
Reports

www.BioTechniques.com1Vol. 56 | No. 1 | 2014

Supplementary Methods
Arraying colonies using a FACS sorter
It has been obser ved that colony
morphologies are af fected by the
distance to neighboring colonies. In
order to standardize the spacing between
colonies, single cells were deposited in
a grid pattern by using a FACSAria II
cell sorter (BD Biosciences) with an
Automated Cell Deposition Unit. Cells
are arrayed following a 96-well format,
but in order to increase the spacing of
colonies, alternating wells were skipped.
This results in colonies that are spaced
approximately 12.7 mm from each other.

The plates used in this experiment
are rectangular OmniTrays (Nunc)
filled with 30 mL of YPD + agar (2%
glucose). For each strain, 48 cells are
deposited per plate.

Time-lapse imaging
The 6 plates used in this study were placed
in a 2 × 3 grid (Figure 1), face up under a
heavy glass plate with their lids removed.
Each plate was divided into 16 regions,
each containing 3 colonies. At every time
point, one image was captured per region.
The camera was moved to each region on
the plate with a custom-built 2-axis gantry.
The gantry has two linear slides, each
driven by a leadscrew and stepper motor
assembly. The stepper motors were each
driven by an EasyDriver, which was in turn
controlled by an Arduino UNO micro-
controller. Scripted movement commands
are sent to the microcontroller via a Java
application, which also controls the shutter

Quantitative analysis of colony morphology in yeast
Pekka Ruusuvuori1,2, Jake Lin1,2,3, Adrian C. Scott4, Zhihao Tan4,6, Saija Sorsa1, Aleksi Kallio5, Matti Nykter5, Olli
Yli-Harja1,2, Ilya Shmulevich1,2, and Aimée M. Dudley4,6

1Department of Signal Processing, Tampere University of Technology, Tampere, Finland, 2Institute for Systems
Biology, Seattle, WA, 3Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Luxembourg,
4Pacific Northwest Diabetes Research Institute, Seattle, WA, 5Institute of Biomedical Technology, University of
Tampere, Tampere, Finland, 6Molecular and Cellular Biology Program, University of Washington, Seattle, WA

BioTechniques 56:18-27 (January 2014) doi 10.2144/000114123
Keywords: colony morphology; image analysis; software; yeast; phenotype; time-lapse

Reports
Supplementary Material For:

Figure 1. Time-lapse plate layout. OmniTrays with 48 colonies each were placed in a 2 × 3
grid and imaged continuously using a camera mounted to a custom built robotic device. Each
plate was divided into 16 regions (centered on the black dots above) and 1 picture was taken
of each region for each time point. The camera was then moved to the next region, or the next
plate, following the green path. A cycle through all 6 plates was completed in ~14 minutes.

Reports

www.BioTechniques.com2Vol. 56 | No. 1 | 2014

of a Canon 5D Mark II camera. Once all
regions on all plates had been imaged, the
cycle repeated. The images for each region
were registered to reduce positional jitter
by using the StackReg plugin (1) for Fiji (2).

Segmentation
Segmentation of the colony from the
background is performed offline us-
ing a custom Matlab script [Version
8.1(R2013a), MathWorks Inc., Natick,
MA] by thresholding the green channel
of the original image using a straightfor-
ward thresholding operation, with the op-
tion of using histogram stretching to cover
the full dynamic range and a sensitivity pa-
rameter for adjusting the threshold value.
This leads to the following thresholding
operation

() ()1, ,

,
0,

α >
=

if I x y t
BW x y

otherwise

where t is the threshold value from a
global thresholding operation (3) and α is
a sensitivity parameter for controlling the
segmentation.

After thresholding, the binary image
is further processed by filling holes and
removing objects touching the image
borders. Finally, objects <0.1% of the image
area are considered as too small for any
quantificatio and are therefore excluded.
The result is the region of interest for which
all subsequent processing is done.

Segmentation of the inner shape in
the colonies is performed using band-pass
filtering, which is implemented as a
Difference of Gaussians. Essentially, the
desired content, which in this case is the
ruff les and other shapes in the image,
is enhanced by band-pass filtering. The
enhanced image is obtained as a difference
of two low-pass filtered versions of the
original image,

E I H I H= −* *1 2 ,

where Hi, with i ∈ {1,2}, are 2D Gaussian
kernels

() ()2 2 2/ 2σ

2

1
2πσ

ix y

i

e
− +

with different bandwidths σ2
i and

* is the convolution operator. After
filtering, the final binary segmentation
result BWBP (where BP refers to band-pass
filtering with difference of Gaussians) is
obtained by thresholding the enhanced
image E.

Feature extraction
The features extracted using custom Matlab
scripts from the segmented region of
interest in the colony images are described
in the following table. Some features make
use of Matlab toolboxes (Image Processing
Toolbox ver. 8.2, Statistics Toolbox ver. 8.2)
and publicly available functions/toolboxes
(fractal dimension, local binary patterns,
histogram of oriented gradients). The total
number of features is 427.

Supervised yeast colony classification
After feature extraction, the colonies are
represented with a feature vector x where
each element of the vector corresponds to
a numerical value of the feature. When
training samples (i.e., images for which the
phenotype/class is known and available),
supervised classification methods offer
powerful tools for automated phenotype
classification. In our case, the feature
vector includes hundreds of features,
many of which may be redundant because
the feature set is not tailored for a single,
specific purpose. Thus, we use the logistic
regression classifier with regularization due
to its capability to produce sparse classi-
fication models. We used the implemen-
tation from the probabilistic modeling
toolkit for Matlab/Octave, http://code.
google.com/p/pmtk3/.

The sparsity promoting regular-
ization works efficiently for the colony

phenotype classification. The cross-
validation case study presented in the
article led to 98.79% overall accuracy,
and during the 5000 repetitions of the
hold-out validation, only 6 features were
used. For a more detailed analysis of the
features, we collected the model coeffi-
cients from the 5000 repetitions of the
hold-out classification experiment. One
indicator of the importance of a feature
is to count how many times it has been
selected into the classification model,
that is, how many times the corre-
sponding weight value in β is nonzero.
The maximum count in this experiment
is 5000, which would mean the feature
has been used in all repetitions. On the
contrary, if the count is zero, the feature
did not get selected to the classification
model during the cross-validation repeti-
tions. Figure 2 shows the selection counts
and feature weights during the 5000
hold-out repetitions.

Spatiotemporal profiling
The spatiotemporal profile is constructed
for each time point T by taking a
cumulative sum of the segmented colony
shapes obtained through band-pass filtering
and thresholding, as explained above. Thus,
the profile

() ()

1

=

=∑
T

BP
t

M T BW t

Figure 2. Feature selection counts (top) and logistic regression classifier model weights collected
from the 5000 repetitions.

Reports

www.BioTechniques.com3Vol. 56 | No. 1 | 2014

Feature Description
‘Area’ Colony area (pixels).
‘MajorAxisLength’ Length of longer axis in ellipse fitted to colony mask.
‘MinorAxisLength’ Length of shorter axis in ellipse fitted to colony mask.
‘ConvexArea’ Area of convex hull of the colony mask.
‘EquivDiameter’ Diameter of the equivalent circular object.
‘Solidity’ Ratio of area and convex hull area.
‘Extent’ Ratio of object area to area of bounding box.
‘Perimeter’ Colony mask perimeter length.
‘MeanIntensity’ Average intensity within the colony area.
‘Contrast’ Intensity contrast between a pixel and its neighbor calculated from gray level co-occurrence matrix. (4)
‘Correlation’ Correlation of a pixel to its neighbor calculated from gray level co-occurrence matrix.
‘Energy’ Sum of squared elements calculated from gray level co-occurrence matrix.
‘Homogeneity’ Closeness of the distribution of elements in the gray level co-occurrence matrix to the co-occurrence matrix diagonal.
‘edgePixels’ Number of edge pixels detected using Sobel operator inside the whole colony area.
‘edgePixelsCentre’ Number of detected edge pixels inside the center of the colony.
‘meanEdgeLength’ Average length of detected edges.
‘stdEdgeLength’ Deviation of edge lengths.
‘numEdges’ Number of detected edges.
‘inArea’ Total area of the colony structure BBP obtained from band-pass filtering.
‘inCenterArea’ Area of the colony structure BWBP in the center of the colony mask.
‘inBorderArea’ Area of the colony structure BWBP in the borders of the colony mask.
‘meanInSize’ Average area of a connected component in BBP.
‘stdInSize’ Deviation of the areas in BWBP.
‘numInObj’ Number of objects in BWBP.
‘meanLPResid’ Average residual calculated from difference of two low-pass filtered images (Gaussian LPF, smaller σ).
‘stdLPResid’ Standard deviation of difference of original and low-pass filtered images (Gaussian LPF, smaller σ).
‘meanLP2Resid’ Average residual calculated from difference of two low-pass filtered images (Gaussian LPF, larger σ).
‘stdLP2Resid’ Standard deviation of difference of original and low-pass filtered images (Gaussian LPF, larger σ).
‘innerObj’ Number of separate connected components in the colony shape segmentation result (DoG segmentation).
‘innerBrachPoints’ Number of branch points in the skeleton of the inner segmentation result.
‘innerEnd points’ Number of end points in the skeleton of the inner segmentation result.
‘boxCountDfval’ Fractal dimension determined as a box count slope (for details, see http://www.fast.u-psud.fr/~moisy/ml/boxcount/html/demo.html)
‘boxCountDfS’ Standard deviation of box count slope.
‘innerSkeletonMeanLength’ Average length of skeleton in binary image BWBP.

‘innerSkeletonMaxLength’ Maximum skeleton length in binary image BWBP

‘meanEntropy’ Average entropy texture measure within colony area.
‘stdEntropy’ Standard deviation of entropy texture measure within colony area.
‘meanStd’ Average standard deviation texture measure within colony area.
‘stdStd’ Deviation of standard deviation texture measure within colony area.
‘stdInt’ Standard deviation of intensities.
‘iqrInt’ Intequartile range of intensities.
‘skewnessInt’ Skewness of intensity values.
‘kurtosisInt’ Kurtosis of intensity values.
‘Percentile 1’ 1st intensity percentile within colony area.
‘Percentile 4’ 4th intensity percentile within colony area.
‘Percentile 7’ 7th intensity percentile within colony area.
… …
‘Percentile 100’ 100th Intensity percentile within colony area.
‘meanSig’ Average boundary signature distance from centroid.

‘stdSig’ Deviation of boundary signature distance.
‘iqrSig’ Interquartile range of boundary perimeter distance.
‘absdiffSig’ Sum of absolute deviation from mean boundary distance.
‘signPrc10Int’ 10th percentile of boundary signature distance.
‘signPrc90Int’ 90th percentile of boundary signature distance.
‘Lowpass 5’ Average difference between original image and Gaussian low-pass filtered image (σ = 5)
‘Lowpass 11’ σ = 11
‘Lowpass 19’ σ = 19
‘Lowpass 27’ σ = 27
‘Lowpass 35’ σ = 35
‘LBP 1’ Local binary pattern coefficient 1. (5)
‘LBP 2’ Local binary pattern coefficient 2.
‘LBP 3’ Local binary pattern coefficient 3.
… ...
‘LBP 258’ Local binary patter coefficient 258.
‘HOG 1’ Histogram of oriented gradients coefficient 1. (6)
‘HOG 2’ Histogram of oriented gradients coefficient 2.
‘HOG 3’ Histogram of oriented gradients coefficient 3.
…

‘HOG 81’

...

Histogram of oriented gradients coefficient 81.

Reports

www.BioTechniques.com4Vol. 56 | No. 1 | 2014

where BWBP is the binary colony structure
at time t can be plotted over time as a
growing and evolving 3-D surface (Supple-
mentary Movies S1 & S2). Example images
of spatiotemporal profiles for fluffy and
smooth colonies measured over time are
shown in Figure 3.

YIMAA Web application
YIMAA is an open source web application
for displaying the results of quantitative
analysis of yeast colony pattern formation.
Using modern browsers, investigators are
able to easily explore the original time series
images in conjunction with the pheno-
typic signatures and principal component
analysis results. Dynamic interactive charts
are plotted for the selected replicates, and
gallery panels can be used to compare
images, raw and segmented, for all the time
points. YIMAA is designed for yeast in this
colony morphology study, but the methods
and YIMAA web template are applicable
to other organisms and associated imaging
phenotypic quantitative research efforts.

YIMAA, built with jQuery and
other open source libraries, is free for
non-commercial and non-profit use. For
more information, see the YIMAA user
guide.

Availability
The YIMAA web application is available
at http://yimaa.cs.tut.fi. The source codes
of both the web application and the image
and data processing pipeline are available
at http://code.google.com/p/yimaa/. The
MATLAB code includes dependencies
to third party toolboxes, which need to
be available when running the analysis
pipeline.

References
1. Thévenaz, P., U.E. Ruttimann, and M. Unser.

1998. A pyramid approach to subpixel regis-
tration based on intensity. IEEE Trans. Image
Process. 7:27-41.

2. Schindelin, J., I. Arganda-Carreras, E.
Frise, V. Kaynig, M. Longair, T. Pietzsch,
S. Preibisch, C. Rueden, et al. 2012. Fiji: an
open-source platform for biological-image
analysis. Nat. Methods 9:676-682.

3. Otsu, N. 1979. A threshold selection method
from gray-level histograms. IEEE Trans. Syst.
Man Cybern. 9:62-66.

4. Haralick, R.M., K. Shanmugam, and I.
Dinstein. 1973. Textural Features for Image
Classification IEEE Trans. Syst. Man Cybern.
SMC-3:610-621.

5. Ojala, T., M. Pietikainen, and T. Maenpaa.
2002. Multiresolution gray-scale and rotation
invariant texture classification with local
binary patterns. IEEE Trans. Pattern Anal.
Mach. Intell. 24:971-987.

6. Ludwig, O., D. Delgado, V. Gonçalves,
and U. Nunes. 2009. Trainable classifier-
fusion schemes: An application to pedes-
trian detection. 12th International IEEE
Conference on Intelligent Transportation
Systems, ITSC ‘09. p1-6.

BA

Figure 3. Spatiotemporal profiles of A) fluffy and B) smooth colonies.

Reports

www.BioTechniques.com5Vol. 56 | No. 1 | 2014

YIMAA User Guide
Contacts: Jake Lin (jake.lin@uni.lu) and Pekka Ruusuvuori (pekka.ruusuvuori@tut.fi)
Code Source and other information: http://code.google.com/p/yimaa/
Web address: http://yimaa.cs.tut.fi
Updated August 19th, 2013

Contents
1. General purpose
2. Browser recommendations
3. Interface, views, and layout
 a. Principal component analysis
 b. Time series plotting
 c. Image comparisons
 d. Quantitative features
4. Data retrieval and object construction

1. General purpose
YIMAA is an open source web application for displaying the results of quantitative analysis of yeast colony pattern formation. Using modern
browsers, investigators are able to easily explore the original time series images in conjunction with the phenotypic signatures and principal
component analysis results. Dynamic interactive charts are plotted for the selected replicates, and gallery panels can be used to compare images,
raw and segmented, for all the time points. YIMAA is designed for yeast in this colony morphology study, but the methods and YIMAA web
template are applicable to other organisms and associated imaging phenotypic quantitative research efforts.

YIMAA, built with jQuery and other open sourced libraries, is free for non-commercial and non-profit use.

2. Browser recommendations
YIMAA is compatible with all modern browsers. We recommend using Firefox and Chrome since the majority of the testing has been on
those two browsers.

3. Interface, views, and layout

Using modern web technologies and design concepts, images and analysis results are integrated seamlessly with mouseover and zoom
functions. Time series data for strains can be compared to each other, along with the original and segmented images. Red text overlaid in
the above figure highlights different functionalities of the web interface

Reports

www.BioTechniques.com6Vol. 56 | No. 1 | 2014

a. Principal component analysis (PCA)—Quantitative feature representation of yeast colonies can be viewed in reduced dimension-
ality using PCA. User can select which principal components are shown in the graph (1st, 2nd, 3rd). Multiple strains can be selected for
dynamic comprehensive plotting. The figure below depicts the tool tip as the mouse cursor activates detailed information about each
time point and selected regions can be highlighted and magnified.

Reports

www.BioTechniques.com7Vol. 56 | No. 1 | 2014

b. Live series plotting—Users can view the incremental progress of PCA plots by selecting the number of time points. The plot and
image gallery will dynamically render the iterations. A pause option is provided for flexible control.

Time point 160

c. Image comparisons—For every strain and every time point, investigators can choose to compare the raw and segmented images
between the selected strain and others in the study. This enables quick comparisons of phenotype properties across replicates or different
strains at a chosen time point.

Looking at raw and segmentation images of replicates F29_A3 and F29_A2 at time point 436

Reports

www.BioTechniques.com8Vol. 56 | No. 1 | 2014

d. Quantitative features—427 specific phenotypic features such as area, solidity (see figure below), and different statistical measures are
available as dynamic plots. Interactive web app features like mouse over and zoom capabilities are fully functional. In addition, the user
can jump to certain time frames and hide/show series data sets. See the complete list of image features in Supplemental material Table 1.

4. Data retrieval and object construction
The YIMAA web application uses AJAX for data retrieval. On applicable events, an asynchronous event along with required param-
eters is submitted to a server, and then the data are fetched and returned as JSON array objects. The data are stored as files organized
by strains and series.

