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Materials and Methods: 

 

Cell Culture 

The following cell lines were used for this study: Epstein-Barr virus (EBV)-transformed lymphoblastoid cell 

lines (LCLs) derived from 5 human (Coriell YRI, NIGMS Human Genetic Cell Repository, GM18505, GM18507, 

GM18516, GM19193, GM19204), and 5 chimpanzee (Pan troglodytes) individuals (New Iberia Research Center: Min 

18358, Min 18359; Coriell/IPBIR: NS03659, NS04973, Arizona State University, Pt91), and rhesus Herpesvirus papio 

transformed LCLs from 5 rhesus macaque (Macaca mulatta) individuals (Harvard Medical School, NEPRC: 150-99, 

R181-96, R249-97, 265-95, R290-96). Cells were maintained at identical conditions of 37° with 5% CO2 in RPMI 

media with 15% FBS, supplemented with 2 mM L-glutamate, 100 IU/ml penicillin, and 100 μg/ml streptomycin. 

Internal standard LCL (Coriell YRI, NIGMS Human Genetic Cell Repository, GM19238) was grown in RPMI minus 

L-Lysine and L-Arginine, 15% dialyzed FBS, and L-
13

C6
15

N4-arginine (Arg-10) and L-
13

C6
15

N2-lysine (Lys-8) 

(Cambridge Isotopes, Andover, MA, USA) supplemented with 2 mM L-glutamate, 100 IU/ml penicillin, and 100 

μg/ml streptomycin under identical conditions as the unlabeled LCLs. The internal standard LCL was grown for 6 

doublings to assure complete SILAC label incorporation. Complete label incorporation was verified by analyzing the 

protein lysate from the labeled LCL alone by high-resolution LC-MS/MS.  

 

mRNA and Protein Quantification Strategy Overview 

We used a protein quantification strategy where a single human SILAC labeled LCL GM19238 served as an 

internal standard for comparing protein levels across individuals and species (fig. S1). We chose SILAC because it 

does not suffer from the dynamic range compression and reduced quantitative accuracy issues of MS/MS 

quantification techniques such as multiplexed iTraq labeling, nor does it suffer from the high level of noise present in 

label-free quantification techniques (21). We also collected RNA-seq data for the same cell line used as an internal 

standard for the SILAC labeling allowing us to derive log2(sample/standard) ratios that were comparable across the 

two technologies (fig. 1A-1C). Thus, we could use the same statistical procedures for testing for mRNA as well as 

protein expression level differences.  

 

Quantitative, High-Resolution Mass Spectrometry 

LCLs were washed in PBS three times and then lysed using the UPX Universal Protein Extraction Kit 

(Expedeon Inc., San Diego, CA, USA). Protein quantitation was performed using the Qubit fluorometry assay 

(Invitrogen, Carlsbad California, USA) and the reducing agent-compatible (RAC) version of the BCA Protein Assay 

(Thermo Scientific, Waltham, Massachusetts, USA). 12μg of each sample was combined with 12μg of the SILAC 

labeled lysate from human LCL GM19238. Note that the SILAC lysate was prepared once and used as an internal 

standard through the quantification of the 15 cell lines. 24μg of each combined sample was then processed by SDS-

PAGE using a 4-12% Bis Tris NuPage mini-gel (Invitrogen, Carlsbad California, USA). Calibration was with Thermo 

PageRuler broad range markers. Each of 40 gel segments were processed by in-gel digestion using a ProGest robot 

(DigiLab, Marlborough, MA, USA) with the following protocol: wash with 25mM ammonium bicarbonate followed 

by acetonitrile, reduce with 10mM dithiothreitol at 60°C followed by alkylation with 50mM iodoacetamide at room 

temperature, digest with trypsin (Promega, Madison, WI, USA) at 37°C for 4h, and quench with formic acid. The 

supernatant was analyzed directly without further processing. Each gel digest was analyzed by nano-LC/MS/MS with a 

Waters NanoAcquity HPLC system interfaced to a ThermoFisher LTQ-Orbitrap Velos Pro. Peptides were loaded on a 

trapping column and eluted over a 75μm analytical column at 350nL/min using a 1-hour LC gradient. Both columns 

were packed with Jupiter Proteo resin (Phenomenex, Torrance, California, USA). The mass spectrometer was operated 

in data-dependent mode, with MS performed in the Orbitrap at 60,000 FWHM resolution and MS/MS performed in the 

LTQ. The fifteen most abundant ions were selected for MS/MS.  

 

Computational Analysis of Mass Spectra 

Low-level analysis was performed using the open-source proteomics software tool PVIEW (Release December 

23, 2012; http://compbio.cs.princeton.edu/pview)(22). As input to PVIEW, we generated in silico translations of 

coding genes from the UCSC Genome Browser database based on gene models from build hg19 of the human genome. 

Each protein sequence entry retained the corresponding Ensembl gene identifier and gene symbol.  Database searches 

were performed using ±4 p.p.m. MS1 tolerance and an MS2 window tolerance of ±0.5 Da. Up to 2 missed tryptic 

http://compbio.cs.princeton.edu/pview


cleavages were allowed during search. Carboxyamidomethylation of cysteine was used as fixed modification.  Up to 

two methionine oxidations were allowed as variable modifications of a tryptic peptide. Peptide spectrum matches were 

obtained at a stringent false discovery rate (FDR) of 1%. We used the median log2(sample/standard) ratio across all 

independent quantifications of a protein (distinct peptides including duplicate peptide measurements across fractions 

and for differing charge states). Note that use of the hg19 database was sufficient as SILAC pairs as the expected 

isotope shift used for quantification were only present for peptides that that had the same underlying sequence in the 

human internal standard line (fig. S1). The log2(sample/standard) quantifications were normalized per cell line by 

shifting them so that their median was centered at zero, thus, accounting for small differences in input protein sample   

 

RNA-seq Analysis 

RNA-seq libraries were prepared using the TruSeq RNA Sample Prep Kits (Illumina, San Diego, CA, USA). 

Prior to library preparation, we confirmed that the RNA was of high quality using Agillent’s Bioanalyzer 2100 (Santa 

Clara, CA, USA). 50bp-long single end reads were then sequenced on an Illumina Hi-Seq 2000.  27 RNA-seq libraries 

were sequenced across 6 lanes of a flow cell (3 sets of 9 samples with unique bar codes were each sequenced across 2 

lanes).  The present study only includes the RNA-seq samples that had matching protein data. Reads were aligned 

using BWA with the following command-line parameters “bwa aln -n 2 -t 3” and “bwa samse -n 1” Alignments with 

quality score < 10 were filtered using “samtools view -S -h -q 10 –b.” Reads were aligned to genome builds hg19 

(human), Pantro3 (chimpanzee), and RheMac2 (rhesus) for each respective species. We used a curated set of 

orthologous exons (http://giladlab.uchicago.edu/orthoExon) to derive expression measurements for each gene(14). 

Reads overlapping a single orthologous exons in each species were counted to derive reads per kilo-base per million 

mapped reads (RPKM) values for a gene in each species per cell line. Because we also had RNA-seq data for the cell 

line used as the internal standard in the SILAC experiment (GM19238), we were able to compute a 

log2(sample/standard) ratios of the RPKM values obtained for each line relative to the internal standard analogous to 

the SILAC experiment. The ratios were normalized so that their median was centered at zero to account for minor 

differences in total number of sequencing reads from the analyzed cell line and the standard. Note, in contrast to LC-

MS/MS, RNA-seq allows higher depth of coverage of the genome. Using the RPKM values from the internal standard 

cell line, we found that medium to highly expressed genes were measured at the protein level by our protein 

quantification strategy in all 3 species in 3 or more individuals (fig. S16).  

 

Differential Expression Analysis of mRNA and Protein Measurements 

Computational analysis of SILAC mass spectra and the RNA-seq analysis of reads relative to an internal 

standard cell line allowed us to measure 3,390 genes in 3 or more individuals in human, chimpanzee, and rhesus 

macaque. Thus, for each gene and for each species we had at most five log2(sample/standard) RPKM mRNA and five 

log2(sample/standard) SILAC protein measurements, a total of 15 mRNA and 15 protein measurements per gene (table 

S4). We used likelihood ratio (LR) tests within the framework of nested linear models to compare the fit of null 

models that correspond to patterns of no expression difference between species, to models that correspond to patterns 

of gene expression differences between pairs of species (human-chimpanzee, human-rhesus, and chimpanzee-rhesus). 

We used a similar framework to analyze both the mRNA and protein expression data, and obtained a total of 6 p-

values per gene and 3,390 p-values per pairwise comparison. Specifically, to test the null of no expression difference 

and obtain a p-value, we compared the likelihood ratio of a model of expression = c + epsilon (2 degrees of freedom) 

to the model expression = species * beta + c + epsilon (3 degrees of freedom) after they were fit to the data from the 

pairwise species comparison separately for either the mRNA or protein expression data. Two times the difference 

between the log-likelihoods follows a χ
2
 distribution with 1 degree of freedom from which we obtained the p-value. To 

control for multiple testing across a pairwise species comparison, we estimated the false discovery rate (FDR) using 

QVALUE (23). Proteins or transcripts were classified as DE at an FDR of 1% by applying a threshold of 0.01 to the 

computed q-value for the comparison. In total, each gene could be assigned 6 indicators 0=not-DE or 1=DE for each 

pairwise comparison for both mRNA and protein (table S4). 

 

Comparison of mRNA and Protein Divergence  
When we compare the results of inter-species DE at the mRNA and protein levels, a discrepancy in 

classification of DE could reflect cases of DE at only one level (e.g., mRNA only) or reflect cases where there is a 

higher level of within-species variation in one level only (e.g., higher between-individual variation in protein levels). 

To distinguish between these possibilities we compared estimates of pairwise species divergence at the mRNA level to 

divergence at the protein level. Focusing on the comparison between human and chimpanzee, we randomly paired 5 

human individuals with 5 chimpanzee individuals. We then computed a log2(human/chimpanzee) ratios using mRNA 

http://giladlab.uchicago.edu/orthoExon


and protein levels, normalizing the contribution of the internal standard cell line (Fig. 1D).  In order to determine if the 

divergence estimated using mRNA levels differed from divergence estimates obtained from protein levels, we used a 

likelihood ratio (LR) test. We compared the likelihood ratio of the model divergence = c + epsilon (2 degrees of 

freedom) to divergence = technology * beta + c + epsilon (3 degrees of freedom). Here, the indicator technology is 

mRNA or protein. Two times the difference between the log-likelihoods follows a χ
2
 distribution with 1 degree of 

freedom from which we obtained p-value for the difference between these divergence estimates. Using this test, we 

obtained 3,390 p-values comparing divergence estimates obtained using mRNA measurements to those obtained using 

protein measurements. To control for multiple testing, we estimated false discovery rate (FDR) using QVALUE (23).  

We applied a threshold of 0.01 to q-values to identify genes where mRNA divergence differed significantly from 

protein divergence at an FDR of 1%.  

 

Identification of Patterns Consistent with Stabilizing Selection 

A pattern of low variation in expression levels, both within and between species, is consistent with the action 

of stabilizing selection on gene regulation. To identify such patterns, we first excluded genes that are differentially 

expressed between species (using a likelihood ratio test statistic assuming a χ
2
 distribution at an FDR of 1%). We then 

ranked the remaining genes based on overall variation in gene expression levels across individuals and species (from 

low to high variance). The regulation of genes at the top of the ranked list are more likely to have evolved under 

stabilizing selection than genes at the bottom of the list. Explanations based on environmental effects for patterns of 

low variation within and between species are unlikely, as differences in environment (both within and between 

species) will tend to increase the observed variance. The regulation of genes with constant mRNA or protein 

expression levels, across individuals and species, is therefore likely to be genetically controlled. The exact rank below 

which the expression patterns do not provide compelling evidence for stabilizing selection can only be chosen 

arbitrarily. In the main paper we used the cutoff of the top 300 genes – but importantly, we confirmed that our 

conclusions were robust with respect to a large range of cutoffs.  

 

Identification of Patterns Consistent with Lineage-Specific Directional Selection 

A pattern of a lineage-specific shift in expression level, accompanied by low variation in expression levels 

within species, is consistent with the action of directional selection on gene regulation. To identify patterns that are 

consistent with human lineage-specific directional selection, we used two steps. First, we excluded genes that are 

differentially expressed between chimpanzee and rhesus (at 1% FDR). We then assumed that, for the remaining genes, 

the chimpanzee and rhesus individuals had the same mean expression level, and identified, using a likelihood ratio 

statistic, genes that are differentially expressed between humans and the non-human primates (at FDR 1%). We used a 

similar procedure to identify expression patterns consistent with chimpanzee lineage-specific directional selection. 

When the lineage-specific change in expression was accompanied by an increase in within-species variance in 

expression levels (at an F-test P < 0.05), we inferred a lineage-specific relaxation of constraint. As previously 

discussed(4), the patterns we identify carry a significant confounding caveat, they might be a consequence of a specific 

environmental influence on that lineage rather than selection of a genetic change. 

 

Gene Ontology Analysis  

Gene Ontology enrichment analysis was performed using DAVID’s functional enrichment analysis tool 

(http://david.abcc.ncifcrf.gov)(24). We searched for enrichments using the GOTERM_BP_FAT, GOTERM_CC_FAT, 

GOTERM_MF_FAT, and KEGG_PATHWAY annotation categories. As a background list we used the 3390 genes 

quantified at the protein level in least 3 individuals from each of the three species. The count threshold was kept at the 

default 2 genes. We report the modified Fisher Exact P-value (EASE score) computed by the DAVID system.  

 

dN and dS Analysis 

dN and dS values were obtained from one-to-one cross species orthologs from the Ensembl database. We 

excluded cases where synonymous divergence was 0, and set dN/dS ratio to 0 when non-synonymous divergence was 0. 

 

Analysis of Gene Features  

We used the median length value for gene features (5’UTR, coding sequence, transcript, and 3’UTR) for all 

known human isoforms of a gene from human genome build hg19. We used the August 2010 release 

(http://www.microrna.org) of predicted micro-RNA binding sites from miRanda to test whether genes consistent with 

buffering or compensatory selection had increased or decreased numbers of predicted micro-RNA binding sites. We 

found no significant enrichment of micro-RNA binding sites in this set of genes.  

http://david.abcc.ncifcrf.gov/
http://www.microrna.org/


  

Tissue-Specific Gene Expression Analysis 

We used the cross-tissue gene expression data set from BioGPS (http://biogps.org/downloads) (25). We only 

used the probes from the Affymetrix U133a array ignoring data from the custom GNF1H array probes. The data set 

does not report transcripts as present/absent, but as median normalized MAS5 algorithm intensities. To address this, 

we used a global log2-fold cutoff, that is, a gene was considered expressed in that tissue if the MAS5 intensity was 

above our cutoff. We confirmed that our results hold for a large range of log2-fold intensity cutoffs as low as 1.5 and as 

high as 8.5. 

 

Protein-Protein Interaction Analysis 

Human physical protein-protein interactions were obtained from BIOGRID v.3.2.98. (http://thebiogrid.org). 

We removed any redundant interactions from the set. Interaction counts were merged with our list of genes based on 

gene symbol.  

 

PTM Analysis 

Known phosphorylation and ubiqutination site data was obtained from PhosphositePlus 

(http://www.phosphosite.org; last modification date of “Mon Mar 04 09:31:05 EST 2013”)(26).  

  

http://biogps.org/downloads
http://thebiogrid.org/
http://www.phosphosite.org/


 

 

 

 
 

 

Figure S1. Comparative transcript and protein expression level profiling. (a) mRNA and protein levels were compared 

in lymphoblastoid cell lines (LCLs) derived from 5 human, 5 chimpanzee, and 5 rhesus individuals. (b) Proteins were 

quantified using a stable isotope-labeled LCL, which served as a common standard. Protein expression levels were 

estimated as log2(sample/standard) SILAC ratio across quantified peptides. The median of all protein-level 

quantifications was shifted to zero to correct for small differences in input protein between the analyzed cell line and 

internal standard. (c) mRNA levels were quantified by sequencing RNA from all LCLs (including the common 

standard line). Reads were aligned to species specific genomes and reads per kb of exon per million mapped reads 

(RPKM) ratios between the analyzed cell line and the internal standard LCL were computed. To correct for minor 

differences in sequencing read depth, the median log2(sample/standard) RPKM ratio across measured transcripts was 

centered at zero. (d) An illustration of the inter-species comparisons performed for a single gene measured in at least 3 

humans and 3 chimpanzees. Individuals across species were paired to derive measurements of mRNA and protein 

log2(human/chimpanzee) divergence to detect genes where these estimates differed significantly. 
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Figure S2. Reproducibility of Protein Quantifications. Histograms of the number of proteins quantified in up to 5 

individuals in each pairwise species comparison (green, magenta, and cyan), and histogram of the number of proteins 

quantified in all 3 species in up to 5 individuals. 

  



 
Figure S3. Comparison of the consistency of mRNA and protein measurements across orthologous exons.  We 

estimated technical variation of our mRNA and protein divergence estimates by computing divergence using the 

median RPKM values and SILAC peptide ratios from two randomly generated and non-overlapping subsets of 

orthologous exons from the same gene (exon set 1 and exon set 2 in the scatterplots above). Protein measurements 

were obtained by mapping peptide sequences back to orthologous exons. Each point corresponds to the median 

divergence estimate obtained from exons in each respective set. R-values correspond to Pearson’s correlation. Our 

analysis indicates that our observation of buffering or compensation at the protein level cannot be explained by 

differences in technical variation between mRNA and protein measurements. 

 

  



 
Figure S4.  Comparison of biological variation in mRNA and protein measurements. (a) Left, scatterplot of the 

interquartile ranges (IQRs) for mRNA (x-axis) and protein divergence (y-axis), that is log2(human/chimpanzee), for 

the 3,390 genes analyzed in this study across LCLs derived from 5 human and chimpanzee individuals. Right, a 

hexagonal binning plot illustrating the number of data points present in the same region of the scatter plot to the left. 

Scatter and hexagonal binning plots of IQRs for log2(sample/standard) RPKM mRNA ratios (x-axis) and 

log2(sample/standard) SILAC protein ratios (y-axis) for the (b) human and (c) chimpanzee LCLs. Interquartile ranges 

were computed using the IQR() function in the R language which uses the following rules for the sample sizes in our 

study:  for measurements in 3 individuals the IQR was set to the maximum and minimum values; for measurements in 

4 individuals the IQR was set to half the difference between the 2
nd

 and 3
rd

 ranked values plus half the difference 

between the 3
rd

 and 4
th
 ranked values. Our results illustrate that the spread of the IQRs obtained using protein 

measurements were not significantly larger than that of mRNA measurements suggesting our results could not be 

explained by higher biological variation the protein level.   
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Figure S5.  Comparison of the dynamic range of absolute mRNA and absolute protein levels. We estimated 

absolute mRNA and absolute protein expression levels from our data for the 3,390 genes analyzed. In particular, 

absolute mRNA levels were estimated using RPKM values obtained by combining read counts from each of the 5 

individuals across orthologous exons. Absolute protein levels were estimated using iBAQ protein intensities (27). We 

computed iBAQ protein intensities by summing the chromatographic intensities from unlabeled peptides detected 

across each of 5 individuals for each species above and dividing by the number of tryptic peptides that could be 

obtained from the protein in the 6-40 amino acid range, thus providing a measure of absolute protein level. We note 

that iBAQ intensities have proven quite useful for analyzing global trends in absolute protein levels. Yet, they are not 

as accurate as SILAC for analyzing and detecting small differences between individual protein levels. Thus, any 

individual iBAQ absolute protein level must be interpreted with caution without additional confirmation from a 

method like SILAC. Scatter plots to the left show the distribution of RPKM and iBAQ protein intensities. The plots 

have been adjusted to have the same aspect ratio.  Middle and right plots provide histograms of the mRNA RPKM 

(magenta) and protein iBAQ (green) absolute level estimates, respectively. Histogram bin widths are the same in both 

plots. mRNA measurements span, approximately, 3 orders of magnitude while absolute protein levels span 

approximately 4 orders of magnitude for both (a) human and (b) chimpanzee. This result is consistent with previous 

work and indicates our observation of buffering at the protein expression level is conservative with respect to the 

differences in dynamic range between mRNA and protein expression measurements.  



 

 

 

 

 
Figure S6. Stability of protein levels is unlikely due to background quantifications. Proteins that appear stable 

between species could be enriched in low, background quantifications. These proteins may appear invariant because 

their absolute levels are close enough to background that divergence cannot be accurately measured by SILAC. Above 

are boxplots illustrating the distributions of absolute protein levels estimated using iBAQ protein intensities (see 

previous figure for details on computation of iBAQ protein intensities) for genes whose protein levels have diverged 

faster than mRNA levels (purple) and for genes where protein levels are stable relative to mRNA levels (gray) between 

species (two classes of genes in Fig. 1C. and Fig. 1D). Interestingly, genes with diverged protein levels have lower 

median iBAQ protein intensities than genes where protein levels are relatively stable to mRNA levels (p < 0.02, 

Wilcoxon rank sum test). This is the opposite of what one would expect if stable protein levels were enriched with 

background quantifications. In other words, we are able to detect higher protein divergence than mRNA divergence at 

lower absolute protein levels. Thus, our results are unlikely to be explained by insufficient, background quantifications 

of proteins that are stable between species. 

 

 
 

Figure S7. Analysis of protein divergence estimates obtained by computing the median exon expression 

measurement. Throughout the paper, SILAC protein levels were derived using the median log2(sample/standard) 

measurement of all peptides measured from a protein. In contrast, mRNA log2(sample/standard) RPKM ratios were 

derived from read counts across orthologous exons. We asked if our results changed if we first computed an 

orthologous exon-specific protein log2(sample/standard) ratio and then combined measurements by computing the 

median across the exons. We find that our results are robust with respect to this change. Consistent with the results 

reported in Fig. 1C and Fig. 1D, among genes whose inter-species mRNA and protein divergence differ, we observed 

higher absolute divergence at the mRNA level for more genes than that at the protein level. 

 



 
 

Figure S8. Analysis of the subset of genes where the RNA-seq read coverages across orthologous exons are 

significantly correlated (Kendall’s τ > 0.4). The pattern of higher mRNA vs. protein divergence could potentially be 

explained by a high rate of false positives among transcripts classified as differentially expressed between species. 

These possible false positives can have a biological explanation, such as intron exclusion or inclusion specific to one 

species, or technical explanation, such as incorrect assignment of orthologous exons. To exclude these possible 

explanations, we applied a stringent filtering step and considered only genes where the pattern of read depth was 

similar across all orthologous exons from that gene. To do so, we computed average normalized read depth in 15-bp 

windows across an orthologous exon in human and in chimpanzee. We then computed the Kendall’s τ correlating the 

coverage values at the same position in human and in chimpanzee orthologous exons and removed genes where the 

correlation across all orthologous exons was less than or equal to 0.4. We note that such an approach may also filter 

out large, true positive mRNA expression differences between species and requires coverage to be sufficiently high in 

both species for a high correlation to be observed. In total this filtering left 2,582 genes (out of 3,390). As illustrated in 

(a) the R-value of divergence estimates obtained from differing exons from the same gene improves from 0.78 (see fig. 

S3) to 0.82 in (a) and the standard deviation of the difference between exons decreases from 0.62 to 0.45 indicating 

that technical noise is removed by this test. (b) and (c) show that our results are consistent with Fig. 1C and Fig. 1D. In 

this subset of genes, among those with differing mRNA and protein divergence estimates, we observe more genes with 

higher absolute mRNA divergence than genes with higher absolute protein divergence. 

 

 



 
 

Figure S9. Analysis of the subset of genes where the inter-quartile range (IQR) of mRNA and protein 

divergence is less than 0.7 and genes were quantified in all 5 individuals. One possible explanation for our finding 

that protein expression levels are more conserved than mRNA expression levels could be more noise in protein 

measurements relative to mRNA measurements. To address this possibility, we applied a stringent filter to the genes 

we analyzed. We considered only genes where estimates of mRNA and protein divergene had an IQR of < 0.7. In (a) 

we provide a scatter plot of the IQRs of the genes we analyzed. Furthermore, we additionally required quantification in 

all 5 individuals in human and chimpanzee to assure IQRs were well estimated. This stringent filtering resulted in a 

subset of 1,981 genes (out of 3,390 genes) and eleminated cases were inconsistent measurements were obtained across 

human or chimpanzee individuals. (b) and (c) illustrate that our findings still hold true. Consistent with Fig. 1C and 

Fig. 1D, among genes with differing mRNA and protein divergence estimates, we observe a larger number of genes 

with higher absolute mRNA divergence than absolute protein divergence.    
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Figure S10. Analysis of human and chimpanzee divergence estimates at the mRNA and protein level for genes 

quantified in all 5 individuals from both species.  One possible explanation of the relative stability of protein levels 

compared with mRNA levels is insufficient quantification of protein levels across individuals. The cases where protein 

levels are stable might be enriched for proteins quantified at our cutoff of 3 individuals. To address this possibility, we 

performed an alternative analysis whereby we required that proteins be quantified in all 5 individuals in both human 

and chimpanzee to eliminate proteins that might reflect insufficient quantification. This filtering left 2,651 genes (out 

of 3,390). We find that the results in (a) and (b) are consistent with Fig. 1C and Fig 1D. The number of genes where 

mRNA divergence exceeds protein divergence is higher than cases where protein divergence is larger than mRNA 

divergence. 

  

 

 
 

Figure S11. Analysis of the subset of genes where proteins were quantified by at least two distinct peptides per 

individual. Applications of SILAC often involve one or two biological replicates. Thus, at least 2 peptides are 

typically required per protein.  Since our study required biological replication across species and individuals (proteins 

must be quantified in all species in 3 or more individuals), we allowed proteins to be quantified using a single peptide. 

We asked if this decision had any marked impact on our observations. To do so, we analyzed genes where proteins 

were quantified by at least 2 peptides in 3 or more individuals in all species. In total, there were 2,832 genes (out of 

3,390). As illustrated in (a) and (b) above our results are robust with respect to this filtering. Consistent with Fig. 1C 

and Fig. 1D, among genes whose inter-species mRNA and protein divergence differ, we observe more genes with 

higher absolute mRNA divergence than genes with higher absolute protein divergence.  

 



 
Figure S12. Analysis of genes excluding the top 2% of most highly expressed genes in RPKM transcript levels. If 

there are a few highly expressed genes that are differentially expressed (DE) between chimpanzee and human, then 

many genes expressed at intermediate or low levels might also appear as DE due to the finite sequencing depth and the 

dependent relationship between quantification levels using RNA-Seq. To address this possibility, we excluded the top 

2% of highly expressed genes from each sample before we computed RPKM and normalized the log2(sample/standard) 

RPKM ratios from each individual relative to the internal standard LCL. If our results were due to finite sequencing 

depth, removal of these genes would greatly reduce the number of DE transcripts in our re-analysis. In contrast, we 

observe that among genes whose inter-species mRNA and protein divergence differ there are more genes with higher 

mRNA divergence than genes with higher protein divergence (consistent with the results in Fig. 1C and Fig. 1D). 

  

 

 

 

 
 

Figure S13.  Analysis of the subset of genes with RPKM > 1. Previous studies have shown that RNA expression 

measurements of RPKM < 1 might often be unreliable (28). To rule out the possibility genes with small RPKM values 

might influence our observations, we removed any genes if the RPKM was less than 1 in any of the chimpanzee or 

human individuals. This filtering left 3,211 genes (out of 3,390). (a) and (b) illustrate that our results are robust with 

respect to this filtering. Consistent Fig. 1C and Fig. 1D, among genes whose inter-species mRNA and protein 

divergence differ significantly, we observe more genes with higher mRNA divergence than genes with higher protein 

divergence. 

 



 
Figure S14. Examples of protein and mRNA expression level patterns consistent with differing evolutionary 

scenarios. Both protein and mRNA levels are normalized relative to the corresponding protein and mRNA expression 

levels in the internal standard cell line. (a) PSMD3 is a gene consistent with stabilizing selection. (b) Left plot shows a 

gene where mRNA levels consistent with lineage-specific relaxation of constraint along the human lineage. The right 

plot shows this same pattern along the chimpanzee lineage. (c) Examples of genes with protein levels consistent with 

lineage-specific directional selection along the human (left) and chimpanze (right) lineages.  

 

 



 
 

Figure S15. Regulatory and sequence properties of genes with mRNA and protein levels consistent with 

stabilizing selection are robust with respect to the variance cutoff applied to this gene set. (a) Properties computed 

using a strict cutoff applied to select genes consistent with stabilizing selection. (b) The same properties computed 

using a relaxed cutoff on the gene set. Intermediate values between these strict and relaxed cutoffs produced identical 

results. Error bars represent the 95% confidence intervals around the median.   



 

 
 

Figure S16. RPKM values for transcripts quantified at the protein level. Gray bars illustrate the RPKM 

distribution of all transcripts. Green bars designate the RPKM distribution of proteins detected and quantified in any 

one of the 15 cell lines. Magenta bars designate the RPKM distribution of proteins quantified in 3 or more individuals 

across all 3 species.  
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Sample Species SDS-PAGE 

minigel 

fractions 

LC Gradient 

Length 

MS1 Spectra 

Collected 

MS2 Spectra 

Collected 

GM18505 Human 40 1 hour 62,497 473,147 

GM18507 Human 40 1 hour 91,999 422,500 

GM18516 Human 40 1 hour 110,208 405,340 

GM19193 Human 40 1 hour 72,124 382,871 

GM19204 Human 40 1 hour 70,686 447,980 

18358 Chimp 40 1 hour 79,024 388,336 

18359 Chimp 40 1 hour 60,238 486,655 

3659 Chimp 40 1 hour 80,787 401,536 

4973 Chimp 40 1 hour 88,420 355,404 

Pt91 Chimp 40 1 hour 75,775 406,529 

150-99 Rhesus 40 1 hour 87,195 377,597 

R181-96 Rhesus 40 1 hour 76,746 385,617 

R249-97 Rhesus 40 1 hour 94,467 402,710 

265-95 Rhesus 40 1 hour 63,536 465,632 

R290-96 Rhesus 40 1 hour 95,668 352,449 

 

 

Table S1. Raw Quantitative Mass Spectrometry Data. A total of 1,209,370 MS1 spectra were collected and 

6,154,303 MS2 spectra were collected. We used 600 gel fractions and 620 hours of instrument time. 143GB is the total 

data set size. 

 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table S2. Quantified peptide and protein levels. Peptide spectrum matches assigned at a false discovery rate of 1%. 

See methods for low-level peptide and protein quantification parameters.  

  

Sample Species Quantification 

Events 

Distinct Tryptic 

Peptides Quantified 

Proteins Quantified 

GM18505 Human 94,156 52,809 5,085 

GM18507 Human 83,664 49,308 4,853 

GM18516 Human 76,105 43,573 4,787 

GM19193 Human 72,293 45,408 4,633 

GM19204 Human 87,193 50,664 4,971 

18358 Chimp 68,565 43,049 4,531 

18359 Chimp 98,653 57,959 5,142 

3659 Chimp 75,682 45,376 4,765 

4973 Chimp 59,969 37,133 4,283 

Pt91 Chimp 75,943 45,944 4,755 

150-99 Rhesus 58,011 33,150 3,915 

R181-96 Rhesus 69,663 41,220 4,575 

R249-97 Rhesus 62,602 35,547 4,218 

265-95 Rhesus 81,883 46,247 4,552 

R290-96 Rhesus 51,289 31,281 4,138 



 

 

 

Table S3. Summary of the RNA-seq data. 35GB of GZIP compressed RNA-seq data, 50bp unpaired reads, BWA 

quality score >10 (highQ above) from an Illumina Hi-Seq 2000. We excluded reads that did not map to orthologous 

exons or mapped ambiguously to more than one orthologous exon.  

 

 

Sample Species Total Reads High 

Quality 

Mapped  

Excluded 

not exonic  

Excluded 

Ambig. 

Mapping  

Mapped to 

unique 

orthologous 

exons 

% highQ 

mapped to 

genome/ 

total 

% mapped 

to 

orthoexons/ 

highQ 

GM18505 Human 35,953,911 25,247,709 13,897,821 260,620 11,089,268 70.2% 43.9% 

GM18507 Human 44,449,796 31,399,396 16,374,838 333,699 14,703,444 70.6% 46.8% 

GM18516 Human 45,618,175 32,905,504 17,865,129 338,101 14,702,274 72.1% 44.7% 

GM19193 Human 49,700,358 33,579,941 20,392,680 311,416 12,875,845 67.5% 38.3% 

GM19204 Human 41,675,157 28,189,144 16,374,838 267,592 11,546,714 64.6% 41.0% 

18358 Chimp 47,037,287 31,004,460 15628,483 338,903 15,037,074 65.9% 48.5% 

18359 Chimp 45,626,484 30,097,227 15,114,805 343,478 14,638,944 66.0% 48.6% 

3659 Chimp 38,911,057 26,393,759 13,509,525 290,421 12,593,813 67.8% 47.7% 

4973 Chimp 44,699,355 29,829,994 15,168,988 316,341 14,344,665 66.7% 48.1% 

Pt91 Chimp 41,641,279 26,549,913 13,872,803 277,749 12,399,361 63.8% 46.7% 

150-99 Rhesus 41,032,986 25,884,588 13,350883 251,880 12,281,825 63.1% 47.4% 

R181-96 Rhesus 34,437,003 22,026,194 10,180,184 231,121 11,614,889 64.0% 52.7% 

R249-97 Rhesus 28,836,918 18,624,238 8,776,106 198,896 9,649,236 64.6% 51.8% 

265-95 Rhesus 43,635,552 27,490,983 14,110,454 260,187 13,120,342 63.0% 47.7% 

R290-96 Rhesus 37,046,951 24,005,747 11,119,048 251,425 12,635,274 64.8% 52.6% 

GM19238 Human 
internal 

standard 

40,211,719 28,637,456 15,711,461 277,891 12,648,104 71.2% 44.2% 



The column descriptions in the Table S4 spreadsheet are below: 
 

ENSG: Ensemble gene identifier.  

 

human.GM18505.protein, human.GM18507.protein, human.GM18516.protein, human.GM19193.protein, human.GM19204.protein, chimp.18358.protein, 

chimp.18359.protein, chimp.3659.protein, chimp.4973.protein, chimp.Pt91.protein, rhesus.150.99.protein, rhesus.R181.96.protein, rhesus.R249.97.protein, 

rhesus.265.95.protein, rhesus.R290.96.protein: log2(sample/standard) protein ratios for human, chimpanzee, and rhesus samples, NA designates no protein level 
was quantified 

 

gene.symbol: Gene symbol obtained from the UCSC human genome build hg19. 
 

N.H.protein, N.C.protein, N.R.protein: number of protein quantifications obtained from the human(H), chimpanzee (C), and rhesus (R) samples. Note that genes 

quantified in 3 or more individuals in all 3 species as both mRNA and protein are included in this table. 
 

HC.pvalues.protein, HC.qvalues.protein, HR.pvalues.protein, HR.qvalues.protein, CR.pvalues.protein, CR.qvalues.protein: P-value and corresponding 

FDR corrected Q-value for human-chimp (HC), human-rhesus (HR), and chimp-rhesus comparisons using protein levels. 
 

mean.H.protein, mean.C.protein, mean.R.protein: mean log2(sample/standard) protein ratios computed from human (H), chimpanzee (C), and rhesus (R) 

individuals respectively. 
 

S.pvalues.protein, S.qvalues.protein: P-value and corresponding FDR corrected Q-value for test of difference among the mean protein levels 

 

model.num.protein: 1 = protein expression level pattern consistent with directional selection along human lineage, 2 = protein expression level pattern consistent 

with directional selection along chimpanzee lineage, 3 = undetermined pattern, 4 = patterns with no significant difference between mean expression levels; 5 = 

evidence for relaxation of constraint along human lineage, 6 = evidence of relaxation of constraint along chimpanzee lineage 
 

S.var.protein: overall variance of protein expression levels 

S.var.rank.protein: Rank based on overall variance among patterns with no significant difference between mean protein levels (model.num.protein=4). Note, 
genes that we consider consistent with stabilizing selection on protein levels, for purposes of our analyses, are those with model.num.protein = 4 and 

S.var.rank.protein ≤ 300. 

 

human.GM18505.rna, human.GM18507.rna, human.GM18516.rna, human.GM19193.rna, human.GM19204.rna, chimp.18358.rna, chimp.18359.rna, 

chimp.3659.rna, chimp.4973.rna, chimp.Pt91.rna, rhesus.150.99.rna, rhesus.R181.96.rna, rhesus.R249.97.rna, rhesus.265.95.rna, rhesus.R290.96.rna: 

log2(sample/standard) mRNA ratios for human, chimpanzee, and rhesus samples, derived from RPKM ratios across orthologous exons, NA designates transcript 
could not be quantified in that sample 

 

standard.GM19238.rna.RPKM: RPKM values computed from RNA-seq data derived from the internal standard sample from human LCL GM19238 
 

N.H.rna, N.C.rna, N.R.rna: number of mRNA quantifications obtained from the human(H), chimpanzee (C), and rhesus (R) samples. Note that genes quantified 
in 3 or more individuals in all 3 species as both mRNA and protein are included in this table. 

 

HC.pvalues.rna, HC.qvalues.rna, HR.pvalues.rna, HR.qvalues.rna, CR.pvalues.rna, CR.qvalues.rna: P-value and corresponding FDR corrected Q-value for 
human-chimp (HC), human-rhesus (HR), and chimp-rhesus comparisons using mRNA levels. 

 

mean.H.rna, mean.C.rna, mean.R.rna: mean log2(sample/standard) mRNA levels computed from human (H), chimpanzee (C), and rhesus (R) individuals 
respectively. 

 

S.pvalues.rna, S.qvalues.rna: P-value and corresponding FDR corrected Q-value for test of difference among the mean log2(sample/standard) mRNA levels. 
 

model.num.rna: : 1 = mRNA expression level pattern consistent with directional selection along human lineage, 2 = mRNA expression level pattern consistent 

with directional selection along chimpanzee lineage, 3 = undetermined pattern, 4 = patterns with no significant difference between mean expression levels; 5 = 
evidence for relaxation of constraint along human lineage, 6 = evidence of relaxation of constraint along chimpanzee lineage 

 

S.var.rna: overall variance of mRNA expression levels 
S.var.rank.rna: Rank based on overall variance among patterns with no significant difference between mean mRNA expression levels (model.num.rna=4). Note, 

genes that we consider consistent with stabilizing selection on mRNA levels, for purposes of our analyses, are those with model.num.rna = 4 and S.var.rank.rna ≤ 

300. 
 

  



 

 

Comparison DE mRNA only DE protein and DE 

mRNA 

DE protein only 

Human-chimpanzee 580 235 336 

Human-rhesus 876 781 668 

Chimpanzee-rhesus 832 703 566 

 

Table S5. Genes classified based on differential expression (DE) at FDR 1%. 
  



 

 
Term Count % p-value Fold Enrichment 

GO:0030529~ribonucleoprotein complex 120 40.7 1.56E-46 3.7 
GO:0006414~translational elongation 58 19.7 3.30E-43 7.9 
GO:0022626~cytosolic ribosome 51 17.3 2.46E-39 8.1 
GO:0003723~RNA binding 106 35.9 2.86E-30 3.0 
GO:0003735~structural constituent of ribosome 56 19.0 6.60E-29 5.4 
GO:0044445~cytosolic part 52 17.6 4.26E-28 5.6 
GO:0033279~ribosomal subunit 52 17.6 4.26E-28 5.6 
GO:0022625~cytosolic large ribosomal subunit 29 9.8 2.77E-24 9.1 
GO:0006412~translation 74 25.1 4.60E-24 3.4 
GO:0006396~RNA processing 87 29.5 4.63E-23 2.9 
GO:0005840~ribosome 58 19.7 7.18E-23 4.1 
GO:0005198~structural molecule activity 59 20.0 4.83E-20 3.6 
GO:0015934~large ribosomal subunit 30 10.2 6.65E-18 6.3 
GO:0008380~RNA splicing 57 19.3 1.58E-16 3.2 
GO:0022627~cytosolic small ribosomal subunit 22 7.5 2.03E-15 7.6 
GO:0006397~mRNA processing 57 19.3 9.26E-15 2.9 
GO:0016071~mRNA metabolic process 60 20.3 1.51E-14 2.8 
GO:0005681~spliceosome 37 12.5 5.16E-14 4.0 
GO:0000398~nuclear mRNA splicing, via spliceosome 40 13.6 1.22E-12 3.4 
GO:0000377~RNA splicing, via transesterification reactions with bulged adenosine 

as nucleophile 40 13.6 1.22E-12 3.4 
GO:0000375~RNA splicing, via transesterification reactions 40 13.6 1.22E-12 3.4 
GO:0031981~nuclear lumen 101 34.2 5.03E-10 1.7 
GO:0005829~cytosol 101 34.2 5.55E-10 1.7 
GO:0015935~small ribosomal subunit 22 7.5 9.22E-10 4.6 
GO:0034470~ncRNA processing 28 9.5 6.73E-08 3.1 
GO:0043232~intracellular non-membrane-bounded organelle 125 42.4 7.33E-08 1.5 
GO:0043228~non-membrane-bounded organelle 125 42.4 7.33E-08 1.5 
GO:0022613~ribonucleoprotein complex biogenesis 32 10.8 9.33E-08 2.8 
GO:0042254~ribosome biogenesis 25 8.5 1.85E-07 3.2 
GO:0006364~rRNA processing 21 7.1 5.88E-07 3.5 
GO:0016072~rRNA metabolic process 21 7.1 7.71E-07 3.5 
GO:0030532~small nuclear ribonucleoprotein complex 11 3.7 1.81E-06 6.2 
GO:0034660~ncRNA metabolic process 30 10.2 3.74E-06 2.5 
GO:0005654~nucleoplasm 60 20.3 5.97E-06 1.7 
GO:0005730~nucleolus 53 18.0 3.71E-05 1.7 
GO:0006413~translational initiation 12 4.1 8.53E-05 4.0 
GO:0003743~translation initiation factor activity 13 4.4 9.61E-05 3.7 

 

Table S6. Gene ontology enrichment analysis of the top 300, ranked by variance, protein expression level 

patterns consistent with the action of stabilizing selection at P < 0.0001.  

 

 

  



 

Term Count % p-value Fold 

Enrichment 

GO:0007029~endoplasmic reticulum organization 4 2.1 0.001248203 15.4 

GO:0015031~protein transport 31 16.1 0.003509713 1.7 

GO:0045184~establishment of protein localization 31 16.1 0.003663969 1.7 

GO:0008104~protein localization 32 16.6 0.004939603 1.6 

 

 

Term Count % p-value Fold 

Enrichment 

hsa00051:Fructose and mannose metabolism 7 4.5 4.40E-05 9.4 

hsa00240:Pyrimidine metabolism 9 5.8 0.001394681 3.9 

GO:0044275~cellular carbohydrate catabolic process 8 5.1 0.002160848 4.2 

hsa00230:Purine metabolism 9 5.8 0.003365612 3.4 

GO:0016779~nucleotidyltransferase activity 9 5.8 0.003697477 3.4 

GO:0016052~carbohydrate catabolic process 8 5.1 0.004720748 3.7 

 

 

Table S7. Gene ontology and pathway enrichment analysis for protein levels consistent with the action of 

directional selection along the human lineage (top) and the chimpanzee lineage (bottom) at P < 0.005. 
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