Supplemental material

Diversity of O-antigen repeat-unit structures can account for the substantial sequence variation of

Wzx translocases

Yaoqin Hong[†] and Peter R. Reeves^{†‡}

[†]School of Molecular Bioscience, The University of Sydney, NSW 2006 Australia

[‡]Corresponding author

For correspondence

Email: peter.reeves@sydney.edu.au

Telephone: +61 2 9351 2536

Table S1. The oligonucleotides used for clonings in this study.

Primer	DNA sequence 5' to 3' *	Description		
6827	TAT CC <u>A TGG TAT ATA TAA TAA</u>	Forward primer for <i>wbbL</i> cloning, consists of 3b dummy sequence, the		
	TC	Ncol site, and 18b priming sequence homologous to the start of <i>wbbL</i> .		
6828	CTG GGA TCC <u>TTA TAT TAC GGG</u>	Reverse primer for wbbL cloning, consists of 3b dummy sequence, the		
	TGA AAA	BamHI site, and 18b priming sequence homologous to the end of <i>wbbL</i> .		
6851	TAT CCATGG AA ATG AAT ACG	Forward primer for wzx_{O16} cloning, consists of 3b dummy sequence, the		
	AAT AAA TTA TCT	Ncol site, and 18b priming sequence homologous to the start of wzx_{O16} .		
6966	GTA AGT CTG CAG CAA CAA TGA	AA TGA Reverse primer for wzx_{016} cloning, consists of 6b dummy sequence, the sequence of		
	TAT AAT CGT	PstI site, and 18b priming sequence homologous to the end of wzx_{O16} .		
* Note that the restriction sites are in Bold and the <u>homology regions</u> are <u>Underlined</u> .				

Table S2. The oligonucleotides used for strain constructions in this study.

Primer	DNA sequence 5' to 3'	Description	
6872F	AAG ATC CCC TCA CGC TGC CGC	Primer pair designed to amplify the <i>kan</i> gene from pKD4,	
6873R	AAC AAA CCA GAA CCA ACA ATG ATA TAA	6873R has 42b homologous to sequence just after wzx_{016}	
	TCG TAC ATA AAA TCC TCA GAA GAA CTC	in the O16 gene cluster	
	GTC AAG AAG		
6900F	TTT ACG TTA GAT GAG CTT ATC AGA TTA AAA TTA	Primer pair designed to amplify the wzx_{O16} gene from	
	ATT GCA TGA TGA ATA CGA ATA AAT TAT CTT	<i>E.coli</i> K-12 MG1655; 6900F has 42b homologous to	
	TAA GAA GAA	sequence just before wzx_{O16} in the O16 gene cluster;	
6874R	<u>GCG GCA GCG TGA GGG GAT CTT</u> TCA GCA AAC	6874R has <u>21b</u> homologous to the 6872F primer.	
	CAG TAA TTT ATT	6900F/6873R are used to generate the <i>wzx</i> _{O16} - <i>kan</i> control	
		knock in cassette using products of 6900F/6874R and	
		6872F/6873R.	
6901F	TTT ACG TTA GAT GAG CTT ATC AGA TTA AAA TTA	Primer pair designed to amplify the wzx_{0111} gene from	
	ATT GCA TGA TGG TAT TAA CAG TGA AAA AAA	<i>E.coli</i> O111; 6901F has 42b homologous to sequence just	
		before wzx_{016} in the O16 gene cluster; 6877R has <u>21b</u>	
6877R	<u>GCG GCA GCG TGA GGG GAT CTT</u> TCA ATA GAC	homologous to the 68/2F primer. 6901F/68/3R are used	
		to generate the wzx_{0111} -kan knock in cassette using	
6797E		products of 6901F/68/4R and 68/2F/68/3R.	
0/8/Г		Finnel pair designed to amplify the $w_{2x_{07}}$ gene from $E_{acli}(0.7; 6787E \log 42b \text{ homologous to sequence just})$	
		before wzr in the Q16 gene cluster: 6875P has 21h	
6875R		homologous to the 6872F primer 6787F/6873R are used	
00751	ATT TTT TAT GAG	to generate the wz_{roz} -kan knock in cassette using products	
		of 6787F/6875R and 6872F/6873R.	
6840F	TTT ACG TTA GAT GAG CTT ATC AGA TTA AAA TTA	Primer pair designed to amplify the wzx_{SF2a} gene from <i>Shi</i> .	
	ATT GCA TGA TGA GCA TAA TAA AAA ATA GTG	<i>flexneri</i> 2a; 6840F has 42b homologous to sequence just	
	Т	before wzx_{016} in the O16 gene cluster; 6878R has <u>21b</u>	
6878R	GCG GCA GCG TGA GGG GAT CTT TTA GTT TTC	homologous to the 6872F primer. 6840F/6873R are used	
	ATA TAC AGA ACA	to generate the <i>wzx</i> _{Sf2a} - <i>kan</i> knock in cassette using	
		products of 6840F/6878R and 6872F/6873R.	
6781F	TTT ACG TTA GAT GAG CTT ATC AGA TTA AAA TTA	Primer pair designed to amplify the wzx_{O157} gene from	
	ATT GCA TGA TGA TAA TAA ATA AAA TCA AAA	<i>E.coli</i> O157; 6781F has 42b homologous to sequence just	
	A	before wzx_{016} in the O16 gene cluster; 6876R has <u>21b</u>	
6876R	<u>GCG GCA GCG TGA GGG GAT CTT</u> TCA TCC TCT	homologous to the 6872F primer. 6781F/6873R are used	
	TAT ATT TAA CTG	to generate the wzx_{O157} -kan knock in cassette using	
		products of 6781F/6876R and 6872F/6873R.	
6841F	TTT ACG TTA GAT GAG CTT ATC AGA TTA AAA TTA	Primer pair designed to amplify the wzx_{SeLT2} gene from S.	
	ATT GCA TGA TGA AAG TTC AAT TGT TAA AAA	<i>enterica</i> L12; 6841F has 42b homologous to sequence	
(070)		Just before wzx_{016} in the O16 gene cluster; 68/9R has <u>21b</u>	
68/9K	GUG GUA GUG IGA GGG GAI CIT TTA ICC CIT	nonnologous to the $08/2F$ primer. $0841F/08/3K$ are used	
	ATTIGUETTAAT	to generate the wzx_{seLT2} -kan knock in cassette using	
6707F	TTT ACC TTA CAT CAC CTT ATC ACA TTA AAA TTA	Primer pair designed to generate the recombination	
0/9/Г		cassette for the replacement of the way gave from	
(0727		<i>E.coli</i> K-12 MG1655 O-antigen gene cluster: 6797F has	
6873R	AAC AAA CCA GAA CCA ACA ATG ATA TAA	42b homologous to sequence just before wzraw in the	
	ТСӨ ТАС АТА ААА ТСС ТСА GAA GAA СТС	, 20 nomorogous to sequence just berore w2x016 in the	

	GTC AAG AAG	O16 gene cluster; 6873R has 42b homologous to	
6937F	CCT TTA ATG GGA ATT AGC CAT GGT CC	Primer pair designed to amplify the <i>cat</i> gene from pKD3; 6937F has <u>6b</u> identical (in reverse direction) to the first 6b of 6935F; 6873R has 42b homologous to sequence just after wzx_{0111} in the <i>E. coli</i> O111 gene cluster in pPR2105.	
6938R	AAT AGA CAT TTT TCG CTC TAT TAA AAT AGA CAA AAG CTA CAT GTG TAG GCT GGA GCT GCT TCG AAG		
6935F	TGG TTT GGT TTT TCC TTC GTT ATA AAG GAG	Primer pair designed to amplify ~ 250 bp sequence just	
6936R	ATA TTC ATA TGG ACC ATG GCT AAT TCC CAT TAA AGG CAC TCT ATT CGA AAT AGA GTG C	dipstream of the $w_{2x_{0111}}$ gene in <i>E. con</i> OTTT (pFR2103), 6936R has 42b homologous to sequence just after wzx ₀₁₆ in the O16 gene cluster. 6935F/6938R are used to generate a $w_{2x_{0111}}$ replacement cassette using products of 6935F/6936R and 6937F/6938R.	

Strains	Parent strain	Strain genotype or plasmid description ^A	Source/reference	
&				
plasmids				
Strains				
P5930	P5928	S. enterica group B serovar Typhimurium strain LT2,hsdL trp32 nml	(1)	
		flaA66, rpsLxylT404 llvE452 metE551 metA22 hsdA Δ galE Δ wbaV		
P9546	P5930	P5930, <u>pPR2190</u>	This study	
P5932	MG1655	MG1655, <u>wzx₀₁₆ gene replaced by a kan gene</u>	This study	
P5946	P5937	MG1655, <i>wzx</i> ₀₁₆ gene replaced by <i>wzx</i> ₀₁₆ - <i>kan</i> , <u>pPR2191</u>	This study	
P5944	P5933	MG1655, <i>wzx</i> _{O16} gene replaced by <i>wzx</i> _{O7} - <i>kan</i> , <u>pPR2191</u>	This study	
P5947	P5938	MG1655, <i>wzx</i> ₀₁₆ gene replaced by <i>wzx</i> ₀₁₁₁ - <i>kan</i> , <u>pPR2191</u>	This study	
P5943	P5934	MG1655, <i>wzx</i> _{O16} gene replaced by <i>wzx</i> _{Sf2a} - <i>kan</i> , <u>pPR2191</u>	This study	
P5953	P5942	MG1655, wzx_{O16} gene replaced by a <i>kan</i> gene, pPR2191, pPR2193	This study	
P5954	P5943	MG1655, <i>wzx</i> _{O16} gene replaced by <i>wzx</i> _{Sf2a} - <i>kan</i> , pPR2191, <u>pPR2193</u>	This study	
P5955	P5944	MG1655, <i>wzx</i> _{O16} gene replaced by <i>wzx</i> _{O7} - <i>kan</i> , pPR2191, <u>pPR2193</u>	This study	
P5956	P5936	MG1655, <i>wzx</i> _{O16} gene replaced by <i>wzx</i> _{SeLT2} - <i>kan</i> , pPR2191, <u>pPR2193</u>	This study	
P5957	P5947	MG1655, <i>wzx</i> ₀₁₆ gene replaced by <i>wzx</i> ₀₁₁₁ - <i>kan</i> , pPR2191, pPR2193	This study	
P5958	P5952	MG1655, wzx_{016} gene replaced by wzx_{0157} -kan, pPR2191, pPR2193	This study	
P5948	P5938	MG1655, <i>wzx</i> ₀₁₆ gene replaced by <i>wzx</i> ₀₁₁₁ - <i>kan</i> , <u>pPR2192</u>	This study	
P5949	P5937	MG1655, wzx_{O16} gene replaced by wzx_{O16} -kan, <u>pPR2192</u>	This study	
P5950	P5933	MG1655, <i>wzx</i> _{O16} gene replaced by <i>wzx</i> _{O7} - <i>kan</i> , <u>pPR2192</u>	This study	
P5951	P5934	MG1655, <i>wzx</i> _{O16} gene replaced by <i>wzx</i> _{Sf2a} - <i>kan</i> , <u>pPR2192</u>	This study	
M2893	M388	S. enterica group D2 serovar Strasbourg, $rpsL$, $\Delta galE$	(1)	
M2897	M2893	M2893, wzx _D gene replaced by rpsL-kan	(1)	
M2944	M2897	M2897, <u>pPR2190</u>	This study	
M2896	M2893	M2893, wbaV gene replaced by rpsL-kan	(1)	
M2950	M2896	M2896, <u>pPR2190</u>	This study	
M2820	M126	S. enterica group D1 serovar Dublin, $\Delta galE \Delta wbaV$	This study	
M2951	M2820	M2820, <u>pPR2190</u>	This study	
Plasmids				
pPR2190		pTrc99A (NcoI & BamHI) carrying the wzx_D gene from S. enterica	This study	
		group D2 serovar Strasbourg, IPTG inducible, ampicilin resistant		
pPR2191		pWQ572 (NcoI & BamHI) carrying the wbbL gene from E. coli	This study	
		K-12 strain WG1, which is controlled by tetracycline inducible P_{Tet}		
		promoter chloramphenicol resistant		
pPR2192		pPR691 carrying the <i>E. coli</i> O111 gene cluster with the <u>wzx₀₁₁₁ gene</u>	This study	
		replaced by a <i>cat</i> gene. Kanamycin and chloramphenicol resistance		
pPR2193		wzx ₀₁₆ from E. coli K-12 cloned into pWQ552 (NcoI & PstI),	This study	
		controlled by tetracycline inducible P _{Tet} promoter, ampicillin		
		resistance		
A. Genetic difference from the parent is <u>underlined</u> , including gene replacements and plasmid additions.				

Table S3. Strains and plasmids used in this supplemental material.

Fig. S1. The *E. coli* strain O16 variants with either a *wzx* gene for a non GlcNAc-initiated O antigen (*wzx*_{O157} and *wzx*_{SeLT2}) or with no O-antigen *wzx* gene, produce small amounts of LPS with a single O16 repeat unit. **A.** Silver stained SDS-PAGE. **B**. The same set of LPS, with three times the loading for **A**, were run on a SDS-PAGE, and transferred to nitrocellulose membrane for immunoblotting with monospecific anti-*E. coli* O16 antibodies as described in (1). The immunoblot shows that the small amounts of material detected above the lipid A-core in strains with either a *wzx* gene for a non GlcNAc-initiated O antigen (lanes 2 and 3) or with no O-antigen *wzx* gene (lane 4), are LPS carrying a single O16 repeat unit, whereas the negative control LPS from MG1655 lacking the *wbbL* clone and so unable to produce O16 repeat units, gave no reaction to the anti-O16 antiserum (lane 5). It should be noted that the only O16 antiserum that is commercially available to us had been diluted for slide agglutination and gave a much weaker immunoblotting signal than expected, despite that almost all of the material was used in the single experiment.

Fig. S2. Comparison of Wzx_{O16} activity with those of Wzx_{O7} , Wzx_{O111} , and Wzx_{Sf2a} , in translocation of the *E*. *coli* O16 repeat unit. The strains all have the pPR2191 (*wbbL*) plasmid for initiation of O16 antigen production. The extracted LPS samples were separated in 13% Tricine-SDS-PAGE gel and silver stained. For genetic details of strains used in this figure, see Table S3.

Fig. S3. The LPS profile of *E. coli* strain K-12 variants with different *wzx* genes after addition of the *wzx*_{O16} clone (pPR2193) to test for complementation. The extracted LPS samples were separated in 13% tricine SDS-PAGE and silver stained. For the genetic detail of strains used in this figure, see Table S3.

Strain Name P5948 (diluted as indicated by the loading fraction) P5949 P5950 P5951

Fig. S4. A comparison of Wzx_{O111} activity with those of Wzx_{O16} , Wzx_{O7} , and Wzx_{Sf2a} , for translocation of the *E. coli* O111 repeat unit. The plasmid, pPR2192 carrying the O111 gene cluster lacking the *wzx*_{O111} gene, is present in the strains examined for synthesis of O111 repeat units. The extracted LPS samples were separated in 13% Tricine-SDS-PAGE gel and stained by silver nitrate. For the genetic details of strains used in this figure, see Table S3.

Fig. S5. Effect of over-expression of the wzx_D gene in $\Delta wbaV$ mutants of *Salmonella enterica* groups D2, B1 and D1, that produce repeat units lacking the side-branch tyvelose or abequose. B1, D2 and D1 $\Delta wbaV$ strains lack the side-branch dideoxyhexose that is normally present (1) and make very liitle long-chain O antigen as shown previously for groups B1 and D2 (1) (lanes 4, 6 and 8 respectively). Addition of a cloned wzx_D gene (lanes 5, 7 and 9 respectively) restored wild-type O-antigen levels (lane 1). Note that the Wzx translocases from groups B1 and D2 are known not distinguish between abequose and tyvlose under these experimental conditions (1).

The strains were grown according to Hong *et al.* (1), with IPTG (1mM final concentration) added at the same time as galactose addition. The extracted LPS samples were separated in 13% Tricine-SDS-PAGE gel and silver stained. For genetic details of strains used in this figure, see Table S3.

Reference

 Hong Y, Cunneen MM, Reeves PR. 2012. The Wzx translocases for *Salmonella enterica* O-antigen processing have unexpected serotype specificity. Mol. Microbiol. 84:620-630.