serine	D-Sorbitol	Glycerol	Glycerol L-Fucose		nic acid	D-Gluconic acid	
С	D-Glucose-6-Phosphate	D-Galactonic acid-g-Lactone	DL-Malic acid	acid D-Ribose		20	L-Rhamnose	
D	L-Asparagine	D-Aspartic acid	D-Glucosaminic acid	1,2-Propaned	iol Tween	40	a-Ketoglutaric acid	
Е	L-Glutamine	m-Tartaric acid	D-Glucose-1-Phospha	te D-Fructose-6-Pho	sphate Tween	80	a-Hydroxyglutaric acid-g-Lactone	
F	Gly-Asp	Citric acid	m-Inositol	D-Threonine	e Fumaric	acid	Bromosuccinic acid	
G	Gly-Glu	Tricarballylic acid	L-Serine	L-Threonine	L-Alan	ine	Ala-Gly	
н	Gly-Pro	p-Hydroxyphenyl Acetic acid	m-Hydroxyphenyl Acetic	acid Tyramine	D-Psic	ose	L-Lyxose	
PM1	7	8	9	10	11		12	
A	L-Aspartic acid	L-Proline	D-Alanine	D-Trehalose	D-Mann	ose	Dulcitol	
в	DL-a-Glycerol Phosphate	D-Xylose	L-Lactic acid	Formic acid	D-Manr	nitol	L-Glutamic acid	
С	D-Fructose	Acetic acid	a-D-Glucose	Maltose	D-Melib	iose	Thymidine	
D	a-Ketobutyric acid	a-Methyl-D-Galactoside	a-D-Lactose	Lactulose	Sucro	se	Uridine	
E	a-Hydroxybutyric acid	b-Methyl-D-Glucoside	Adonitol	Maltotriose	2°-Deoxyad	lenosine	Adenosine	
F	Propionic acid	Mucic acid	Glycolic acid	Glyoxylic aci	d D-Cellot	biose	Inosine	
G	Acetoacetic acid	N-Acetyl-D-Mannosamine	Mono-Methylsuccinate	Methylpyruvat	te D-Malic	acid	L-Malic acid	
н	Glucuronamide	Pyruvic acid	L-Galactonic acid-g-Lact	one D-Galacturonic	D-Galacturonic acid Phenylethylamine		2-Aminoethanol	
PM2	1	2	3	4	5		6	

PM2	1	2	3	4	5	6
Α	Negative Control	Chondroitin Sulfate C	a-Cyclodextrin	b-Cyclodextrin	g-Cyclodextrin	Dextrin
В	N-Acetyl-D-Galactosamine	N-Acetyl-Neuraminic acid	b-D-Allose	Amygdalin	D-Arabinose	D-Arabitol
С	Gentiobiose	L-Glucose	D-Lactitol	D-Melezitose	Maltitol	a-Methyl-D-Glucoside
D	D-Raffinose	Salicin	Sedoheptulosan	L-Sorbose	Stachyose	D-Tagatose
E	Capric acid	Caproic acid	Citraconic acid	Citramalic acid	D-Glucosamine	2-Hydroxybenzoic acid
F	D-Lactic acid Methyl Ester	Malonic acid	Melibionic acid	Oxalic acid	Oxalomalic acid	Quinic acid
G	Acetamide	L-Alaninamide	N-Acetyl-L-Glutamic acid	L-Arginine	Glycine	L-Histidine
Н	L-Ornithine	L-Phenylalanine	L-Pyroglutamic acid	L-Valine	D,L-Carnitine	sec-Butylamine
PM2	7	8	9	10	11	12
Α	Gelatin	Glycogen	Inulin	Laminarin	Mannan	Pectin
в	L-Arabitol	Arbutin	2-Deoxy-D-Ribose	i-Erythritol	D-Fucose	3-O-b-D-Galactopyranosyl-D-Arabinose
С	b-Methyl-D-Galactoside	3-Methylglucose	b-Methyl-D-Glucuronic acid	a-Methyl-D-Mannoside	b-Methyl-D-Xyloside	Palatinose
D	Turanose	Xylitol	N-Acetyl-D-Glucosaminitol	g-Amino-N-Butyric acid	d-Amino Valeric acid	Butyric acid
Е	4-Hydroxybenzoic acid	b-Hydroxybutyric acid	g-Hydroxybutyric acid	a-Keto-Valeric acid	Itaconic acid	5-Keto-D-Gluconic acid
F	D-Ribono-1,4-Lactone	Sebacic acid	Sorbic acid	Succinamic acid	D-Tartaric acid	L-Tartaric acid
G	L-Homoserine	Hydroxy-L-Proline	L-Isoleucine	L-Leucine	L-Lysine	L-Methionine
Н	D,L-Octopamine	Putrescine	Dihydroxyacetone	2,3-Butanediol	2,3-Butanedione	3-Hydroxy-2-butanone

Figure S4. Analysis of Biolog Phenotypic Microarray data. A_{mutant} refers to the absorbance value of $\Delta pvmJ::IN(npt)$ -inoculated plates, and A_{wt} refers to $\Delta plim_1104$. The five carbon sources with the lowest values are bolded. In decreasing order: α -methyl-D-mannoside, D-melezitose, L-fucose, D-raffinose, Pectin.

∆plim_1104, PM1 plate

	1	2	3	4	5	6	7	8	9	10	11	12
А	0	-0.007	0.102	-0.018	-0.011	0.145	0.027	0.091	0.049	0.131	0.136	-0.001
В	-0.002	-0.017	-0.006	0.069	0.172	0.031	0.012	0.081	0.042	-0.076	0.029	0.029
С	-0.004	-0.077	-0.021	0.043	-0.076	0.026	0.012	0.006	0.179	0.191	0.093	-0.08
D	0.022	-0.091	0.018	0.025	-0.065	0.016	-0.087	0.168	0.116	0.12	0.187	-0.079
E	0.072	-0.058	-0.029	0.006	-0.061	-0.013	-0.082	0.245	-0.007	0.127	-0.094	-0.096
F	0.035	-0.074	0.026	-0.039	0.013	0.001	-0.08	-0.052	-0.094	-0.075	0.141	-0.096
G	0.059	-0.083	0.035	0.04	-0.031	-0.013	-0.045	0.107	0.031	-0.003	-0.029	-0.023
н	-0.037	-0.089	-0.09	-0.094	-0.025	0.068	0.158	0.1	-0.077	-0.09	-0.066	-0.076

ΔpvmJ::IN(npt), PM1 plate

				-				-				
	1	2	3	4	5	6	7	8	9	10	11	12
А	0	0.06	0.112	0.007	0.025	0.152	0.033	0.079	0.052	0.107	0.065	-0.003
В	0.008	0.028	0.015	-0.012	0.119	0.04	0.04	0.154	0.037	-0.007	0.037	0.022
С	0.006	-0.004	0.011	0.129	-0.003	0.007	0.025	0.058	0.134	0.126	0.094	-0.008
D	0.037	-0.01	0.025	0.036	0.002	0.031	-0.008	0.142	0.115	0.11	0.134	-0.002
E	0.043	-0.002	0.01	0.02	0.003	0.014	-0.008	0.17	0.027	0.06	-0.019	-0.022
F	0.027	-0.005	0.046	0.005	0.012	0.029	-0.003	0.006	-0.018	0.004	0.106	-0.02
G	0.021	-0.014	0.048	0.044	-0.001	0.008	0.022	0.084	0.028	0.016	0.001	0
н	0.026	-0.013	-0.012	-0.017	0.013	0.164	0.103	0.053	-0.013	-0.012	0.037	-0.008

Δplim_1104, PM2 plate

	1	2	3	4	5	6	7	8	9	10	11	12
A	0	0	-0.045	-0.018	-0.026	-0.067	0.011	-0.011	0.007	0.009	0.053	0.204
В	0.255	0.002	-0.063	-0.002	0.014	-0.059	0.031	-0.001	0.104	0.011	0.034	-0.042
С	0.18	0.118	0.218	0.178	0.171	0.241	0.167	0.002	0.053	0.262	0.035	0.129
D	0.164	0.07	-0.004	-0.04	0.052	0.051	0.194	0.005	0.017	-0.062	-0.071	-0.058
E	-0.073	-0.076	-0.07	-0.056	0.017	-0.074	-0.074	-0.054	0.016	-0.071	-0.076	-0.023
F	-0.011	-0.017	0.11	-0.044	-0.037	0.009	-0.061	-0.058	-0.012	-0.01	-0.022	-0.068
G	0.009	-0.027	0.013	-0.049	-0.006	0	-0.027	0.071	-0.055	-0.051	-0.018	-0.067
н	-0.017	-0.069	-0.024	-0.05	-0.002	-0.048	-0.069	-0.001	0.109	0.014	-0.048	-0.019

ΔpvmJ::IN(npt), PM2 plate

	1	2	3	4	5	6	7	8	9	10	11	12
А	0	0.01	-0.007	0	0.002	-0.011	0.014	0.014	0.007	-0.013	0.015	0.041
В	0.192	0.003	0.009	0.049	0.082	-0.007	0.025	0.053	0.171	0.015	0.021	0.013
С	0.134	0.058	0.124	0.068	0.12	0.186	0.151	0.007	0.048	0.144	0.038	0.076
D	0.056	0.096	0.001	0.005	0.033	0.035	0.126	0.012	0.016	-0.008	-0.011	-0.008
E	-0.014	-0.011	-0.011	-0.007	0.076	-0.011	-0.016	-0.013	0.015	-0.01	-0.022	0.086
F	-0.002	0.002	0.044	0.017	0.027	0.011	-0.011	-0.012	0.054	-0.002	-0.004	-0.011
G	0.002	-0.002	0.01	0.009	0.01	0.016	0.001	0.052	-0.011	-0.005	-0.007	0.006
н	0.003	-0.014	-0.009	-0.011	-0.004	0.001	-0.015	0.001	0.193	-0.001	0.006	0.009

Figure S5. Raw Biolog Phenotypic Microarray data for $\Delta plim$ _1104 and $\Delta pvmJ::IN(npt)$ inoculated into plates PM1 and PM2, and incubated for five days. Values are absorbance at 590nm, well A1 (no carbon source) was used to blank each plate. Carbon source identity key is available in Figure S4.

Figure S6. Growth profile comparison between wild-type (black) and Δ*plim_1104* (red), on L-fucose (solid circles), L-rhamnose (open circles), and no sugar added (open circles with dashed line). Data points are an average of three independently grown liquid cultures (n=3), and error bars depict one standard deviation.

Gene	Representative	Updated Annotation	Note
Name	Accession		
	Number		
pvmA	YP_003629787	Transcriptional regulator	Not present in O. TAV species or O. terrae.
			Inverted in the Verrucomicrobia species SCGC
			AAA164-E04 and DG1235
pvmB	YP_003629786	Phosphotransacylase	
pvmC	NP_865042	Hypothetical Protein	No function prediction, only present in R.
			baltica
pvmD	YP_003629785	BMC-H shell protein	
pvmE	YP_003629784	BMC-H shell protein	
pvmF	YP_004178760	BMC-H shell protein	Only present in S. acidiphila and I. pallida
pvmG	YP_003629783	Lactate Kinase	
pvmH	YP_003629782	BMC-P shell protein	
pvmI	YP_003629781	Hypothetical Protein	No function prediction, only present in the
			Planctomyces genus
pvmJ	YP_003629780	Lactaldehyde Dehydrogenase	Contains BMC targeting peptide
pvmK	YP_003629779	BMC-P shell protein	
pvmL	YP_003629778	Hypothetical Protein	No function prediction, not present in I. pallida
			or the Verrucomicrobia
pvmM	YP_003629777	BMC-P shell protein	
pvmN	YP_003629776	Aldolase	Contains BMC targeting peptide
pvmO	YP_003629775	1,2-propanediol dehydrogenase	Not present in <i>P. brasiliensis</i>

Table S1. New nomenclature of BMC-related genes of the PVM BMC gene cluster

Table S2. List of Oligonucleotides used in this study

Primer	Description	Sequence
Name		
OE053	npt promoter forward primer	TATAGAATTCAGATCTCGGAATTGCCAGCT
OE054	<i>npt</i> reverse primer	TATAGGATCCTCAGAAGAACTCGTC
OE106	plim_1104 upstream region forward primer	TATAGAATTCATGAGATCTGCCACAACTTTTGTCAGTCG
OE107	plim_1104 upstream region reverse primer	TATAGGATCCTCGAAAAGCTTATCGCCAAT
OE108	plim_1104 downstream region forward primer	TATAGAATTCATGAGATCTGCCACTTCAAGATCCAGTTCG
OE109	plim_1104 downstream region reverse primer	TATAGGATCCGCCCGCCTACATGCTTATTA
OE149	<i>pvmO</i> reverse primer	TATATCTAGACTAGAGCACCTTTTCGATGGTC
OE189	pvmJ upstream region forward primer	TATAGAATTCATGAGATCTCATGGGTTGTAGTGCGATTG
OE190	pvmJ upstream region reverse primer	TATAGGATCCCGATTCGGTCTTTCCTATCTGGCT
OE191	pvmJ downstream region forward primer	TATAGAATTCATGAGATCTTTTCACACGCAGCCGCC
OE192	pvmJ downstream region reverse primer	TATAGGATCCGGGACTTTGCTGGTCGTTTA
OE193	pvmN upstream region forward primer	TATAGAATTCATGAGATCTAGGAGTGGCACCATGAGATT
OE194	pvmN upstream region reverse primer	TATAGGATCCATGATCGTTGTGGGTTGTGA
OE195	pvmN downstream region forward primer	TATAGAATTCATGAGATCTGCTGGTGAAGATGATCACCGAGC
OE196	pvmN downstream region reverse primer	TATAGGATCCATGACATCGCTATTGGCACA
OE206	<i>pvmH</i> forward primer	TATACATATGTTCCTCGCACGCGTC
OE215	<i>pvmM</i> forward primer	TATACATATGAGATTAGCCGAAGTGATTGGCC
OE255	pvmD upstream region forward primer	TATAGAATTCATGAGATCTATGTCGTCTGATTCTGTGGTTGC
OE284	pvmD upstream region reverse primer	TATAGGATCCGAAAACTTCCTCTCAAGAAATGGAAC
OE285	pvmE downstream region forward primer	TATAGAATTCATGAGATCTGGTTGTCTTGGGTGGGATCG
OE286	<i>pvmG</i> reverse primer	TATAGGATCCCTAGGACTTTGAAAGAAGTTCGGC
OE288	pvmE downstream region reverse primer	TATAGGATCCGGCTACTGTTCTCGCCAATT

Table S3. Genomes and accession numbers of genes used in phylogenetic analysis for Figure 1B and

Supplementary Figures S1A and S1B.

Phylum	Species	pduL homolog a	ccession(s)	<i>pduP</i> homolog	accession(s)
		GenBank	IMG	GenBank	IMG
Actinobacteria	Atopobium fossor DSM 15642		2512382991		2523432309
Actinobacteria	Collinsella tanakaei YIT 12063		2514564925		2514564922
Actinobacteria	Olsenella uli VPI, DSM 7084	YP_003800316		YP_003800320	
Firmicutes	Acetobacterium woodii WB1,		2512382991		2512382985
	DSM 1030				
Firmicutes	Alkaliphilus metalliredigens	YP_001318154		YP_001318151	
	QYMF	YP_001321599		YP_001321600	
Firmicutes	Bacillus azotoformans LMG		2524346580		2524346575
	9581				
Firmicutes	Clostridium botulinum Bf	ZP_02618436		ZP_02618437	
Firmicutes	Clostridium carboxidivorans	ZP_06853152		ZP_06853151	
	P7, DSM 15243	ZP_06856827		ZP_06855343	
Firmicutes	Clostridium difficile VPI		2512433896		2512433893
	10463, ATCC 43255				
Firmicutes	Clostridium ljungdahlii PETC,	YP_003782098		YP_003779366	
	DSM 13528				
Firmicutes	Clostridium methylpentosum	ZP_03705299		ZP_03705305	
	R2, DSM 5476				
Firmicutes	Clostridium phytofermentans	YP_001559739		YP_001559742	
	ISDg	YP_001558300		YP_001558295	
		YP_001558543		YP_001558542	
Firmicutes	Clostridium sporogenes ATCC	ZP_02995752		ZP_02995751	
	15579				
Firmicutes	Enterococcus faecalis	ZP_05593144		ZP_05593147	
	AR01/DG				
Firmicutes	Eubacterium limosum	YP_003961982		YP_003961977	
	KIST612				
Firmicutes	Geobacillus	YP_004587975		YP_004587980	
	thermoglucosidasius C56-YS93				
Firmicutes	Lactobacillus reuteri SD2112,	YP_004649427		YP_004649422	
	ATCC 55730				
Firmicutes	Listeria monocytogenes M7	AEH92193		AEH92176	
Firmicutes	Ruminococcus gnavus ATCC	ZP_02040264		ZP_02040258	
	29149				

Firmicutes	Ruminococcus obeum ATCC	ZP_01962375		ZP_01962381	
	29174				
Firmicutes	Shuttleworthia satelles DSM	ZP_04454648		ZP_04454656	
	14600				
Firmicutes	Streptococcus merionis DSM		2515206018		2515206798
	19192				
Firmicutes	Thermoanaerobacterium		2519480168		2519480174
	saccharolyticum JW/SL-				
	YS485, DSM 8691				
Firmicutes	Thermoanaerobacterium	YP_004471771		YP_004471777	
	xylanolyticum LX-11, DSM				
	7097				
Fusobacteria	Fusobacterium sp. 1_1_41FAA	ZP_08600040		ZP_08600044	
Fusobacteria	Fusobacterium sp. 11_3_2		2514694583		2514694579
Fusobacteria	Fusobacterium sp. 12_1B	ZP_06748804		ZP_06748808	
Fusobacteria	Fusobacterium sp. 3_1_33	ZP_05815059		ZP_05815063	
Fusobacteria	Fusobacterium ulcerans ATCC 49185	ZP_05632380		ZP_05632384	
Fusobacteria	Fusobacterium varium ATCC	ZP_04860876		ZP_04860880	
	27725	ZP_04860159		ZP_04860157	
Fusobacteria	Ilyobacter polytropus CuHBu1, DSM 2926	YP_003968462		YP_003968466	
Fusobacteria	Leptotrichia buccalis C-1013-b, DSM 1135	YP_003162997		YP_003162999	
Fusobacteria	Leptotrichia hofstadii F0254	ZP_05902074		ZP_05902076	
Fusobacteria	Sebaldella termitidis ATCC 33386	YP_003307845		YP_003307836	
Gemmatimonadetes	Gemmatimonadetes bacterium		2517735326		2517733962
Ionavibacteria	Melioribacter roseus P3M		2517204486		2517204481
Planctomycetes	Blastovirellula marina SH	ZP 01094341		ZP 01094335	
	106T, DSM 3645				
Planctomycetes	Isosphaera pallida IS1B, ATCC 43644	YP_004178757		YP_004178763	
Planctomycetes	Pirellula staleyi DSM 6068	YP_003371803		YP_003371808	
Planctomycetes	Planctomyces brasiliensis	YP_004271671		YP_004271677	
	IFAM 1448, DSM 5305				
Planctomycetes	Planctomyces limnophilus Mu 290 DSM 3776	YP_003629786		YP_003629780	
	230, 103111 3770				

Planctomycetes	Planctomyces maris DSM	ZP_01855342		ZP_01855336	
v	8797				
Planctomycetes	Rhodopirellula baltica SH 1	NP_865043		NP_865037	
Planctomycetes	Singulisphaera acidiphila MOB10, DSM 18658		2509618801		2509618795
Proteobacteria	Citrobacter freundii ATCC		2520192266		2520192262
	8090				
Proteobacteria	Escherichia coli MS 116-1	ZP_07163384		ZP_07163393	
Proteobacteria	Klebsiella pneumoniae 342	YP_002236775		YP_002236771	
Proteobacteria	Pectobacterium wasabiae WPP163	YP_003261437		YP_003261430	
Proteobacteria	Rhodobacter sphaeroides WS8N	ZP_08415799		ZP_08415804	
Proteobacteria	Rhodopseudomonas palustris BisB18	YP_531051		YP_531056	
Proteobacteria	Salmonella enterica enterica sv Typhimurium LT2	NP_460992		NP_460996	
Proteobacteria	Shewanella putrefaciens CN-32		2524134173		2524134169
Spirochaetes	Brachyspira intermedia PWS/A		2511986595		2511986601
Synergistetes	Anaerobaculum hydrogeniformans ATCC BAA-1850	ZP_06440568		ZP_06440562	
Synergistetes	Anaerobaculum mobile NGA, DSM 13181	AFM20793		AFM20799	
Synergistetes	Cloacibacillus evryensis 158, DSM 19522		2510278482		2510278478
Synergistetes	Dethiosulfovibrio peptidovorans SEBR 4207, DSM 11002		2501566260		2501566266
Synergistetes	Thermanaerovibrio acidaminovorans Su883, DSM 6589	YP_003316598		YP_003316596	
Synergistetes	Thermanaerovibrio velox Z- 9701, DSM 12556		2508842204		2508842206
Synergistetes	Thermovirga lienii Cas60314, DSM 17291		2505285803		2505285809
Unclassified	Bacillus sp. URHB0009		2523076465		2523074844
Verrucomicrobia	Opitutaceae bacterium sp. TAV1		2508839157		2508839151

Verrucomicrobia	Opitutaceae sp. TAV2		2517755627		2517755621
Verrucomicrobia	Opitutaceae sp. TAV5		2510264820		2510264826
Verrucomicrobia	Opitutus terrae PB90-1	YP_001818174		YP_001818180	
Verrucomicrobia	Verrucomicrobia bacterium		2236429775		2236429769
	SCGC AAA164-E04				
Verrucomicrobia	Verrucomicrobiales sp.	ZP_05056059		ZP_05055688	
	DG1235				

Gene Name	Accession	Reference(s) for (Predicted) Function		
PduA	NP_460983	(1)		
PduB	NP_460984	(2–4)		
PduC	NP_460985	(5)		
PduD	NP_460986	(5)		
PduE	NP_460987	(5)		
PduJ	NP_460990	(2-4)		
PduK	NP_460991	(2-4)		
PduL	NP_460992	(6)		
PduN	NP_460994	(2-4)		
PduP	NP_460996	(7)		
PduQ	NP_460997	(8)		
PduT	NP_460999	(2-4)		
PduU	NP_461000	(2-4)		
PduW	NP_461002	(9)		
Ack	NP_461279	(10)		
EutB	NP_461393	(11, 12)		
EutC	NP_461392	(10, 11)		
EutD	NP_461401	(13)		
EutE	NP_461398	(14)		
EutG	NP_461396	(15, 16)		
EutK	NP_461390	(17)		
EutL	NP_461391	(17)		
EutM	NP_461400	(17)		
EutN	NP_461399	(17)		
EutS	NP_461405	(17)		
Cphy_1174	YP_001558291	(18)		
Cphy_1176	YP_001558293	(18)		
Cphy_1177	YP_001558294	(18)		
Cphy_1178	YP_001558295	(18)		
Cphy_1179	YP_001558296	(18)		
Cphy_1180	YP_001558297	(18)		
Cphy_1181	YP_001558298	(18)		
Cphy_1182	YP_001558299	(18)		
Cphy_1183	YP_001558300	(18)		
Cphy_1184	YP_001558301	(18)		
Cphy_1185	YP_001558302	(18)		
Cphy_1186	YP_001558303	(18)		

Table S4. Accession numbers and references for genes in Table 2.

0		
Cphy_1327	YP_001558443	(18)

Supplemental References

- Havemann GD, Sampson EM, Bobik TA. 2002. PduA Is a Shell Protein of Polyhedral Organelles Involved in Coenzyme B12-Dependent Degradation of 1,2-Propanediol in *Salmonella enterica* Serovar Typhimurium LT2. J. Bacteriol. 184:1253–1261.
- Bobik TA, Havemann GD, Busch RJ, Williams DS, Aldrich HC. 1999. The Propanediol Utilization (*pdu*) Operon of *Salmonella enterica* serovar Typhimurium LT2 Includes Genes Necessary for Formation of Polyhedral Organelles Involved in coenzyme B₁₂-Dependent 1, 2-Propanediol Degradation. J. Bacteriol. 181:5967–75.
- Parsons JB, Dinesh SD, Deery E, Leech HK, Brindley A a, Heldt D, Frank S, Smales CM, Lünsdorf H, Rambach A, Gass MH, Bleloch A, McClean KJ, Munro AW, Rigby SEJ, Warren MJ, Prentice MB.
 2008. Biochemical and structural insights into bacterial organelle form and biogenesis. J. Biol. Chem.
 283:14366–75.
- Cheng S, Sinha S, Fan C, Liu Y, Bobik TA. 2011. Genetic Analysis of the Protein Shell of the Microcompartments Involved in Coenzyme B₁₂-Dependent 1,2-Propanediol Degradation by *Salmonella*. J. Bacteriol. 193:1385–92.
- 5. **Bobik TA, Xu Y, Jeter RM, Otto KE, Roth JR**. 1997. Propanediol Utilization Genes (*pdu*) of *Salmonella typhimurium*: Three Genes for the Propanediol Dehydratase. J. Bacteriol. **179**:6633–6639.
- Liu Y, Leal NA, Sampson EM, Johnson CL V, Havemann GD, Bobik T a. 2007. PduL is an Evolutionarily Distinct Phosphotransacylase Involved in B₁₂-dependent 1,2-propanediol degradation by Salmonella enterica serovar typhimurium LT2. J. Bacteriol. 189:1589–96.
- 7. Leal NA, Havemann GD, Bobik TA. 2003. PduP is a coenzyme-a-acylating propionaldehyde dehydrogenase associated with the polyhedral bodies involved in B₁₂-dependent 1,2-propanediol degradation by *Salmonella enterica* serovar Typhimurium LT2. Arch. Microbiol. 180:353–61.
- 8. **Cheng S, Fan C, Sinha S, Bobik TA**. 2012. The PduQ enzyme is an alcohol dehydrogenase used to recycle NAD+ internally within the Pdu microcompartment of *Salmonella enterica*. PLoS One 7:e47144.
- Palacios S, Starai VJ, Escalante-Semerena JC. 2003. Propionyl Coenzyme A Is a Common Intermediate in the 1,2-Propanediol and Propionate Catabolic Pathways Needed for Expression of the *prpBCDE* Operon during Growth of *Salmonella enterica* on 1,2-Propanediol. J. Bacteriol. 185:2802–2810.

- 10. **Starai VJ, Garrity J, Escalante-Semerena JC**. 2005. Acetate excretion during growth of *Salmonella enterica* on ethanolamine requires phosphotransacetylase (EutD) activity, and acetate recapture requires acetyl-CoA synthetase (Acs) and phosphotransacetylase (Pta) activities. Microbiology **151**:3793–801.
- 11. **Bradbeer C**. 1965. The Clostridial Fermentations of Choline II. Requirement For A Cobamide Coenzyme by an Ethanolamine Deaminase. J. Biol. Chem. **240**:4675–4681.
- Scarlett FA, Turner JM. 1976. Microbial Metabolism of Amino Alcohols. Ethanolamine Catabolism Mediated by Coenzyme B12-dependent Ethanolamine Ammonia-Lyase in *Escherichia coli* and *Klebsiella aerogenes*. J. Gen. Microbiol. 95:173–176.
- Brinsmade SR, Escalante-Semerena JC. 2004. The *eutD* Gene of *Salmonella enterica* Encodes a Protein with Phosphotransacetylase Enzyme Activity. J. Bacteriol. 186:1890–1892.
- Roof DM, Roth JR. 1989. Functions required for vitamin B₁₂-dependent ethanolamine utilization in Salmonella typhimurium. J. Bacteriol. 171:3316–23.
- 15. Stojiljkovic I, Bäumler AJ, Heffron F. 1995. Ethanolamine utilization in *Salmonella typhimurium*: nucleotide sequence , protein expression , and mutational analysis of the *cchA cchB eutE eutJ eutG eutH* gene cluster. J. Bacteriol. 177:1357 – 1366.
- Penrod JT, Roth JR. 2006. Conserving a Volatile Metabolite: a Role for Carboxysome-Like Organelles in Salmonella enterica. J. Bacteriol. 188:2865 – 2874.
- 17. Kofoid E, Rappleye C, Stojiljkovic I, Roth J. 1999. The 17-Gene Ethanolamine (*eut*) Operon of *Salmonella typhimurium* Encodes Five Homologues of Carboxysome Shell Proteins. J. Bacteriol. 181:5317–29.
- 18. Petit E, Latouf WG, Coppi M V, Warnick TA, Currie D, Romashko I, Deshpande S, Haas K, Alvelo-Maurosa JG, Wardman C, Schnell DJ, Leschine SB, Blanchard JL. 2013. Involvement of a Bacterial Microcompartment in the Metabolism of Fucose and Rhamnose by Clostridium phytofermentans. PLoS One 8:e54337.