Reductive Methylation and Mutation of an Anthrax Toxin Fusion Protein Modulates its Stability and Cytotoxicity

Christopher Bachran[#], Pradeep K. Gupta[#], Silke Bachran, Clinton E. Leysath, Benjamin Hoover, Rasem J. Fattah, and Stephen H. Leppla^{*}

Supplemental Material and Methods

Cell culture

RAW264.7 (murine leukemic monocyte / macrophage cell line), CHO CL6 (Chinese hamster ovary cells), HN6 (human head and neck squamous carcinoma cell line), HeLa (human cervical carcinoma cell line), and PC-3 (human prostate adenocarcinoma cell line) cells were used for cytotoxicity studies. CHO CL6cells were maintained in modified Eagle's medium alpha with GlutamaxTM-1 (Gibco, Life Technologies, Grand Island, NY) and all other cells in Dulbecco's modified Eagle's medium with GlutamaxTM-1 (Gibco, Life Technologies, Grand Island, NY), respectively. All media were supplemented with 10 % fetal bovine serum (Gibco, Life Technologies, Grand Island, NY) and 50 µg/mL gentamicin (Quality Biological, Gaithersburg, MD). All cells were grown at 37 °C and 5 % CO₂.

Cytotoxicity assays

Cells were sub-cultured in 96-well plates (10,000 cells/well) over night. Cells were treated with various concentrations of FP59 variants in combination with 250 ng/mL PA for 48 h. For toxin neutralization assay, toxin solutions (25 ng/mL PA and 10 ng/mL of the FP59 variants) were pre-incubated with varying dilutions of polyclonal mouse anti-PA or mouse anti-LF antibodies for 60 min at 37°C prior to addition on CHO CL6 cells. Cells were incubated with toxin-antibody

solution for 48 h. Cell viability was assessed by the addition of 3-(4,5-dimethylthiazo-2-yl-02,5diphenyltetrazolium bromide (MTT, Sigma, St. Louis, MO) at a final concentration of 0.5 mg/mL, incubation for another 60 min at 37°C, and release of the blue pigment produced by viable cells using 50 μ L 0.5% (w/v) sodium dodecyl sulfate, 25 mM HCl in 90 % (v/v) isopropanol. A plate reader was used to read the A₅₇₀ values for each well, and percent viability was calculated relative to wells which were not treated with toxin.

For toxin neutralization assay, toxin solutions (0.25 μ g/mL PA and 10 ng/mL of the FP59 variants) were pre-incubated with varying dilutions of polyclonal mouse anti-PA or mouse anti-LF antibodies for 60 min at 37°C prior to adding the toxins on CHO CL6 cells. Cells were incubated with toxin-antibody solution for 48 h and relative cell survival was determined as described above.

β -lactamase activity assay

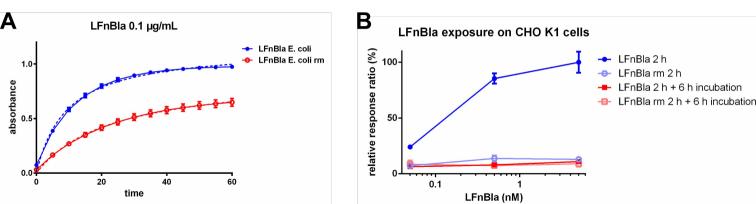
LFn- β -lactamase (LFnBla¹) fusion protein (100 µL of 0.1 µg/mL LFnBla or LFnBla rm) was tested for β -lactamase enzymatic activity by incubation with the substrate Nitrocefin (100 µg/mL Nitrocefin in 100 µL PBS) in a 96-well plate. The absorbance was measured at 486 nm for 1 h every 5 min.

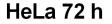
Cellular activity of LFnBla and LFnBla rm was tested on CHO CL6 cells. 40,000 CHO CL6 cells/well were seeded overnight and subsequently treated for 1 h at 37 °C with 250 ng/mL PA and 0.05-5 nM LFnBla or LFnBla rm. Cells were washed twice with PBS and incubated with 100 μ L cell medium and 20 μ l CCF2-AM loading solution (Life Technologies, Grand Island, NY) for 3 h at room temperature. β -lactamase activity in cells was determined by fluorescence measurement at 447 and 520 nm on a Safire spectral fluorescence photometer using the Magellan 5 software (Tecan, Maennedorf, Switzerland).

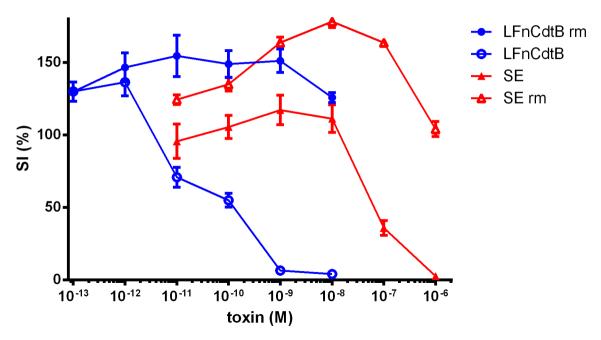
Cytotoxicity assay for LFnCdtB and SE

LFn-cytolethal distending toxin B (LFnCdtB) and saporin-epidermal growth factor (SE²) where reductively methylated as described for FP59 and FP59AGG. Human cervical carcinoma HeLa cells were seeded overnight in 96-well plates (10,000 cells/well) were exposed to different concentrations of LFnCdtB and LFnCdtB rm (both fusion proteins in the presence of 250 ng/mL of PA) or SE and SE rm for 48 h and viable cells were quantitated in an MTT assay. Relative survival was calculated as the percentage of living cells after treatment in relation to untreated cells.

cAMP release assay for EF


Anthrax edema factor (EF) was reductively methylated as described for FP59 and FP59AGG. Two different EF variants (1 ng/mL) have been used for the reductive methylation, EF with an N-terminal alanine (EF-A) and with an N-terminal arginine (EF-R). EF-A was reported as one of the most stable EF-variants, while EF-R is one of the least stable EF variant in cells ³. Furthermore, both variants have been reductively methylated in the presence of 2 mM rat calmodulin (CaM) and 2 mM CaCl₂ to protect lysines at CaM-binding sites from dimethylation. cAMP generation by the EF variants was determined in the presence of 1 mM ATP, 80 µg/mL bovine serum albumin, and 2 mM MnCl₂ for 30 min at room temperature. cAMP detection was performed with the HTRF cAMP HiRange Kit (Cisbio US, Bedford, MA) according to the manufacturer's protocol.


Reference List


1 Hobson, J. P., Liu, S., Rono, B., Leppla, S. H. & Bugge, T. H. Imaging specific cellsurface proteolytic activity in single living cells. *Nature methods* **3**, 259-261, doi:10.1038/nmeth862 (2006).

- 2 Bachran, C. *et al.* A lysine-free mutant of epidermal growth factor as targeting moiety of a targeted toxin. *Life sciences* **88**, 226-232, doi:10.1016/j.lfs.2010.11.012 (2011).
- 3 Leysath, C. E. *et al.* Anthrax edema factor toxicity is strongly mediated by the N-end rule. *PloS one* **8**, e74474, doi:10.1371/journal.pone.0074474 (2013).

Figure S1

EF variant	cAMP (nM)
EF-R	2800
EF-R rm	8
EF-R rm + CaM	7
EF-A	1201
EF-A rm	8
EF-A rm + CaM	1313

Table S1: cAMP amounts released by EF variants and EF variants after reductive methylation.