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APPENDIX A: FULL CONDITIONAL DISTRIBUTIONS

In this appendix, we describe some of the full conditional distributions for the model

described in the paper. Let yij(d, t) denote a multivariate response corresponding to ENM

i (i = 1, ..., n) and replicate j (j = 1, ..., m), at dose d = (d1, . . . , dnd
) ∈ [0, D] and time

t = (t1, . . . , tnt) ∈ [0, T ]. Here D is the largest measured dose and T is the largest measured

exposure time. Let θ = (α,β, τ , σε,σβ, λ, γ, ρ) denote the full parameter vector, and let

θ\δ denote the vector containing all components of θ except for some parameter δ in θ.

Moreover, we denote with yi the complete set of response values for particle i. Finally, let

hdt denote a (Md × Mt)-dimensional design vector, which can be defined as (B1(d)B1(t), . . . ,

Bmd
(d)Bmt(t), . . . BMd

(d)BMt(t)) (§2.4), and X an n × p dimensional design matrix which

includes the p covariates. Using the notation above we define the full conditional distributions

for all available parameters as follows.

A.1: Full conditional distributions for αi and βi

Let η = m × nd × nt be the total sample size for any particle i. Also let y∗
ij(d, t) = yij(d, t) −

h′
dtβi, where βi = 0 if γi = 0, we have

αi | yi,θ\αi
∼ N

(
c

c η + 11
′
ηy

∗
i ,

σ2
ε

τi

c

c η + 1

)
.

Furthermore, defining ỹij(d, t) = yij(d, t) − αi, we have

βi | yi, γi = 1,θ\βi
∼ N


Σ-1

βi
+ m

∑
d,t

hdth
′
dt

σ2
ε /τi

-1

m
∑
d,t

hdtỹij(d, t)
σ2

ε /τi

,

Σ-1
βi

+ m
∑
d,t

hdth
′
dt

σ2
ε /τi

-1
 ,

where Σβi
= σ2

βi
(Kd ⊗ Kt).
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A.2: Full conditional distributions for σ2
ε and τi

From A.1, let η = m × nd × nt,

1/σ2
ε | yi,θ\σε ∼ Gamma

aε + n × η

2 ,
1
2
∑

d,t,j,i

(
yij(d, t) − mi(d, t)

)2
τi + bε

 ,

where

mi(d, t) =


αi if γi = 0

h′
dtβi + αi if γi = 1.

For each particle i, (i = 1, . . . , n), the variance inflation parameter τi is

τi | yi,θ\τi
∼ Gamma

ν + η

2 ,
∑
d,t,j

(
yij(d, t) − mi(d, t)

)2

2σ2
ε

+ ν

2

 ,

where mi(d, t) is defined as before.

A.3: Full conditional distributions for other variance parameters

1/σ2
βi

| θ\σβi
∼ Gamma

(
aβi

+ MdMt

2 , bβi
+ 1

2β′
i(Kd ⊗ Kt)βij

)
.

A.4: Full conditional distributions for λp and zi

The latent probit scores have conditional distribution:

zi | λ, ρ, γi = 1 ∼ N
(
x′

iρλρ, 1
)

I(zi ≤ 0), zi | λ, ρ, γi = 0 ∼ N
(
x′

iρλρ, 1
)

I(zi > 0).

Similarly, regression coefficients λρ are

λρ | z, ρ ∼ N

(
gρ

gρ + 1(X ′
ρXρ)-1X ′

ρz,
gρ

gρ + 1(X ′
ρXρ)-1

)
.
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0.1. A.5: Derivation of p(γ | y,θ\γ)

Let ỹij(d, t) = yij(d, t) − αi and Hi be a η × MdMt matrix of tensor product spline bases.

Finally, define Ωβi
=
(

τi

σ2
ε
H ′

iHi + Σ−1
β

)
For each particle i (i=1,. . . ,n), we have

p(γi | ỹi,θ\γ) ∝ p
(
ỹi | θ\βi

)
p(γi | λ, ρ),

where the likelihood, marginalized with respect to βi, is

p
(
ỹi | γi = 0,θ\βi∪γ

)
∝ exp

{
− τi

2σ2
ε

ỹ′
iỹi

}
,

and

p
(
ỹi | γi = 1,θ\βi∪γ

)
=
∫

p(ỹi | βi, τi, σ2
ε , γi = 1) p(βi | Σβ, γi = 1) dβi,

∝ |Σβ|− 1
2 exp

{
− τi

2σ2
ε

ỹ′
iỹi

}∫
exp

{
−1

2

(
β′

i

(
H ′

iHi
τi

σ2
ε

+ Σ−1
β

)
βi − 2 τi

σ2
ε

β′
iH

′
iỹi

)}
dβi

∝ |Σβ|− 1
2 |Ωβi

|− 1
2 exp

{
τ 2

i

2σ4
ε

ỹ′
iHiΩ

−1
βi
H ′

iỹi

}
exp

{
− τi

2σ2
ε

ỹ′
iỹi

}
;

which gives the result in the manuscript (§3.2).

APPENDIX B: MODEL ASSESSMENT

In this appendix we discuss model assessment. First we assess goodness of fit using the

conditional predictive ordinate (cpo), as described by ?. Next we plot the probability integral

transform (PIT) histogram, as a measure of predictive performance (Gneiting et al. (2007)).

Finally, we present some graphical posterior predictive checks.

B.1: Conditional Predictive Ordinate (CPO)

The conditional predictive ordinate (CPO) is a diagnostic tool for detecting observations with

poor model fit. If we let Y denote the complete set of responses, let Y−k denote observation
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Y with the k-th component omitted, and let Y obs
k denote the kth component of observation

Y , then CPOk can be defined as follows:

CPOk = π(Y obs
k | Yk) =

∫
π(Y obs

k | Y−k,ω)π(ω | Y−k) dω,

π(Y obs
k | Y−k,ω) = 1∫ π(ω | Y )

π(Y obs
k | ω) dω

. (1)

Here, ω = (α,β, τ , σε,σβ, λ, γ, ρ) denotes the full parameter vector. Given N MCMC

samples, n = 1, ..., N , from the posterior distribution P (ω | Y ), we can obtain the harmonic

mean estimate of CPOk as follows:

ˆCPOk = N
N∑

n=1
1/π

(
Y obs

k
|ω(n)

k

) . (2)

The expression above is evaluated at posterior samples ω
(1)
k , . . . ,ω

(N)
k .

A plot of -log(CPOk) can be used to diagnose poor model fit. Large values of -log(CPOk)

indicate observations that are not consistent with the model. The top panel of Figure 1,

provides a plot of -log( ˆCPOi(d, t)) for the model and data described in the main article.

Overalll values of -log( ˆCPOi(d, t)) are relatively low, indicating good model fit. The middle

panel indicates that the largest values of -log( ˆCPOi(d, t)) tend to be observations with large

exposure times, This is to be expected, as cell death is followed after sometime by the

dissolution of cell nuclei, hindering the measurement of cellular responses.

B.2: Probability Integral Transform (PIT)

The probability integral transform (PIT), as described by ?, is frequently used as a measure

of posterior predictive calibration. Here calibration is defined as the statistical consistency

between the posterior predictive distribution and the observed responses Y . The PIT is

described as the value of the observed response Yk attained under the predictive cumulative

5



Environmetrics T. Patel et Al.

distribution function. Using the same notation as above, the PIT can be defined as follows:

PITk =
∫

P (Yk ≤ ω)π(ω)dω = Pk(Yk). (3)

Given N MCMC samples, n = 1, ..., N , from the posterior distribution P (ω | Y ), we can

estimated PIT as follows:

ˆPIT k = 1
N

N∑
n=1

I(Yk ≤ Ỹ
(n)

k ). (4)

where Y
(n)

rep k is a sample from the posterior predictive distribution.

A plot of the PIT histogram can be used to visually assess the calibration of the

model. Under good predictive performance of the model, the PIT histogram has a uniform

distribution (see ? for a formal proof). Inspection of the PIT histogram can also indicate

reasons for poor predictive performance. A hump-shaped PIT histogram indicates prediction

intervals that are, on average, to wide due to over dispersion of the predicative distribution.

A U-shaped PIT histogram indicates that the predictive distribution is too narrow. Finally,

a triangle shaped PIT histogram corresponds to biased predictive distributions (?).

The bottom panel of Figure 1 provides a plot of the PIT histogram for the entire model,

including all doses, times, and particles. Visual assessment indicates that the plot does tend

toward uniformity, indicating good overall predictive performance.

[Figure 1 about here.]

B.3: Posterior Predictive Diagnostics

A common tool for model checking in Bayesian inference involves posterior predictive checks.

The basic idea behind posterior predictive checking is that if the model is a good fit to

the data, then data replicated under the model should resemble the observed response Y .

In posterior predictive checking, replicate samples Yrep, are simulated from the posterior
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predictive distribution and compared to the observed data Y . Potential problems with the

model can be detected by looking for systematic differences between the simulated posterior

predictive samples and the observed response. Using the same notation described above, the

posterior predictive distribution can be described as follows:

p(Yrep | Y ) =
∫

P (Yrep | ω)P (ω | Y )dω. (5)

Given N MCMC samples, n = 1, ..., N , from the posterior distribution P (ω | Y ), we can

draw samples Y (n)
rep , n = 1, ..., N , from the posterior predictive distribution

Diagnostics of posterior predictive performance are obtained by comparing draws from

the posterior predictive distribution to the observed data, using both formal tests and

graphical checks. Graphical model checking involves the display of the simulated data from

the posterior predictive distribution alongside the observed data Y , and visually looking for

large discrepancies such as lack of coverage (?).

Figures 3 and 4 provide plots of the distribution of the posterior predictive mean response

averaged across all doses and times of exposure (black), for each particle. The mean and

associated 95% posterior intervals for the posterior predictive distribution are marked using

vertical lines (black). Also included is the empirical mean response across all doses and

times of exposure (red). Figure 2, summarizes these results by plotting the mean and 95%

posterior intervals of the posterior predictive mean response (black), along with the the

empirical mean response across all doses and times (red), for each particle. In all cases the

empirical mean response is contained within the 95% posterior intervals of the posterior

predictive mean distribution, indicating relatively good posterior coverage across all doses

and times of exposure.

[Figure 2 about here.]

[Figure 3 about here.]
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[Figure 4 about here.]
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Figure 1. Graphical model diagnostics. (Top) Estimate of − log(cpoi(d, t)) for detecting observations with poor model fit. (Middle)
Plot of −log(cpoi(d, t)) as a function of dose and time, indicating any relationship between outlying observations and the administered
dose or duration of exposure. (Bottom) Probability Integral Transform assessing empirical calibration of the posterior predictive
distribution.
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Figure 2. Summary of posterior predictive mean coverage. Mean and 95% posterior intervals of the posterior predictive mean
response across all doses and times of exposure, for all 24 particles.) Also included are the empirical mean responses across all doses
and times of exposure (red).
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Figure 3. Posterior predictive mean distributions for CuO, Al2O3, CeO2, CoO, Fe2O3, Fe3O4, Mn2O3, Gd2O3, HfO2,
ZnO, In2O3, and La2O3 ENMs. For each particle we plot the distribution of the posterior predictive mean response across all doses
and times of exposure (black), along with the mean (solid black line) and associated 95% posterior intervals (dotted black lines) for
this distribution. Also included is the empirical mean response across all doses and times of exposure (red).
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Figure 4. Posterior predictive mean distributions for Co3O4, NiO, Sb2O3, Cr2O3, SiO2, SnO2, Ni2O3, TiO2, WO3, Y2O3,
Yb2O3, and ZrO2 ENMs.] For each particle we plot the distribution of the posterior predictive mean response across all doses and
times of exposure (black), along with the mean (solid black line) and associated 95% posterior intervals (dotted black lines) for this
distribution. Also included is the empirical mean response across all doses and times of exposure (red).
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