
Flow in bulk solution: 
The Navier Stokes equations of incompressible flows in 3D, non-porous systems contains 3 momentum equations 
and 1 incompressibility constraint. Here, $ is the fluid density (kg·m-3); ) is the flow velocity (L·min-1); P is the 
pressure (Pa); f is the given force (kg·m·t-2); - is the stress kg·m-1·t-2.  
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In order to define initial conditions, stress must be defined in terms of pressure and fluid viscosity. 
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Here, < is the dynamic viscosity (kg·m-1s-1). I is the identity matrix. The strain-rate tensor, =, can be expanded into: 
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Substituting and simplifying: 
∇ ∙ - = ∇ ∙ (−@; + <(∇) + (∇))?)) 
∇ ∙ - = ∇ ∙ (−@; + <(∇ ∙ (∇)) + ∇ ∙ (∇))?) 
∇ ∙ - = ∇ ∙ (−@; + <A∇ ∙ (∇)) + ∇(∇ ∙ ))B 
 
Since ∇ ∙ ) = 0 due to the incompressibility constraint: 
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Therefore, assuming that f is 0 for laminar flow: 
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Since the time-independent Navier Stokes is solved in order to reduce the complexity of the system, DE

DF  drops out: 
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Flow in porous beads: 
For flow in porous medium, we use Brinkman's equation,24 a modification of Navier Stokes to take into account 
permeability and porosity of the porous medium. We assume f is zero. Here, k is the permeability (m2); and =Lis the 
porosity (dimensionless). 
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In a similar fashion, we expand stress out into its pressure and viscosity terms. 
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After substituting and simplifying, we end up with: 
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