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Text File S1. How thresholds for viewing networks were chosen. 

 

The Level 1 and Level 2 thresholds were chosen visually to roughly subdivide the 

superfamily into manageable groups. The Level 1 threshold we chose (E-value 1x10-13) 

was that at which the AMPS classes form a single cluster cleanly separated from the 

largest “Main” cluster. This is consistent with the conclusions of the primary literature 

describing proteins of these relatively better-studied classes. These groupings persist 

through several more stringent cutoffs and probably reflect early phylogenetic 

divergences in the superfamily.  

 

In choosing the Level 2 threshold for subdividing the superfamily, more stringent 

thresholds were stepped through and visually examined. Good separation by canonical 

class occurred at an E-value cutoff of 1x10-25. It was observed that at thresholds more 

stringent than this threshold even more of the canonical classes became separated from 

other classes; however, it was also seen that some canonically classified nodes began to 

separate from others of their own class, resulting in network views that have lost some 

information about the patterns by which the most diverse nodes assigned to a particular 

canonical class relate to other nodes of the same class (data not shown). The Level 2 

threshold we ultimately chose to show in the representative network Figures was thus a 

compromise between obtaining good separation between canonical classes and keeping 

previously classified sequences together; i.e., keeping historically assigned classes 

together was favored over separation. The resulting Level 2 subgroupings show how 
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annotated proteins relate to each other framed as much as much as possible in terms of 

the classes that had been defined over decades of cytGST research.  

 

We also needed to choose an appropriate threshold for viewing the details of each Level 

2 subgroup as a separate, full network (where, in contrast to representative networks, 

each node corresponds to a single sequence). Here, since the membership of each 

subgroup is defined by the 1x10-25 cutoff, each subgroup includes most of the sequences 

in one or more discrete canonical class, along with many sequences of unassigned class. 

For visualizing subclustering within the full networks, we chose a cutoff that showed 

these sequences separated as well as possible by canonical class. As illustrated in Figure  

7 in the paper, the more stringent threshold that we chose (E value 1x10-31) shows how 

the sequences often assigned in the literature to the canonical Theta class mostly separate 

cleanly from those assigned in the literature to the Delta and Epsilon classes. Those Theta 

class proteins that are mixed in with Delta and Epsilon class proteins may thus represent 

sequences historically misassigned to the Theta class. Here, the inclusion of all nodes in 

the visualized full network for this Level 2 subgroup shows the relatively close 

relationship of these three classes, with Delta and Epsilon proteins being especially close. 

(Note: we defined the 1x10-31 threshold using Swiss-Prot annotations corresponding to 

canonical classes, which did not include Delta or Epsilon classes.) However, as can be 

seen here, this threshold results in good separation of these classes, although the 

annotations were extracted manually from the literature for Figure 7 after the threshold 

was chosen. Further analysis of other full networks of Level 2 subgroups suggests that 

this threshold may be generally useful for cytGST classification work (not shown). 
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To aid in choosing the 1x10-31 threshold, we developed a metric (shown below) to 

estimate the threshold at which representative network clusters correlated best with 

annotations. For each canonical class, we identified the single largest cluster in the 

network with annotated nodes in that class and marked it as the “maximum cluster for 

class X,” with X representing the specific class being considered. This “rewarded” the 

level at which annotated nodes were assigned to the largest clusters and penalized (by 

non-counting) clusters that fragmented the classes. Then we looked to see if any of the 

marked clusters were marked for more than one class. If so, only the nodes for the class 

with the maximum number of nodes in the cluster were counted. This penalized the 

clustering of separate classes together. The number of counted nodes was summed for the 

entire network and the total count (called “sum_maxcorrbyspfam” below) was an 

indication of how well the clustering captured the class assignments. The procedure was 

iterated over a range of E-values by creating network clusters from 1x10-10 to 1x10-40 and 

calculating the metric at each E-value. As mentioned in the main text, we also applied the 

MCL method to create clusters and again calculated the metric but this time for MCL 

cluster assignments (“sum_maxcorrbymcl”) over the same range of E-values to estimate 

how well the network clusters correlated with MCL clusters. A summary of the data is 

shown below (Note: NegLogE = –log(10) E-value): 

 
+---------+--------------------+------------------+ 
| NegLogE | sum_maxcorrbyspfam | sum_maxcorrbymcl | 
+---------+--------------------+------------------+ 
|      10 |                 15 |              266 | 
|      11 |                 15 |              306 | 
|      12 |                 15 |              319 | 
|      13 |                 25 |              464 | 
|      14 |                 25 |              534 | 
|      15 |                 25 |              619 | 
|      16 |                 25 |              641 | 
|      17 |                 25 |              661 | 
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|      18 |                 25 |              737 | 
|      19 |                 25 |              747 | 
|      20 |                 26 |              846 | 
|      21 |                 46 |             1037 | 
|      22 |                 46 |             1063 | 
|      23 |                 57 |             1183 | 
|      24 |                 63 |             1353 | 
|      25 |                 63 |             1369 | 
|      26 |                 66 |             1331 | 
|      27 |                 76 |             1358 | 
|      28 |                 80 |             1476 | 
|      29 |                 80 |             1494 | 
|      30 |                 80 |             1481 | 
|      31 |                 74 |             1533 |* 
|      32 |                 74 |             1488 | 
|      33 |                 73 |             1415 | 
|      34 |                 73 |             1370 | 
|      35 |                 73 |             1335 | 
|      36 |                 73 |             1305 | 
|      37 |                 72 |             1258 | 
|      38 |                 69 |             1196 | 
|      39 |                 64 |             1136 | 
|      40 |                 63 |             1082 | 
+---------+--------------------+------------------+ 

 

Comparison of the results showed that the threshold of 1x10-31 produced the best 

correlation between our network clusters and MCL assigned clusters. We preferred this 

cutoff to the best one for canonical classes because the canonical classes are known to be 

imperfect and to populate the sequence space only sparsely. This also appeared to be a 

good choice because it is still close to the best cutoff for the canonical classes. Finally, 

we visually inspected the full networks to confirm that the groupings at this threshold 

looked reasonable with regard to annotated classes. However, no clustering method is 

perfect and, as stated in the main text, these groupings are principally meant to be used as 

guidelines by GST experts; to explore other issues, the networks can easily be viewed by 

users using different thresholds. 

 


