Flow in bulk solution:

The Navier Stokes equations of incompressible flows in 3D, non-porous systems contains 3 momentum equations and 1 incompressibility constraint. Here, ρ is the fluid density (kg·m⁻³); u is the flow velocity (L·min⁻¹); P is the pressure (Pa); f is the given force (kg·m·t²); σ is the stress kg·m⁻¹·t².

$$\rho\left(\frac{\partial u}{\partial t} + u \cdot \nabla u - f\right) - \nabla \cdot \sigma = 0$$
$$\nabla \cdot u = 0$$

In order to define initial conditions, stress must be defined in terms of pressure and fluid viscosity. $\sigma = -pI + 2\eta\varepsilon$

Here, η is the dynamic viscosity (kg·m⁻¹s⁻¹). *I* is the identity matrix. The strain-rate tensor, ε , can be expanded into:

$$\varepsilon = \frac{1}{2} (\nabla u + (\nabla u)^T)$$

Substituting and simplifying:

 $\begin{aligned} \nabla \cdot \sigma &= \nabla \cdot (-PI + \eta (\nabla u + (\nabla u)^T)) \\ \nabla \cdot \sigma &= \nabla \cdot (-PI + \eta (\nabla \cdot (\nabla u) + \nabla \cdot (\nabla u)^T) \\ \nabla \cdot \sigma &= \nabla \cdot (-PI + \eta (\nabla \cdot (\nabla u) + \nabla (\nabla \cdot u)) \end{aligned}$

Since $\nabla \cdot u = 0$ due to the incompressibility constraint: $\nabla \cdot \sigma = -\nabla P + \eta \nabla^2 u$

Therefore, assuming that *f* is 0 for laminar flow:

$$\rho\left(\frac{\partial u}{\partial t} + u \cdot \nabla u\right) + \nabla P - \eta \nabla^2 u = 0$$

Since the time-independent Navier Stokes is solved in order to reduce the complexity of the system, $\frac{\partial u}{\partial t}$ drops out:

$$\rho(u \cdot \nabla u) + \nabla P - \eta \nabla^2 u = 0$$

Flow in porous beads:

For flow in porous medium, we use Brinkman's equation,²⁴ a modification of Navier Stokes to take into account permeability and porosity of the porous medium. We assume *f* is zero. Here, *k* is the permeability (m²); and ε_p is the porosity (dimensionless).

$$\rho\left(\frac{\partial u}{\partial t} + u \cdot \nabla u - f\right) - \nabla \cdot \sigma = 0$$
$$\frac{\rho}{\varepsilon_p} \left(\frac{\partial u}{\partial t} + u \cdot \nabla u\right) - \nabla \cdot \sigma = 0$$
$$\frac{\rho}{\varepsilon_p} \left(\frac{\partial u}{\partial t}\right) + \frac{\eta}{k}u - f - \nabla \cdot \sigma = 0$$

In a similar fashion, we expand stress out into its pressure and viscosity terms.

$$\nabla \cdot \sigma = \nabla \cdot (-PI + \frac{\eta}{\varepsilon_p} (\nabla u + (\nabla u)^T))$$

After substituting and simplifying, we end up with:

$$\frac{\rho}{\varepsilon_p} \left(\frac{\partial u}{\partial t} \right) + \frac{\eta}{k} u + \nabla P - \frac{\eta}{\varepsilon_p} \nabla^2 u = 0$$