

FIG S1 Effect of 24 h Antimicrobial treatment on the viability of stationary phase bacteria. 1-month old *M. bovis* BCG cultures were treated with antimicrobials and incubated for 24 h before assaying viability by measuring CFU and MPN. Average values for 3 independent experiments with standard deviations are shown. H_2O – water control; Emb- ethambutol; INH – isoniazid; Cer – cerulenin; Str – streptomycin. Only streptomycin had a significant bactericidal effect after 24 h exposure to stationary phase bacilli (p<0.01, t-test).

FIG S2 Box plots detailing genes that may be functionally important in prolonged stationary phase survival after antibiotic exposure, grouping conditions by protective effect at 2 months. (A) t-test (p-value <0.05, Benjamini and Hochberg multiple testing correction and fold change >2) identifying genes significantly induced after C/E/I exposure compared to both drug-free and STR-treated bacilli. C – Control, C/E/I (Cerulenin/Ethambutol/Isoniazid), STR – streptomycin. (B) ANOVA (p-value <0.05, Benjamini and Hochberg multiple testing correction and fold change >2) comparing treatments with a protective effect at 2 months (C/E/I) to treatments with no effect on long-term survival (C/STR). *Bcg1279c* (*raas*) was significantly induced in all samples treated with C/E/I.

FIG S3 Effect of Raas over-expression on re-growth of *M. bovis* **BCG**. One month old pMind or pMind-*raas*_{*mtb*} cells were serially diluted (10⁻¹ to 10⁻⁵), inoculated onto 7H10 agar plates and incubated for 4 weeks. The colony sizes reflect different dynamics of recovery, with *raas* over-expressing bacilli recovering more quickly than bacilli containing an empty vector.

Mycobacterial strains were inoculated in supplemented Sauton's medium and incubated at 37°C with shaking (*M. tuberculosis*) or without shaking *M. bovis* BCG. Optical density was measured at 580 nm using a Jenway spectrophotometer.

Α.

Supplemental Experimental Procedures

Supplemented Sauton's medium

The following chemicals (g/litre) KH2PO4 0.5 g, MgSO4 0.5 g, asparagine 4 g, citric acid 2 g, ferric ammonium citrate 0.05 g were dissolved in Milli-Q water. Glycerol (1 ml) and 100 μ l of 1 % (w/v) ZnSO4 were added and pH was adjusted to 7.5 before autoclaving at 121°C for 15 min. Sterilised Sauton's medium was kept in dark place and used within 2 weeks. 900 ml of autoclaved Sauton's base were mixed with 100 ml of ADC supplement and 10 ml of Tween 80 10% (w/v) solution. ADC supplement contained (per 1 Litre) 50 g of Bovine serum albumin, 20 g of glucose and 8.5 g NaCl. ADC supplement and Tween 80 solutions were filter-sterilised.

Determination of Antimicrobial Susceptibility and Minimum Inhibitory

Concentrations

To measure antibiotic sensitivity, serially diluted cells were spotted onto agar containing different concentrations of antimicrobials and the plates incubated at 37°C for up to 8 weeks, before counting colony forming units. Serially diluted cells were also inoculated into liquid medium containing drugs as a further measure of drug sensitivity. For isoniazid, ethambutol and reserpine, filter disc assays were also used. Briefly, 6 mm paper discs (Whatman), soaked with a range of antibiotic concentrations were applied to agar plates inoculated with a lawn of 10^7 *M. bovis* BCG cells. Plates were incubated at 37° C for 4 weeks, before measuring the diameters of the resultant inhibition zones.

For determination of MIC values, a micro-dilution method was used; 2×10^6 *M. bovis* BCG cells were inoculated into 100 μ l Sauton's or 7H9 supplemented medium containing different concentrations of antimicrobials. For ethambutol the range of concentrations was 0.1-5 μ g/ml, for isoniazid - 0.01-1 μ g/ml; for cerulenin - 0.1-20 μ g/ml; for

5

streptomycin - 0.05-20 μ g/ml. Microplates were sealed with Nescofilm and incubated at 37°C for 4 weeks without shaking. Mycobacterial growth was assessed visually and by measuring OD at 580nm in a Varioskan plate reader. The MIC corresponded to the first concentration of antimicrobial agent at which no visible growth was observed. For all *M. bovis* BCG strains tested, we determined the following MICs: ethambutol 0.8 μ g/ml; isoniazid 0.02 μ g/ml; cerulenin 1 μ g/ml; rifampicin 0.1 μ g/ml; streptomycin 1 μ g/ml.

The presence of active ethambutol, isoniazid and streptomycin in culture supernatants after two months incubation was detected by their inhibitory effect on *M. bovis* BCG growth. Briefly, log phase *M. bovis* BCG cells were inoculated into 5ml of medium containing 50% (v/v) of culture supernatants from drug-free cultures or drug-treated cultures. Control supernatant from drug-free cultures in prolonged stationary phase did not prevent the growth of *M. bovis* BCG, while culture supernatants from drug-treated cultures inhibited growth as measured by CFU counting.

Transcriptional Profiling of Responses to Antimicrobial Exposure

Total RNA was isolated from 30 ml *M. bovis* BCG stationary phase cultures after 24 hours exposure to antimicrobial compounds using the Trizol method (1). RNA samples, extracted in duplicate or triplicate, were DNase-treated (Turbo DNA-free, Ambion) and purified using RNeasy columns (Qiagen). M. tuberculosis responses to drug treatment were profiled using a whole genome microarray, generated by the Bacterial Microarray Group at St. George's (Array Express accession number A-BUGS-23; http://bugs.squl.ac.uk/A-BUGS-23). Hybridizations (3-7 per condition) were conducted as previously described, using *M. tuberculosis* genomic DNA as a common reference. The hybridized slides were scanned sequentially at 532 nm and 635 nm, corresponding to Cv3 and Cv5 excitation maxima, using an Affymetrix 428 Array Scanner (MWG).

6

Comparative spot intensities from the images were calculated using Imagene 5.5 (BioDiscovery) and imported into GeneSpring GX 7.3.1 (Agilent Technologies). The array data were normalized to the 50th percentile of all genes detected to be present on the array, and filtered to include only genes flagged to be present on 80% of the arrays. Significantly differentially expressed genes were identified in pair-wise comparisons between control and antibiotic-treated cells using a t-test (p-value <0.05 with Benjamini and Hochberg multiple testing correction) and a fold change >2. Five genes were significantly induced by cerulenin, and ethambutol and isoniazid relative to drug-free bacilli but were not induced by streptomycin exposure (Table S1). Similar clusters of genes (all including Rv1219c) were identified in alternative analysis strategies by grouping antibiotic treatments by protective effect after prolonged stationary phase (Figure S2).

Microarray data were confirmed by quantitative RT-PCR. DNA contamination was removed with Turbo DNA-free DNAase (Ambion) before cDNA was generated using Superscript Reverse Transcriptase II (Invitrogen) and gene-specific primers (Table S2). Q-PCR was performed in a Corbett Rotor Gene 6000 real time thermocycler using Absolute QPCR SYBR Green mix (Thermo) and gene-specific primers. Levels of expression were normalized to *16s rRNA* (2).

Transcriptomics of *Raas* Knockout and Complemented *M. bovis* BCG Strains

Mycobacterial RNA was extracted from WT, *raas* deleted and complemented *M. bovis* BCG strains using the GTC/Trizol method (3), then DNase-treated and purified using RNeasy columns (Qiagen). Microarray hybridizations were conducted as described above, hybridizing RNA derived from three biological replicates. Significantly differentially expressed genes were identified comparing knockout mutant to both WT

and complemented strains using a t-test (p-value <0.05 with Benjamini and Hochberg multiple testing correction) and a >2 fold change threshold (Table 1). Fully annotated microarray data have been deposited in B μ G@Sbase (accession number E-BUGS-123; http://bugs.sgul.ac.uk/E-BUGS-123) and also Array Express (accession number E-BUGS-123).

Supplemental References

- Betts, J.C., P. T. Lukey, L. C. Robb, R. A. McAdam and K. Duncan. 2002.
 Evaluation of a nutrient starvation model of *Mycobacterium tuberculosis* persistence by gene and protein expression profiling. Mol. Microbiol. 43: 717-731.
- Cheah, E.S. et al. 2010. A two-tube combined TaqMan/SYBR Green assay to identify mycobacteria and detect single global lineage-defining polymorphisms in *Mycobacterium tuberculosis*. J. Mol. Diagn. 12: 250-256.
- Waddell, S. J. and P. D. Butcher. 2010. Use of DNA arrays to study transcriptional responses to antimycobacterial compounds, in Antibiotic Resistance Protocols (SH Gillespie and TD McHugh, eds.). Methods Mol. Biol. 642:75-91

Table S1. Genes identified by microarray analysis to be significantly differentially expressed in *M. bovis* BCG in the presence of cell-wall targeting drugs (ethambutol and isoniazid and cerulenin) relative to genes in drug-free bacilli that are not up/down-regulated by streptomycin exposure. Fold change values comparing drug-treated to drug-free controls from microarray* and qRT-PCR** analyses are detailed. The table is ordered by direction of regulation and chromosome location. ND –not determined.

	Predicted	Ethambutol		Isoniazid		Cerulenin	
	function						
	(<i>Mtb</i> gene)						
Gene		Array	qRTPCR	Array	qRTPCR	Array	qRTPCR
	Conserved						
mmpS5	membrane						
(bcg0726c)	protein	5.33	2.76	3.47	-4.46	4.36	2.99
	Tetronasin						
	ABC						
bcg1278c	transporter	2.36	-1.72	2.33	-4.55	7.86	9.70
	Transcriptional						
bcg1279c	regulator	2.94	2.93	2.93	2.16	7.09	23.28
bcg2761c	Transcriptional						
(clgR)	regulator	3.18	N/D	2.42	N/D	3.63	N/D
ethA	Monooxygenas						
(<i>bcg3917c</i>)	е	4.07	-1.43	2.88	-1.79	1.99	4.05
pks6 a(b)	Polyketide						
(<i>bcg0443</i>)	synthase	-3.76	-3.33	-3.44	-3.85	-4.04	-1.56
pyrG							
(bcg1737)	CTP synthase	-4.56	-2.86	-5.18	-2.94	-4.92	-1.56

*t-test p-value <0.05 with Benjamini and Hochberg multiple testing correction; **average values, the standard deviations for all genes did not exceed 10% of average values.

Table S2.	Oligonucleotides	used i	in the	study

Primer	Sequence (5'-3')	Application
1219 F1	CGAATA <u>GGATCCC</u> GCCGAA	Amplification of upstream raas
	AACGAAGAGTC	region for generation of <i>raas_{Mtb}</i> and
		<i>raas</i> mutants; <i>Bam</i> HI site
		introduced.
1219 R1	GCCGAA <u>T</u> CTA <u>GAGCTC</u> AAC	Amplification of upstream raas
	AAGGAGAAGCA	region for generation of <i>raas_{Mtb}</i> and
		raas mutants; Xbal site introduced.
1219F2	GGCCGC <u>TCTAGA</u> GATCCTG	Amplification of downstream raas
	GCGTGCGCGGT	fragment for generation of raas _{Mtb}
		and raas mutants; Xbal site
		Introduced.
1219R2	IGCGAC <u>AAGCII</u> CICACCG	Amplification of downstream raas
	GCTAGCGACGC	fragment for generation of raas _{Mtb}
		and raas mutants; Hindiii site
	A0T00000000000000000000000000000000000	Introduced
1219DF1	ACTOCGGCACTGGTGCCG	Diagnostic primers for confirmation
1010001		Diagnostia primara for confirmation
IZIUDI	GCA CTT CGC CCT CGC	of the rase deletion in rase, and
	GCA	or the raas deletion in raas _{Mtb} and
By1210E60		Amplification of rase in for cloning in
F		nMind: <i>Bam</i> HI site introduced
E Bv1219B8	CCAACTAGTTCAGCCGAC	Amplification of <i>raasure</i> for cloning in
OE	ATGTGCTTCTCC TTG	pMind: <i>Spe</i> l site introduced
1219F4	ATCCTGAACATGCGTTCAGC	Diagnostic primers for <i>raas_{Mtb}</i> and
	CGATCTGACC	$raas_{bca}$ deletion mutants
1219R4	CAA CCG CAC GCT TCC	Diagnostic primers for <i>raas_{Mtb}</i> and
	GCC GTC GGC CTT CAC	raas _{bca} deletion mutants
Rv1219F	GGT <u>ACTAGT</u> ATGCGTTCAGC	Amplification of <i>ras_{Mtb}</i> for cloning in
exint	CGATCTGACC	pRBexint; Spel site introduced
Rv1219R	ACA <u>GTTAAC</u> TCAGCCGACAT	Amplification of <i>raas_{Mtb}</i> for cloning in
exint	GTGCTTCTCC	pRBexint; Hpall site introduced
IntF1	TGAACCTGCGGCCTTCCGC	Verification of integration of <i>raas_{Mtb-}</i>
	Т	_p RBexint
IntR1	GAACTCCGACGCGCACGAG	Verification of integration of <i>raas_{Mtb-}</i>
	C	_p RBexint
EthAFwd	ATGACCGAGCACCTCGACG	qRT-PCR
	TTGT	
EthARev	GTAGCTCTTGGTCGGGCAA	qRT-PCR
	CGG	27.202
rv1218c	GIICACIAGACGCCTTGCG	qRI-PCR
Fwd	GCA	
rv1218c		qRI-PCR
Kev	AGGI	
rv1219c	AGGATCAGAGAGGCGGCCA	QKI-PCK

Fwd	TCGAA	
rv1219c	ATGGTGGATGACCAATGCC	qRT-PCR
Rev	GCGCTC	
pks6	ATGACAGACGGTTCGGTCA	qRT-PCR
Fwd	CTGCG	
pks6	GGATGACACTCGATATGCG	qRT-PCR
Rev	TGGACA	
pyrG	GATTGGACCGAATGGGACG	qRT-PCR
Fwd	ACC	
pyrG	CGGATAATTCGACGTACTTG	qRT-PCR
Rev	CCCAC	
SigA	TTCGCGCCTACCTCAAACAG	qRT-PCR
Fwd		
SigA	GCTAGCTCGACCTCTTCCTC	qRT-PCR
Rev	G	
RT1215F1	ACCTACGACATGGAGCAGA	qRT-PCR
BT1215B1	TGTGCAAGTTGTTGTCCGAG	aBT-PCB
	AAGC	
RT1216F1	AGGGCCGAACGATTCAGAA	aRT-PCR
	GTTCA	•
RT1216R1	GCACTGACGACCAACCATA	gRT-PCR
	ACGAT	•
RT1217F1	TGTACATCGCCAGCGTCGA	qRT-PCR
	AA	
RT1217R1	AAACATCCCGGCTTTCCAGA	qRT-PCR
	TTCC	
RT1218F1	AAGACCGTCGAAAGCGGTT	qRT-PCR
	CACTA	
RT1218R1	TGAGTTCTCTCAGGCTTTCG	qRT-PCR
	CTGT	
RT1219F1	CAG GAT CAG AGA GGC	qRT-PCR
	GGC CAT C GAA	
RT1219R1	ATG GTC GAT GAC AAT	qRT-PCR
	GCC GCG CTC	
RT-drrCF	ATTGGGTTTCCGGTTTCGAC	qRT-PCR
	AAGG	
RT-drrCR	CCTTCGACAACAACGGTTTG	qRT-PCR
	TGCT	27.202
RI-3489F	ICIACCAAAICIGACCACGG	qRI-PCR
	CGAA	DT 000
KI-3489K		qKI-PCK
DT		
		qri-PCK
ninipsor i ot		
	TTGG	
MVCO1695		
WITCO 103F		ЧШ-ГОП

MYCO16R	ATCTCAGTCCCAGTGTGG	qRT-PCR
1219prF3	GCA TGA TCT AGA	EMSA
	ATTCGGCGAGCAGACGCA	
1219prR1	TCA ATG GGA TCC	EMSA
	GTTCAGGATATTAAACGT	
Pr6F	GGGCGAGCAGACGCAAAAT	EMSA
	CGCCCTG	
Pr6R	GGGCAGGGCGATTTTGCGT	EMSA
	CTGCTCG	
Pr7	CAGACGCAAAATCGCCCTG	EMSA
	AACCGTGCGTTCCAGGGCG	
	ATTTTGCGTCTG	
Pr8f	GGGCGAGCAGACGCAAAAT	EMSA
	CGCCCTGAACCGTGCG	
Pr8R	GGGCGCACGGTTCAGGGCG	EMSA
	ATTTTGCGTCTGCTCG	
1219pr14F	GGGATGAACGTACGTTTAAT	EMSA
•	ATCCTGAACATGCGTTCAG	
1219pr14B	GGGCTGAACGCATGTTCAG	EMSA
1213011411	GATATTAAACGTACGTTCAT	EMOA
1010pr15E	GGGCAAAGTTCGCGGCCTT	EMSA
12190131	CACGGATTCCCAA	EMBA
1219pr15B	GGGTTGGGAATCCGTGAAG	EMSA
1210011011	GCCGCGAACTTTG	Emor
1219pr16F	GGGATTCCCAACGGCGCCC	FMSA
121001101	TCCCTTGACCGGGGATG	
1219pr16R	GGGCATCCCCGGTCAAGGG	EMSA
	AGGGCGCCGTTGGGAAT	
M5F	GGGATGAACGTACG AAA AA	EMSA
	TATCCTGAACATGCGTTCAG	
M5R	GGGCTGAACGCATGTTCAG	EMSA
_	GATATTTTTCGTACGTTCAT	
M6F	GGGTGAACATGCGTTCA	EMSA
M6R	GGGTGAACGCATGTTCA	EMSA
1219pETF	TCA CAT ATG ATG CGT TCA	Generation a construct for the Raas
	GCC GAT CTG ACC	recombinant protein
1219pETR	ACA GCTAGC TCA GCC GAC	Generation a construct for the Raas
	ATG TGC TTC TCC	recombinant protein