
Sobol method: sensitivity indexes

Consider the following model:
Y = f(X1, .., Xp) (1)

where the output Y is a scalar and the input factors X1, .., Xp are supposed to be independent ran-
dom variables described by known probability distributions. These distributions reflect the uncertain
knowledge on the system. The main idea of this method is to decompose the output variance into the
contributions associated with each input factor.

In order to quantify the importance of an input factor Xi on the variance of Y , imagine that we
can fix it at its ”true” value, x∗i . How much would this assumption change the variance of Y ? This is
the conditional variance

VX−i
(Y |Xi = x∗i )

where the variance is taken over the (p−1)-dimensional parameter space X−i, consisting in all factors
but Xi. Because the true value of Xi is unknown, we average over all possible values of Xi:

EXi(VX−i
(Y |Xi))

The smaller this quantity, the more important the contribution of Xi to the variance of Y . Indeed,
using the law of total variance, we can write:

V (Y ) = VXi(EX−i
(Y |Xi)) + EXi(VX−i

(Y |Xi))

and normalizing,

1 =
VXi(EX−i

(Y |Xi))

V (Y )︸ ︷︷ ︸
Si

+
EXi(VX−i

(Y |Xi))

V (Y )
(2)

The first-order sensitivity index for factor Xi is given by the first term in (2):

Si =
VXi(EX−i

(Y |Xi))

V (Y )
(3)

From (2) we get that the first-order sensitivity index verifies Si ≤ 1.

As proved in [1], if the function in (1) is integrable over [0, 1]p then it can be decomposed into
terms of increasing dimensionality as follows:

f(X1, .., Xp) = f0 +

p∑
i=1

fi(Xi) +
∑

1≤i<j≤p

fij(Xi, Xj) + · · ·+ f1,...,p(X1, . . . , Xp) (4)

Moreover, if the input factors are mutually independent then there exists a unique decomposition of
(4) such that all the summands are mutually orthogonal. Using this result, it can be shown that the
variance of the output, V (Y ), can also be decomposed into:

V (Y ) =

p∑
i=1

Vi +
∑

1≤i<j≤p

Vij + · · ·+ V1,...,p (5)
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where Vi, Vij , . . . , V1,2,...,p denote the variance of fi, fij , . . . , f1,...,p respectively:

Vi = V (E(Y |Xi))

Vij = V (E(Y |Xi, Xj))− Vi − Vj

Vijk = V (E(Y |Xi, Xj , Xk))− Vij − Vik − Vjk − Vi − Vj − Vk

...

V1,...,p = V (Y )−
p∑

i=1

Vi −
∑

1≤i<j≤p

Vij − · · · −
∑

1≤i1<···<ip−1≤p

Vi1,...,ip−1

where, for simplicity, the indices for the variance and the mean were omitted.

From this decomposition, sensitivity indexes can be naturally deduced. Note that the first-order
indexes defined in (3) can be deduced from the first p terms of the decomposition (5):

Si =
Vi

V (Y )
=

V (E(Y |Xi))

V (Y )

The other terms of the decomposition (5) can similarly be interpreted in terms of higher order sensitiv-
ity indexes. The second-order sensitivity index, Sij , expresses the amount of variance of Y explained
by the interaction of the factors Xi and Xj (i.e. sensitivity to Xi and Xj not expressed in Vi nor Vj)

Sij =
Vij

V (Y )

The third-order sensitivity index, Sijk, expresses the amount of variance of Y explained by Xi, Xj

and Xk and not taken into account in the first- and second-order sensitivity indexes

Sijk =
Vijk

V (Y )

and so on until order p. Therefore, for p input factors, we have defined 2p − 1 sensitivity indexes.
With these definitions of the indexes, we can get the relation:

1 =

p∑
i=1

Si +
∑

1≤i<j≤p

Sij + · · ·+ S1,...,p

Homma and Saltelli [2] introduced an additional index, the total-order sensitivity index, STi, that
accounts for all the contributions to the output variation due to factor Xi (i.e. first-order index plus
all its interactions):

STi =
∑
k#i

Sk

where #i indicates all the indexes associated to the factor Xi. Using the expressions in (5), it can be
shown that this total-order index can be expressed as

STi = 1−
VX−i

(EXi(Y |X−i))

V (Y )

and using again the law of total variance and normalizing we get

1 =
VX−i

(EXi(Y |X−i))

V (Y )
+

EX−i
(VXi(Y |X−i))

V (Y )︸ ︷︷ ︸
STi

(6)

Thus the total-order index is given by the second term in (6):

STi =
EX−i

(VXi(Y |X−i))

V (Y )

Note that the following property can easily be deduced: 0 ≤ Si ≤ STi ≤ 1.
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