

Fig. S1. ³¹P NMR spectra of phosphonates from *Glycomyces* and *Stackebrandtia*. (A) 2 3 Concentrated culture extract of Glycomyces shows the presence of phosphonates. (B) Concentrated culture extract of Stackebrandtia shows the presence of phosphonates. (C) Washed 4 5 cells of Glycomyces contain a small amount of phosphonates. (D) Lysozyme treatment of the sample in (C) releases cell-bound phosphonates. Concentrated culture extracts were 6 supplemented with 20% D₂O for ³¹P NMR analyses, as shown in (A) and (B). *Glycomyces* cells 7 (750 mg wet weight) were harvested and washed three times with 10 mM Tris buffer (pH=7.0). 8 Washed buffers were combined, dried and redissolved in D₂O for ³¹P NMR analysis, as shown in 9 (C). Washed cells were resuspended in 10 mM Tris buffer (pH=7.0) and treated with DNase. 10 RNase and proteinase K. Enzymes were inactivated by successive extractions with 11 12 phenol:chloroform:isoamyl (25:24:1) and chloroform:isoamyl (24:1) and centrifugations. The 13 aqueous phase collected was filtered using a 10 kDa Amicon filter. The retentate on the filter was washed 10 times with water, lyophilized, resuspended in 20% D₂O for ³¹P NMR analysis, as 14 shown in (D). P peaks with chemical shifts between 5 and 40 ppm are usually indicative of 15 phosphonates and phosphinates whereas P peaks between +5 to -20 ppm range are usually 16 17 phosphate monomers, esters and pyrophosphates.

- 18
- 19 20
- 21

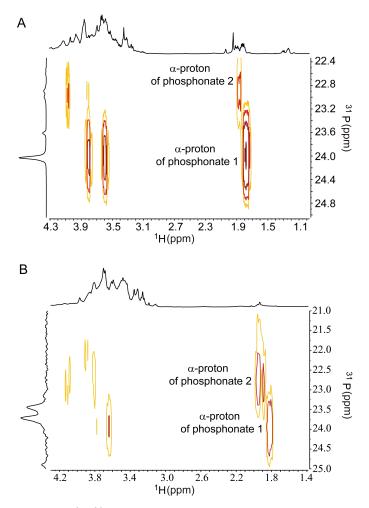


Fig. S2. ¹H-³¹P HMBC spectra of purified phosphonoglycans from *Glycomyces* (A) and 24 Stackebrandtia (B). In the ¹H-³¹P HMBC spectrum of purified phosphonoglycans from 25 *Glycomyces* (A), the major ³¹P signal at 24.03 ppm had cross-peaks with three proton signals at 26 1.78, 3.59 and 3.80 ppm. The proton signal at 1.78 and 3.59 ppm was assigned to CH₂P and 27 CH₂OH of a phosphonate head group, respectively, by ¹H-¹H COSY correlations of H-1 with 28 29 H-2. The proton signal at 3.80 ppm may originate from a phosphonate ester. There were two minor ³¹P signals at 22.89 and 22.99 ppm. One of them (or both) had cross-peaks with three 30 proton signals at 1.86 (assigned to CH₂P of a phosphonate), 3.81 and 4.07 ppm. ³¹P signal 31 overlapping in this region prevented assignments of other proton signals. In the ¹H-³¹P HMBC 32 spectrum of purified phosphonoglycans from *Stackebrandtia* (B), the ³¹P signal at 23.71 ppm had 33 34 cross-peaks with three protons signals at 1.81, 3.64 and 3.78 ppm. The proton signals at 1.81 and 3.64 ppm were assigned to CH_2P and CH_2OH of a phosphonate head group, respectively, 35 by ¹H-¹H COSY correlations of H-1 with H-2. The proton signal at 3.78 ppm may originate 36 from a phosphonate ester. The ³¹P signal at 23.45 ppm had a cross-peak with the proton 37 signal at 1.94 ppm (assigned to CH₂P of a phosphonate) and possibly also had cross-peaks 38 39 with proton signals at 3.81 and 4.11 ppm. The proton signals at 3.81 and 4.11 ppm could not

40	be confidently assigned due to low signal intensities.
41	be connucling assigned due to low signal intensities.
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	
61	
62	
63	
64	
65	
66	
67	
68	
69	
70	
71	
72	
73	
74	
75	
76	
77	
78	

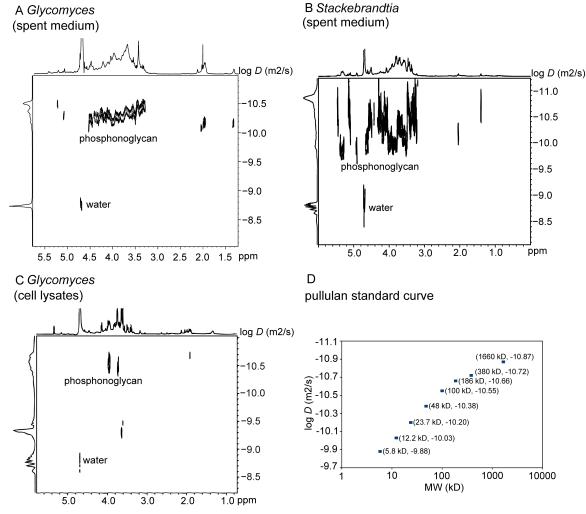
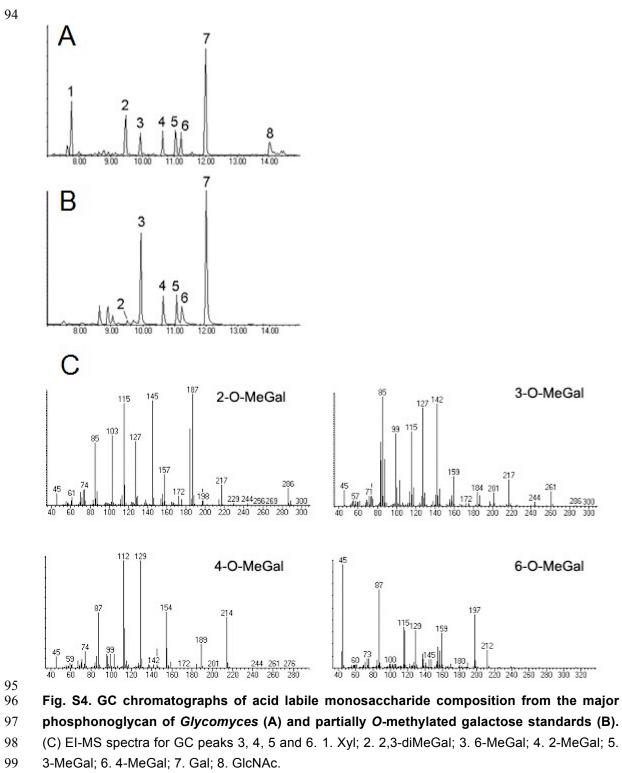



Fig. S3. ¹H DOSY NMR spectra of phosphonoglycans from *Glycomyces* and *Stackebrandtia*. (A) ¹H DOSY NMR spectrum of *Glycomyces* phosphonoglycans purified from the culture extract. (B) ¹H DOSY NMR spectrum of Stackebrandtia phosphonoglycans purified from the culture extract. (C) ¹H DOSY NMR spectrum of *Glycomyces* cell-bound phosphonoglycans. (D) A standard curve to plot log MW v.s. log D of a series of Shodex pullulan standards (in the range of 5.8 and 1660 kDa) in D₂O. The x axis in the ¹H DOSY NMR spectrum shows proton chemical shifts whereas the y axis shows the diffusion coefficiencies (log D) of compounds. The standard curve can be used to determine the approximate molecular weights of phosphonoglycans. The proton signal at 4.6 ppm in (A), (B) and (C) originates from water.

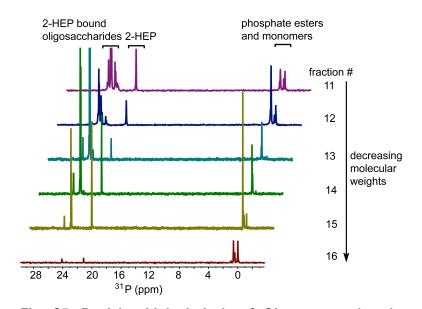


Fig. S5. Partial acid hydrolysis of *Glycomyces* phosphonoglycans produced various polymeric fragments containing different amounts of 2-HEP bound oligosaccharides and unbound 2-HEP. Fractions #11 to #16 were phosphonate-containing fractions eluted from Bio-Gel P2 column (Bio-Rad). The identity of the peak with the chemical shift of 21.2 ppm was confirmed to be 2-HEP by spiking the sample with an authentic 2-HEP standard. Fractions #14 to #16 were pooled for subsequent purification and characterization.

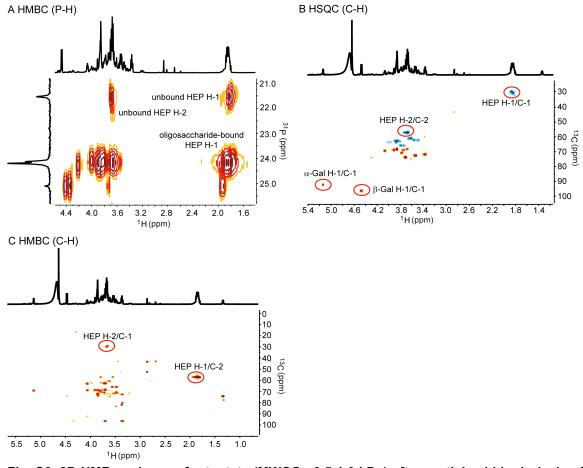


Fig. S6. 2D NMR analyses of retentate (MWCO= 0.5-1.0 kDa) after partial acid hydrolysis of *Glycomyces* phosphonoglycans. (A) ¹H-³¹P HMBC spectrum. (B) ¹H-¹³C HSQC spectrum. (C) ¹H-¹³C HMBC spectrum. In the ¹H-³¹P HMBC spectrum, the proton signal at 1.86 ppm had a cross-peak with one of the ³¹P signals (or both) at 24.14 and 24.20 ppm. This was assigned to H-1 of the 2-HEP moiety, which was likely bound to oligosaccharides. C-1 (30.1 ppm) of the 2-HEP moiety, determined by the ¹H-¹³C HSQC NMR experiment, had only one correlation with a proton signal at 3.67 ppm in the ¹H-¹³C HMBC spectrum. This proton was assigned to H-2 of the 2-HEP moiety, which also showed the correlation with the ³¹P signal at 24.14 (or 24.20) ppm in the ¹H-³¹P HMBC spectrum. H-2 of 2-HEP only had one correlation with C-1 of 2-HEP but not with any other carbons in the ¹H-¹³C HMBC spectrum, excluding the possibility of an ether linkage between 2-HEP and sugars.

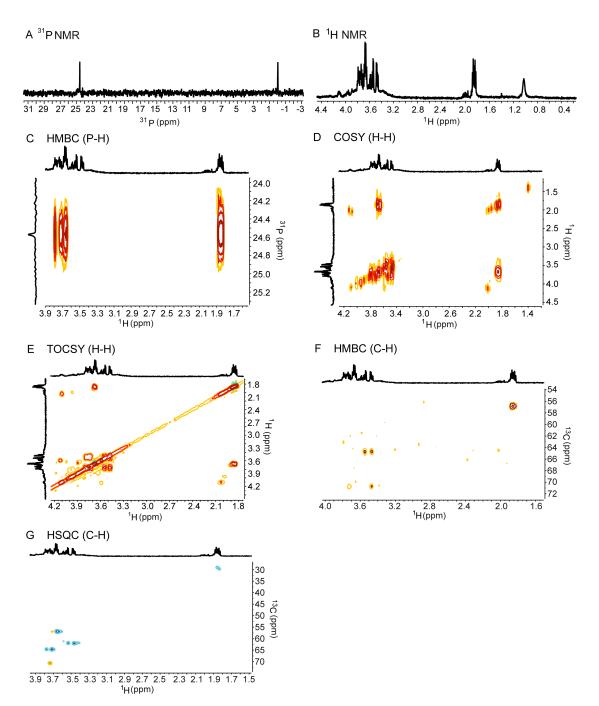


Fig. S7. 1D and 2D NMR analyses of 2-HEP mono(2,3-dihydroxypropyl) ester after partial acid hydrolysis of *Stackebrandtia* phosphonoglycans. (A) ³¹P NMR spectrum. (B) ¹H NMR spectrum. (C) ¹H-³¹P HMBC spectrum. (D) ¹H-¹H COSY NMR spectrum. (E) ¹H-¹H TOCSY NMR spectrum. (F) ¹H-¹³C HMBC spectrum. (G) ¹H-¹³C HSQC spectrum. In the ¹H-³¹P HMBC spectrum, four proton signals at 1.85, 3.67, 3.72 and 3.78 ppm, had cross-peaks with the ³¹P signal at 24.5 ppm. The proton signals at 1.85 and 3.67 ppm were assigned to CH₂P and CH₂OH of the 2-HEP moiety, respectively, by ¹H-¹H COSY and ¹H-¹H TOCSY correlations of

155	H-1 with H-2 and ¹ H- ¹³ C HMBC correlations of H-1 with C-2. Proton signals at 3.72 and 3.78
156	ppm are both from C-1', as evident from ¹ H- ¹³ C HMBC correlations of H-1' with C-2' but not
157	with C-1 or C-2. Additionally, two cross-peaks were found between the proton signal at 3.47
158	ppm and the carbon signals at 64.8 (C-1') and 70.7 (C-2') ppm. This proton signal was
159	assigned to H-3', consistent with ¹ H- ¹ H TOCSY correlations of H-2' with H-3'. Together, these
160	data allow to assign the structure as 2-HEP mono(2,3-dihydroxypropyl) ester.
161	
162	
163	
164	
165	
166	
167	
168	
169	
170	
171	
172	
173	
174	
175	
176	
177	
178	
179	
180	
181	
182	
183	
184 185	
185	
187	
188	
189	
190	
191	
192	
193	
194	
195	

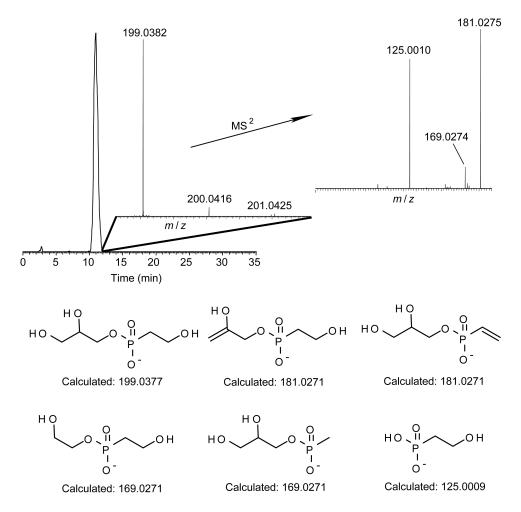
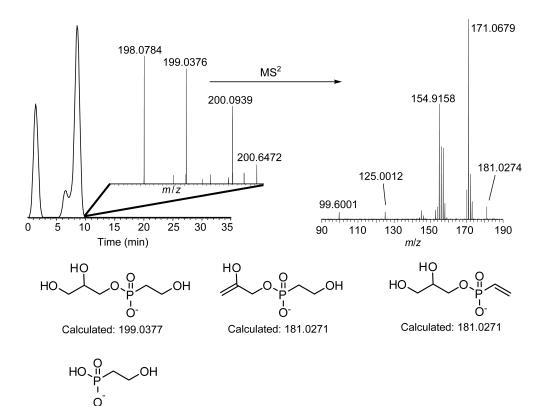



Fig. S8. High resolution LC-MS analysis of 2-HEP mono(2,3-dihydroxypropyl) ester after partial acid hydrolysis of Stackebrandtia phosphonoglycans. The precursor ion at m/z 199.0382 indicates HEP-linked glycerol, namely, 2-HEP mono(2.3-dihydroxypropyl) ester. This ion was selected for MS². Proposed ion structures were shown at the bottom. The peak labels in the spectrum indicate observed values whereas the numbers below the proposed ion structures indicate calculated monoisotopic values. LC-MS analysis was performed on a custom 11T linear ion-trap Fourier-transform mass spectrometer (LTQ-FT, Thermo Fisher Scientific) equipped with a 1200 HPLC system (Agilent). The mass spectral analysis consisted of a full scan at resolution 100,000 (*m/z* 100-1000), a source fragmentation scan (85V, *m/z* 50-110) detected in the ion trap and a targeted CID MS2 scan with FT detection to obtain tandem mass spectra of target compounds.

213 Calculated: 125.0009

Fig. S9. High resolution LC-MS analysis of 2-HEP mono(2,3-dihydroxypropyl) ester after partial acid hydrolysis of *Glycomyces* phosphonoglycans. The precursor ion at *m*/z 199.0376 indicates HEP-linked glycerol, namely, 2-HEP mono(2,3-dihydroxypropyl) ester. This ion was selected for MS². Proposed ion structures were shown at the bottom. The peak labels in the spectrum indicate observed values whereas the numbers below the proposed ion structures indicate calculated monoisotopic values. LC-MS analysis was performed on a custom 11T linear ion-trap Fourier-transform mass spectrometer (LTQ-FT, Thermo Fisher Scientific) equipped with a 1200 HPLC system (Agilent). The mass spectral analysis consisted of a full scan at resolution 100,000 (*m/z* 100-1000), a source fragmentation scan (85V, *m/z* 50-110) detected in the ion trap and a targeted CID MS2 scan with FT detection to obtain tandem mass spectra of target compounds.

- -

235 Table S1. Summary of ORFs in putative phosphonoglycan biosynthetic locus of

236	Stackebra	ndtia

ORF	No. of amino	Predicted function (GenBank accession)
	acids	
1'	116	ABC transporter (YP_003514402)
2'	474	nucleotide sugar dehydrogenase (YP_003514401)
3′	310	endonuclease/exonuclease/phosphatase (YP_003514400)
4'	193	hypothetical protein Snas_5676 (YP_003514399)
5'	704	LmbE family protein (YP_003514398)
6′	762	glycosyl transferase group 1 (YP_003514397)
7'	549	N-acetylglucosamine phosphotransferase (YP_003514396)
8′	593	N-acetylglucosamine phosphotransferase (YP_003514395)
9′	685	CDP-alcohol phosphatidyltransferase (YP_003514394)
10′	253	ABC transporter related protein (YP_003514393)
11′	291	CDP-alcohol phosphatidyltransferase (YP_003514392)
12′	239	2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase
		(YP_003514391)
13′	551	hypothetical protein Snas_5667 (YP_003514390)
14'	569	hypothetical protein Snas_5666 (YP_003514389)
15′	437	PEP mutase (YP_003514388)

16′	373	phosphonopyruvate decarboxylase (YP_003514387)
17′	386	iron-containing alcohol dehydrogenase (YP_003514386)
18′	238	hypothetical protein Snas_5662 (YP_003514385)
19'	138	hypothetical protein Snas_5661 (YP_003514384)
20'	106	hypothetical protein Snas_5660 (YP_003514383)
21′	237	hypothetical protein Snas_5659 (YP_003514382)
22'	196	hypothetical protein Snas_5658 (YP_003514381)
23′	102	hypothetical protein Snas_5657 (YP_003514380)
24′	662	major facilitator superfamily protein (YP_003514379)
25'	239	flavoprotein (YP_003514378)
26′	449	radical SAM protein (YP_003514377)
27′	222	NAD-dependent epimerase/dehydratase (YP_003514376)
28′	143	glyoxalase/bleomycin resistance protein/dioxygenase (YP_003514375)
29'	219	GntR family transcriptional regulator (YP_003514374)