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Supplementary Methods
Arraying colonies using a FACS sorter
It has been obser ved that colony 
morphologies are af fected by the 
distance to neighboring colonies. In 
order to standardize the spacing between 
colonies, single cells were deposited in 
a grid pattern by using a FACSAria II 
cell sorter (BD Biosciences) with an 
Automated Cell Deposition Unit. Cells 
are arrayed following a 96-well format, 
but in order to increase the spacing of 
colonies, alternating wells were skipped. 
This results in colonies that are spaced 
approximately 12.7 mm from each other.

The plates used in this experiment 
are rectangular OmniTrays (Nunc) 
filled with 30 mL of YPD + agar (2% 
glucose). For each strain, 48 cells are 
deposited per plate.

Time-lapse imaging
The 6 plates used in this study were placed 
in a 2 × 3 grid (Figure 1), face up under a 
heavy glass plate with their lids removed. 
Each plate was divided into 16 regions, 
each containing 3 colonies. At every time 
point, one image was captured per region. 
The camera was moved to each region on 
the plate with a custom-built 2-axis gantry. 
The gantry has two linear slides, each 
driven by a leadscrew and stepper motor 
assembly. The stepper motors were each 
driven by an EasyDriver, which was in turn 
controlled by an Arduino UNO micro-
controller. Scripted movement commands 
are sent to the microcontroller via a Java 
application, which also controls the shutter 
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Figure 1. Time-lapse plate layout. OmniTrays with 48 colonies each were placed in a 2 × 3 
grid and imaged continuously using a camera mounted to a custom built robotic device. Each 
plate was divided into 16 regions (centered on the black dots above) and 1 picture was taken 
of each region for each time point. The camera was then moved to the next region, or the next 
plate, following the green path. A cycle through all 6 plates was completed in ~14 minutes.
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of a Canon 5D Mark II camera. Once all 
regions on all plates had been imaged, the 
cycle repeated. The images for each region 
were registered to reduce positional jitter 
by using the StackReg plugin (1) for Fiji (2).

Segmentation
Segmentation of the colony from the 
background is performed offline us-
ing a custom Matlab script [Version 
8.1(R2013a), MathWorks Inc., Natick, 
MA] by thresholding the green channel 
of the original image using a straightfor-
ward thresholding operation, with the op-
tion of using histogram stretching to cover 
the full dynamic range and a sensitivity pa-
rameter for adjusting the threshold value. 
This leads to the following thresholding 
operation
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where t is the threshold value from a 
global thresholding operation (3) and α is 
a sensitivity parameter for controlling the 
segmentation.

After thresholding, the binary image 
is further processed by filling holes and 
removing objects touching the image 
borders. Finally, objects <0.1% of the image 
area are considered as too small for any 
quantificatio and are therefore excluded. 
The result is the region of interest for which 
all subsequent processing is done.

Segmentation of the inner shape in 
the colonies is performed using band-pass 
filtering, which is implemented as a 
Difference of Gaussians. Essentially, the 
desired content, which in this case is the 
ruff les and other shapes in the image, 
is enhanced by band-pass filtering. The 
enhanced image is obtained as a difference 
of two low-pass filtered versions of the 
original image,
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where Hi, with i ∈ {1,2}, are 2D Gaussian 
kernels  
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with different bandwidths σ2
i     and  

*  is the convolution operator. After 
filtering, the final binary segmentation 
result BWBP (where BP refers to band-pass 
filtering with difference of Gaussians) is 
obtained by thresholding the enhanced 
image E. 

Feature extraction
The features extracted using custom Matlab 
scripts from the segmented region of 
interest in the colony images are described 
in the following table. Some features make 
use of Matlab toolboxes (Image Processing 
Toolbox ver. 8.2, Statistics Toolbox ver. 8.2) 
and publicly available functions/toolboxes 
(fractal dimension, local binary patterns, 
histogram of oriented gradients). The total 
number of features is 427.

Supervised yeast colony classification
After feature extraction, the colonies are 
represented with a feature vector x where 
each element of the vector corresponds to 
a numerical value of the feature. When 
training samples (i.e., images for which the 
phenotype/class is known and available), 
supervised classification methods offer 
powerful tools for automated phenotype 
classification. In our case, the feature 
vector includes hundreds of features, 
many of which may be redundant because 
the feature set is not tailored for a single, 
specific purpose. Thus, we use the logistic 
regression classifier with  regularization due 
to its capability to produce sparse classi-
fication models. We used the implemen-
tation from the probabilistic modeling 
toolkit for Matlab/Octave, http://code.
google.com/p/pmtk3/.

The sparsity promoting regular-
ization works efficiently for the colony 

phenotype classification. The cross-
validation case study presented in the 
article led to 98.79% overall accuracy, 
and during the 5000 repetitions of the 
hold-out validation, only 6 features were 
used. For a more detailed analysis of the 
features, we collected the model coeffi-
cients from the 5000 repetitions of the 
hold-out classification experiment. One 
indicator of the importance of a feature 
is to count how many times it has been 
selected into the classification model, 
that is, how many times the corre-
sponding weight value in β is nonzero. 
The maximum count in this experiment 
is 5000, which would mean the feature 
has been used in all repetitions. On the 
contrary, if the count is zero, the feature 
did not get selected to the classification 
model during the cross-validation repeti-
tions. Figure 2 shows the selection counts 
and feature weights during the 5000 
hold-out repetitions.

Spatiotemporal profiling
The spatiotemporal profile is constructed 
for each time point T by taking a 
cumulative sum of the segmented colony 
shapes obtained through band-pass filtering 
and thresholding, as explained above. Thus, 
the profile
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Figure 2. Feature selection counts (top) and logistic regression classifier model weights collected 
from the 5000 repetitions.



Reports

www.BioTechniques.com3Vol. 56 | No. 1 | 2014

Feature Description
‘Area’ Colony area (pixels).
‘MajorAxisLength’ Length of longer axis in ellipse fitted to colony mask.
‘MinorAxisLength’ Length of shorter axis in ellipse fitted to colony mask.
‘ConvexArea’ Area of convex hull of the colony mask.
‘EquivDiameter’ Diameter of the equivalent circular object.
‘Solidity’ Ratio of area and convex hull area.
‘Extent’ Ratio of object area to area of bounding box.
‘Perimeter’ Colony mask perimeter length.
‘MeanIntensity’ Average intensity within the colony area.
‘Contrast’ Intensity contrast between a pixel and its neighbor calculated from gray level co-occurrence matrix. (4)
‘Correlation’ Correlation of a pixel to its neighbor calculated from gray level co-occurrence matrix.
‘Energy’ Sum of squared elements calculated from gray level co-occurrence matrix.
‘Homogeneity’ Closeness of the distribution of elements in the gray level co-occurrence matrix to the co-occurrence matrix diagonal.
‘edgePixels’ Number of edge pixels detected using Sobel operator inside the whole colony area.
‘edgePixelsCentre’ Number of detected edge pixels inside the center of the colony.
‘meanEdgeLength’ Average length of detected edges.
‘stdEdgeLength’ Deviation of edge lengths.
‘numEdges’ Number of detected edges.
‘inArea’ Total area of the colony structure BBP obtained from band-pass filtering.
‘inCenterArea’ Area of the colony structure BWBP in the center of the colony mask.
‘inBorderArea’ Area of the colony structure BWBP in the borders of the colony mask.
‘meanInSize’ Average area of a connected component in BBP.
‘stdInSize’ Deviation of the areas in BWBP.
‘numInObj’ Number of objects in BWBP.
‘meanLPResid’ Average residual calculated from difference of two low-pass filtered images (Gaussian LPF, smaller σ).
‘stdLPResid’ Standard deviation of difference of original and low-pass filtered images (Gaussian LPF, smaller σ).
‘meanLP2Resid’ Average residual calculated from difference of two low-pass filtered images (Gaussian LPF, larger σ).
‘stdLP2Resid’ Standard deviation of difference of original and low-pass filtered images (Gaussian LPF, larger σ).
‘innerObj’ Number of separate connected components in the colony shape segmentation result (DoG segmentation).
‘innerBrachPoints’ Number of branch points in the skeleton of the inner segmentation result.
‘innerEnd points’ Number of end points in the skeleton of the inner segmentation result.
‘boxCountDfval’ Fractal dimension determined as a box count slope (for details, see http://www.fast.u-psud.fr/~moisy/ml/boxcount/html/demo.html)
‘boxCountDfS’ Standard deviation of box count slope.
‘innerSkeletonMeanLength’ Average length of skeleton in binary image BWBP.

‘innerSkeletonMaxLength’ Maximum skeleton length in binary image BWBP

‘meanEntropy’ Average entropy texture measure within colony area.
‘stdEntropy’ Standard deviation of entropy texture measure within colony area.
‘meanStd’ Average standard deviation texture measure within colony area.
‘stdStd’ Deviation of standard deviation texture measure within colony area.
‘stdInt’ Standard deviation of intensities.
‘iqrInt’ Intequartile range of intensities.
‘skewnessInt’ Skewness of intensity values.
‘kurtosisInt’ Kurtosis of intensity values.
‘Percentile 1’ 1st intensity percentile within colony area.
‘Percentile 4’ 4th intensity percentile within colony area.
‘Percentile 7’ 7th intensity percentile within colony area.
… …
‘Percentile 100’ 100th Intensity percentile within colony area.
‘meanSig’ Average boundary signature distance from centroid.

‘stdSig’ Deviation of boundary signature distance.
‘iqrSig’ Interquartile range of boundary perimeter distance.
‘absdiffSig’ Sum of absolute deviation from mean boundary distance.
‘signPrc10Int’ 10th percentile of boundary signature distance.
‘signPrc90Int’ 90th percentile of boundary signature distance.
‘Lowpass 5’ Average difference between original image and Gaussian low-pass filtered image (σ = 5)
‘Lowpass 11’ σ = 11
‘Lowpass 19’ σ = 19
‘Lowpass 27’ σ = 27
‘Lowpass 35’ σ = 35
‘LBP 1’ Local binary pattern coefficient 1. (5)
‘LBP 2’ Local binary pattern coefficient 2.
‘LBP 3’ Local binary pattern coefficient 3.
… ...
‘LBP 258’ Local binary patter coefficient 258.
‘HOG 1’ Histogram of oriented gradients coefficient 1. (6)
‘HOG 2’ Histogram of oriented gradients coefficient 2.
‘HOG 3’ Histogram of oriented gradients coefficient 3.
…

‘HOG 81’

...

Histogram of oriented gradients coefficient 81.
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where BWBP is the binary colony structure 
at time t can be plotted over time as a 
growing and evolving 3-D surface (Supple-
mentary Movies S1 & S2). Example images 
of spatiotemporal profiles for fluffy and 
smooth colonies measured over time are 
shown in Figure 3.

YIMAA Web application
YIMAA is an open source web application 
for displaying the results of quantitative 
analysis of yeast colony pattern formation. 
Using modern browsers, investigators are 
able to easily explore the original time series 
images in conjunction with the pheno-
typic signatures and principal component 
analysis results. Dynamic interactive charts 
are plotted for the selected replicates, and 
gallery panels can be used to compare 
images, raw and segmented, for all the time 
points. YIMAA is designed for yeast in this 
colony morphology study, but the methods 
and YIMAA web template are applicable 
to other organisms and associated imaging 
phenotypic quantitative research efforts.

YIMAA, built with jQuery and 
other open source libraries, is free for 
non-commercial and non-profit use. For 
more information, see the YIMAA user 
guide.

Availability
The YIMAA web application is available 
at http://yimaa.cs.tut.fi. The source codes 
of both the web application and the image 
and data processing pipeline are available 
at http://code.google.com/p/yimaa/. The 
MATLAB code includes dependencies 
to third party toolboxes, which need to 
be available when running the analysis 
pipeline.
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Figure 3. Spatiotemporal profiles of A) fluffy and B) smooth colonies.
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YIMAA User Guide
Contacts: Jake Lin (jake.lin@uni.lu) and Pekka Ruusuvuori (pekka.ruusuvuori@tut.fi) 
Code Source and other information: http://code.google.com/p/yimaa/ 
Web address: http://yimaa.cs.tut.fi
Updated August 19th, 2013

Contents
1.	 General purpose
2.	 Browser recommendations
3.	 Interface, views, and layout
	 a. Principal component analysis
	 b. Time series plotting
	 c. Image comparisons
	 d. Quantitative features
4.	 Data retrieval and object construction

1. General purpose
YIMAA is an open source web application for displaying the results of quantitative analysis of yeast colony pattern formation. Using modern 
browsers, investigators are able to easily explore the original time series images in conjunction with the phenotypic signatures and principal 
component analysis results. Dynamic interactive charts are plotted for the selected replicates, and gallery panels can be used to compare images, 
raw and segmented, for all the time points. YIMAA is designed for yeast in this colony morphology study, but the methods and YIMAA web 
template are applicable to other organisms and associated imaging phenotypic quantitative research efforts.

YIMAA, built with jQuery and other open sourced libraries, is free for non-commercial and non-profit use.

2. Browser recommendations
YIMAA is compatible with all modern browsers. We recommend using Firefox and Chrome since the majority of the testing has been on 
those two browsers.

3. Interface, views, and layout

Using modern web technologies and design concepts, images and analysis results are integrated seamlessly with mouseover and zoom 
functions. Time series data for strains can be compared to each other, along with the original and segmented images. Red text overlaid in 
the above figure highlights different functionalities of the web interface
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a. Principal component analysis (PCA)—Quantitative feature representation of yeast colonies can be viewed in reduced dimension-
ality using PCA. User can select which principal components are shown in the graph (1st, 2nd, 3rd). Multiple strains can be selected for 
dynamic comprehensive plotting. The figure below depicts the tool tip as the mouse cursor activates detailed information about each 
time point and selected regions can be highlighted and magnified.
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b. Live series plotting—Users can view the incremental progress of PCA plots by selecting the number of time points. The plot and 
image gallery will dynamically render the iterations. A pause option is provided for flexible control.

Time point 160

c. Image comparisons—For every strain and every time point, investigators can choose to compare the raw and segmented images 
between the selected strain and others in the study. This enables quick comparisons of phenotype properties across replicates or different 
strains at a chosen time point.

Looking at raw and segmentation images of replicates F29_A3 and F29_A2 at time point 436
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d. Quantitative features—427 specific phenotypic features such as area, solidity (see figure below), and different statistical measures are 
available as dynamic plots. Interactive web app features like mouse over and zoom capabilities are fully functional. In addition, the user 
can jump to certain time frames and hide/show series data sets. See the complete list of image features in Supplemental material Table 1.

4. Data retrieval and object construction 
The YIMAA web application uses AJAX for data retrieval. On applicable events, an asynchronous event along with required param-
eters is submitted to a server, and then the data are fetched and returned as JSON array objects. The data are stored as files organized 
by strains and series.


