
Proc. Natl. Acad. Sci. USA
Vol. 93, pp. 1504-1508, February 1996
Ecology

Unusual dynamics of extinction in a simple ecological model
SOMDATrA SINHA* AND S. PARTHASARATHYt
Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India

Communicated by Madhav Gadgil, Indian Institute of Science, Bangalore, India, October 27, 1995 (received for review September 19, 1994)

ABSTRACT Studies on natural populations and harvest-
ing biological resources have led to the view, commonly held,
that (i) populations exhibiting chaotic oscillations run a high
risk of extinction; and (ii) a decrease in emigration/exploi-
tation may reduce the risk of extinction. Here we describe a
simple ecological model with emigration/depletion that
shows behavior in contrast to this. This model displays
unusual dynamics of extinction and survival, where popula-
tions growing beyond a critical rate can persist within a band
of high depletion rates, whereas extinction occurs for lower
depletion rates. Though prior to extinction at lower depletion
rates the population exhibits chaotic dynamics with large
amplitudes of variation and very low minima, at higher
depletion rates the population persists at chaos but with
reduced variation and increased minima. For still higher
values, within the band of persistence, the dynamics show
period reversal leading to stability. These results illustrate
that chaos does not necessarily lead to population extinction.
In addition, the persistence of populations at high depletion
rates has important implications in the considerations of
strategies for the management of biological resources.

The spatiotemporal organization of a single-species popula-
tion can show many different dynamics that can change
because of migration. Though unstable dynamics such as chaos
has been exhibited by both discrete theoretical models of
population growth and experimental data (1-6), populations
undergoing chaotic oscillations are assumed to run a high risk
of extinction due to large variations and low-minimum popu-
lation size. This and insect field data (7, 8) has led to the view
that chaotic oscillations are unrealistic and hence are likely to
be selected against during evolution. It has been shown that
common ecological processes, such as immigration, tend to
stabilize chaotic oscillations or reestablish the population (5,
9-12), thereby suppressing unstable growth dynamics.

It is also intuitively apparent and generally borne out by data
that emigration or increased depletion and harvesting from a
population can cause population extinction, especially if the
population size is small (9, 13-15). Models of population
growth have been used for predicting optimal use of natural
biological resources and deciding on harvesting strategies for
the maximum sustainable yield from resources such as fisheries
(15, 16). However, both natural and laboratory data have
always had cases where populations continue to persist in small
numbers without going extinct and where some species of large
population size go rapidly extinct (7, 17-20; the data in ref. 17
on the small populations of five species of birds that never went
extinct irrespective of body sizes needs to be noted.). There-
fore, the nonlinear interaction of growth rates, population size,
and rates of migration (i.e., addition and depletion to popu-
lations) is important for an understanding of population
behavior, especially the "fourth regime"-i.e., extinction (4).

In this study with a common discrete population growth
model, which is widely used for modeling population growth
and harvesting strategies, we show that (i) populations under-
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going constant emigration/depletion can persist in chaos with
low variation in amplitude, thereby reducing the risk of
extinction; and (ii) populations can persist under a high rate of
emigration or harvesting even when a lower rate of depletion
leads to extinction and the risk of extinction is growth rate
dependent. These results shed new light on the properties of
the population growth models demonstrating that populations
can respond in unexpected ways to changes in emigration/
depletion and have important implications in policies of re-

source management.
We consider the simple, discrete, exponential logistic pop-

ulation growth model (21) for organisms with nonoverlapping
generations given by

Xi+1 =f(Xi) = Xi exp[R(1 - Xi)], [1]

where Xi is the population density in the ith generation and R
is the intrinsic growth rate. When such a population undergoes
a constant (L) amount of emigration, depletion, or harvesting
regularly at every generation, the growth equation (Eq. 1)
takes the form,

X,1 = F(Xi) = f(Xi) - L = Xi exp[R(1 - Xi)] - L. [2]

Eq. 1 has been studied extensively (3) and is considered to be
a simple model for illustrating the occurrence of chaotic
oscillations in one-dimensional maps, where increasing R
induces period-doubling bifurcations leading to chaos. Eq. 1
possesses one equilibrium point, and the stability of the fixed
point and the consequent dynamics exhibited by the system are
dependent on R alone. Inclusion of a constant immigration
term in this model has been shown (11) to reduce the
occurrence of chaos at higher growth rates. When considering
populations undergoing a constant emigration at every gen-
eration (i.e., for L > 0 in Eq. 2), there exist two equilibrium
points (xi and X2) of which the first (i.e., xi) is always unstable,
and the dynamics of growth depends on both R and L. In this
case, there will be some population sizes (both low and
high)-dependent on the first unstable fixed point, x1-where
extinction is inevitable. The maximum population size attained
by populations growing according to Eqs. 1 and 2 are different,
but both occur at X = 1 IR.

In what follows we have stated the results of our study of the
behavior of populations growing according to Eq. 2 for
different emigration rates to understand their survival and
extinction dynamics.

Survival and Extinction Under Emigration

The bifurcation diagrams in Fig. 1 a and b show that emigration
does not affect the qualitative dynamics of Eq. 2 with small L,
and the population takes a period-doubling route to chaos with
increasing growth rates. However, the bifurcations from the
simple limit cycle to period 4 oscillations and successive period
doublings occur at lower values of R (Fig. lb). Fig. lb also
shows that populations go extinct at higher growth rates after
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FIG. 2. Regions of survival and extinction in the R-L parameter
space. For R < RC (see text), the space is divided into two regions-
persistence and extinction. For R > Rc, there are two bands of
persistence separated by an extinction region. These are described by
the following three shaded regions. (i) Blank region: survival. The
population was considered persistent when Xi > 0 for i > 1000
generations for any given R and L. For R > RC, the persistence band
for higher L values is bounded by the dotted line, below and above
which populations go extinct. (ii) Crossed region: eventual extinction.
Here populations go extinct after few generations. This region is
bounded by the lower bound (dashed line), at which the population
goes extinct for the first time after a few generations, and by the upper
bound (continuous line), at which the population goes extinct at the
next generation [i.e., when f(Xo) c L]. (iii) Dotted region: immediate
extinction. Here populations go extinct immediately at the next
generation.

the ability of a population to sustain emigration/depletion
beyond a certain "critical growth rate" (Rc) is independent of

t a, . _ the starting population sizes. This "critical growth rate" falls in
8 2.0 2.5 3.0 3.5 4.0 the region after the first bifurcation of the stable limit cycle

R (i.e., at period 4 oscillations). This implies that the risk of
extinction can increase sharply for populations growing at rates

fifurcation diagrams for L = 0 (a) and L = 0.06 (b) from in the nonchaotic regime also, and slower growing populations

.Between 1.8 and 4.0, 110 values ofR were taken, and for can survive under a continuous range of depletion rates at

f R, the equations were iterated 1000 times, and the last * * *
a

*
r

rere plotted. The population was considered extinct when which a faster growing population might go extinct. This
in 1000 generations for given values of R and L, which dependence of the survival of populations undergoing deple-
ir R = 2.899 in b. Unless otherwise specified, the initial tion on their growth rates needs to be recognized while

s chosen as Xo = 0.3 for all calculations. We have checked considering management of wildlife populations or immuni-

ilts hold good even for 5000 generations of the population zation against pathogenic organisms, since populations with
;ubsequent figures. different growth rates cannot be considered at par. There have

been reports (17, 18) where species in abundant number go
regular oscillations for some generations. A popu- extinct in isolated forest patches in a short span of time,
zing at a specific rate can balance regular depletion whereas other species survive for a long time in small numbers.
a certain extent by surviving at a lower density. The second feature of interest in Fig. 2 is as follows: for R

ertain rate of depletion, extinction would occur, and > Rc, the populations do not go extinct for all intermediate

tion would survive fewer and fewer generations values of L between the lower and upper bound. There exists

ig extinct. Thus, a band of L values can describe the a wedge-shaped band in which the population persists under a

ipper bounds of gradual extinction, below which the high rate of depletion. For example, a population growing with

persists and above which it goes extinct in the first a fixed rate, say R = 2.56, can exist below L = 0.46 and then

Fig. 2 shows the survival and extinction behavior go extinct at various generations with increasing depletion
rates, but it again survives for a band of high L values, 0.71 <-lation over a range of growth rates for various ' .ai sur. . .ration L < 1.50, beyond which it goes extinct quickly. The width of the

ra es. band reduces for higher growth rates, but the upper limit of the

or features are to be noted in Fig. 2. First, the lower band does not coincide with the upper bound of L. Thus, for
extinction increases with increasing growth rates populations with any R > Rc, the survival-extinction dynamics
2.552, beyond which it drops from L = 1.5 to a low with increasing depletion shows an unusual structure with

0.57 with a discontinuity and continues to alternating regions of survival and extinction, so that popula-
smaller values close to zero for higher growth rates. tions growing with the same rate can persist under very low and
bound of L for extinction shows a continuous fairly high removal rate, though they are not able to survive at
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The boundaries of survival and extinction in the R-L plot
described in Fig. 2 can also be obtained from Eq. 2 with the
following analytical reasonings:

(i) The curve for the upper bound of L for extinction is
obtained in Fig. 2 for f(Xo) = L. The limiting curve, which is
independent of population size (Xo), can be obtained from Eq.
2 by setting f(l/R) = L (i.e., when the emigration factor is
equal to the maximum size of the population). The f(Xo) = L
curve always falls below the limiting curve; therefore, popu-
lations may go extinct immediately, depending on the initial
size, at a lower value of L.

(ii) The curve that forms the lower bound for extinction for
R < RC and continues as the upper bound for the high-L
persistence band for R > RC is the condition for all populations
to go extinct eventually, after various numbers of generations.
This condition is satisfied when a saddle-node bifurcation
takes place for a combination of R and L, and both the
equilibrium points (xi and x2) disappear (22).

(iii) The bands of high and low L values at which the
populations survive for R > Rc occurs whenever the population
minimum is above the "threshold level" given by the first
unstable equilibrium point [i.e., F2(1 /R) - xi > 0]. For
intermediate values of L, F2(1/R) - xi < 0, and populations
of all sizes go extinct eventually. Thus, the two curves sepa-
rating the survival-extinction-survival boundaries in the R-L
parameter space for R > RC in Fig. 2 can be obtained by
considering values of R and L that satisfy the expression

F2(1/R) -x1 = 0. [3]

For R < RC this expression is never satisfied, whereas for R >
RC it is satisfied for two values of L.

(iv) In the "survival" region in Fig. 2, not all initial popu-
lation sizes (Xo) survive due to the existence of the first
equilibrium point. The range of initial population sizes that can
continue to exist in the "survival" region indicated in Fig. 2 is
bounded by x(min) = x1 and x(max) which can be obtained
from the expression F[x(max)] - xi = 0.

Earlier theoretical studies have shown (5, 9-11) that additive
factors, such as immigration and recolonization, contribute to
persistence of a population even at chaos. This is probably
natural and expected. Our results show that persistence is
possible in a fast-growing population even while that popula-
tion is undergoing high emigration or depletion. Since this
model is commonly used for modeling growth and harvesting
strategies of natural resources, this unusual result would seem
to imply that a resource may be harvested at a higher rate
without leading to extinction even when lower rates of har-
vesting would lead to extinction. However, we would urge
caution before any blind attempt is made to translate this result
into practice, since natural populations are regulated by a large
number of biological and environmental factors, some ofwhich
are stochastic (23-26) and may mask the small zone of
persistence at higher depletion rates. Nevertheless our results
indicate that changes in depletion rates can have unexpected
consequences for the persistence of a population and that these
consequences may be different from what conventional wis-
dom would indicate.

Temporal Dynamics Under Emigration

There are two ranges of L values at which the population
growing with R > RC persists. The population dynamics with
increasingL in these two regions of persistence is shown in Fig.
3 for R = 2.6. For 0 < L < 0.31, the population exhibits a
transition from period-4 oscillations to chaos, with a contin-
uous decrease in the minimum value of the amplitudes of
oscillations. Further increase in the depletion rate (0.31 < L
< 0.9) results in population extinction after a few generations
of irregular cycles. For higher depletion rates (L > 0.91), the
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FIG. 3. Bifurcation diagram for a population at growth rate R = 2.6
with variation of L.

population again continues to survive, exhibiting chaotic os-
cillations, though with much reduced amplitude and elevated
levels of the population minimum. With increasing L, it
undergoes period-doubling reversals and reaches a steady state
for L = 1.37. Further increase of L > 1.55 results in the
extinction of the population.
The survival dynamics at high emigration rates (Fig. 3) show

two interesting features: (i) reduced variation in a population
with increased minima of oscillations. The maximum variation
of the population density just before the first extinction is 1.7,
whereas it is 1.0 when the population persists again. The
minimum sizes of the populations while exhibiting chaotic
oscillations is increased from 0.033 to 0.158 before and after
the first extinction. (ii) Period-doubling reversals take place at
higher emigration rates, and the population size remains stable
at 0.36 before it finally goes extinct.
These results imply that it is not the chaotic oscillationsper

se that introduces the risk of extinction, but it is the large
variability in numbers coupled with a low minimum that is
responsible for the high risk of extinction in the face of
"population crashes," or in the event of a small increase in
emigration. Therefore, populations can persist at chaos with
low variation and elevated minimum value without the risk of
extinction. That extinction risk is correlated with a small
population size has been shown in many natural populations of
birds, small mammals, and other animals (17). Field studies
with birds (17, 27) have also shown that species with more
variable populations are more prone to extinction. Thus, a
moderately abundant species with variable numbers may be at
greater risk than a rare species with small but steadier num-
bers. Our results do corroborate the studies on natural pop-
ulations (7, 17, 27, 28) to show that the risk of extinction
increases with high variability coupled to a small minimum but
argues against the notion, based on field data (7, 8), that
chaotic dynamics is unrealistic. To explain the stable growth
dynamics attributed to a large number of insect populations (5,
7, 29), theoretical studies have shown that the chaotic dynamics
exhibited by model populations can be suppressed under many
different ecological conditions (5, 9-12). Our results also show
that populations can exhibit stable dynamics under high em-
igration condition.

Modes of Extinction

To examine the interaction between the growth rate (R) and
the rate of depletion (L) with respect to the resultant survival-
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FIG. 4. Graphical demonstration of the modes of extinction for two representative values of low and high R. (a) R = 1.8, L = 0.77; (b) R =

1.8, L = 0.81; (c) R = 2.6, L = 0.8; and (d) R = 2.6, L = 1.58.

extinction dynamics of the population, we employ the simple
graphical procedure of plotting Eq. 2 as Xi+1 versus Xi for
specific values of R and L as shown in Fig. 4. The effects of
increasing R and L are to make the single-hump function
steeper and to shift it below the positive x-axis, respectively.
The net shape and position of the hump with respect to the
Xi+ = Xi line decides the stability of the steady states, if any,
and the consequent dynamics.

In Fig. 4 we indicate the two modes by which populations
with a low (R = 1.8, Fig. 4 a and b) and a high (R = 2.6, Fig.
4 c and d) growth rate go extinct at different rates of emigra-
tion. The first mode is through the well-known "Allee effect"
(16, 30). In this case the population goes extinct either by
decreasing continuously (Fig. 4a) or after a few generations of
irregular oscillations (Fig. 4c) whenever it falls below a
"threshold level" given by the first unstable steady state (xi).
The second mode is through the decoupling of the hump and
theXi+I = Xi line indicating nonexistence of any fixed point for
the system (saddle-node bifurcation). Here populations of all
sizes decrease continuously and go extinct after a few gener-
ations (Fig. 4 b and d).
These two modes of extinction are observed for all values of

R, but for lower growth rates (i.e., R < Rc), medium-size
populations can persist because the second steady state (X2) is
stable (Fig. 4a) and also because Eq. 3 is never satisfied.
However, for higher growth rates (R > Rc), populations of all
sizes go extinct for medium values of L because Eq. 3 is
satisfied, leading to a minimum population size below the
"threshold level" xi (Fig. 4c).
The band of high L values at which the populations survive

for R > Rc is achieved when the shape of the hump, due to the
interaction of L and R, is such that the population minimum
is always above the "threshold" x1 and the second equilibrium
point X2 is unstable. This leads to continuous chaotic oscilla-
tions with reduced amplitude of variation, with the minima
being bounded by the value ofxl. For higher values ofL in the
band, the second steady state (X2) becomes stable, and period
reversals are observed till the decoupling takes place and
extinction ensues.

Main Findings of This Study

* Chaotic dynamics does not necessarily lead to species
extinction: populations can persist at chaos with low variation
and increased minima.
* The dynamics exhibited by faster growing populations

undergoing high depletion in the form of emigration or
"catches" does not always lead to extinction, even though lower
depletion rates can result in extinction of the same population.
* Survival depends on population size.
(i) Medium-sized populations may persist both with low

growth rates for small and medium depletion rates and with
high growth rates for high depletion rates, whereas small and
large populations may go extinct rapidly. (ii) Faster growing
populations of all sizes go extinct at moderate rates of emi-
gration.
These theoretical findings have an important bearing when

considering strategies for the management of biological re-
sources such as fisheries and in immunization programs and,
more generally, when considering the behavior of natural
populations in a range of ecological situations where emigra-
tion is taking place.
We wish to point out here that the survival-extinction

behavior observed for this commonly used exponential model
(Eq. 1) for population studies is not seen in the case of the
quadratic logistic growth model (3, 31-33). However, this
behavior is shown by the model used to fit natural insect data
(5, 7, 29). Also, it should be noted that this behavior is not
observed when emigration is density dependent [i.e., L.f(Xi)].
Thus, one needs to look into the specifics of the models and the
details of the ecological processes before using these models
for interpreting natural population data or deciding on their
applicability to resource management policies.
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