	GlcNA	AC					ine (pp.) ••		M-Glc	NAc	(2021)			[]] 101 0			
Atom	${}^{4}C_{1}$			${}^{1}C_{4}$			${}^{2}S_{0}$			${}^{4}C_{1}$			${}^{1}C_{4}$			${}^{2}S_{0}$		
	gg	gt	tg	gg	gt	tg												
C1	107.06	107.00	107.14	100.30	102.33	101.82	103.96	105.09	108.58	108.49	108.40	111.77	106.59	108.98	108.34	109.38	111.36	113.20
C2	64.52	64.30	63.63	51.89	52.38	53.69	68.81	67.77	71.97	55.66	55.75	57.56	53.06	54.61	54.19	69.72	69.12	64.04
C3	82.59	82.51	80.38	73.95	75.39	76.14	85.07	85.29	76.26	85.28	84.97	82.35	72.08	73.02	75.93	86.48	85.30	81.18
C4	76.93	80.69	84.26	82.57	77.04	76.34	69.73	72.18	79.78	76.64	80.61	84.01	80.11	78.06	76.24	69.37	72.53	77.33
C5	84.15	84.15	77.33	87.19	84.04	84.54	84.54	86.93	85.21	84.73	85.22	77.14	88.75	89.89	84.68	86.20	86.47	83.61
C6	65.26	69.17	74.21	70.45	68.42	70.14	65.85	72.80	74.33	66.22	69.16	73.99	69.23	71.06	69.29	68.51	71.39	74.52
C7	183.11	183.04	182.75	173.81	174.05	173.90	178.93	179.09	180.38	175.34	175.64	174.58	174.90	174.94	174.21	178.60	178.94	176.43
C8	23.92	23.96	23.99	24.29	24.29	24.44	24.20	24.14	24.03	24.68	24.64	24.60	24.42	24.20	24.50	24.10	24.23	24.61
H1	4.73	4.65	4.67	5.52	5.46	5.23	5.07	5.12	5.04	4.41	4.48	4.17	4.76	5.00	4.65	4.46	4.45	4.28
H2	3.76	3.78	3.74	4.55	4.64	4.64	3.82	3.92	3.75	4.58	4.53	4.48	4.27	4.47	4.51	3.90	3.88	4.16
H3	3.37	3.36	3.69	4.02	4.11	4.27	3.67	3.68	3.89	3.18	3.21	3.50	3.92	4.05	4.21	3.66	3.68	3.71
H4	3.95	3.17	3.74	4.30	4.03	4.43	4.92	4.40	4.28	4.16	3.19	3.80	4.20	4.08	4.37	4.71	4.18	4.43
H5	3.03	3.29	3.64	3.89	3.87	3.85	3.84	3.94	4.04	3.15	3.34	3.62	3.67	3.94	3.82	3.60	3.90	3.90
H6	3.97	3.84	4.09	4.20	4.27	4.00	3.92	4.14	4.21	4.38	3.88	4.10	4.03	4.30	4.10	3.78	4.09	4.17
H7	4.08	3.99	4.41	3.93	3.91	5.29	4.31	3.76	4.44	4.20	4.07	4.39	3.54	3.45	5.22	4.29	3.78	4.36
H8	5.74	5.67	5.78	6.74	6.83	6.89	5.41	5.35	5.14	4.63	4.64	4.51	6.84	7.15	6.91	5.47	5.41	5.14
H9	1.70	1.69	1.70	1.52	1.53	1.54	1.62	1.61	1.65	1.53	1.54	1.49	1.54	1.56	1.55	1.60	1.60	1.69
H10	2.21	2.22	2.21	2.07	2.07	2.05	2.19	2.23	2.16	2.19	2.20	2.08	2.06	2.06	2.06	2.22	2.23	2.19
H11	2.25	2.23	2.21	2.09	2.12	2.09	2.22	2.24	2.26	2.24	2.24	2.20	2.13	2.11	2.08	2.23	2.24	2.21

Supplementary Materials Supplementary Table 1. Chemical shifts (ppm) calculated by GIAO approach (B3LYP/6-311++G(2d,p)) for GlcNAc

	GlcNA	ac(4S)	<u></u>				<u> </u>			M-Glc	NAc(4S)		<u> (</u>			/	
Atom	${}^{4}C_{1}$			${}^{1}C_{4}$			${}^{2}\mathbf{S}_{0}$			${}^{4}C_{1}$			${}^{1}C_{4}$			${}^{2}S_{0}$		
	gg	gt	tg	gg	gt	tg	gg	gt	tg	gg	gt	tg	gg	gt	tg	gg	gt	tg
C1	106.48	106.52	101.81	98.21	102.31	101.89	104.43	103.31	106.87	108.16	111.30	104.75	105.00	108.29	107.68	110.08	111.20	110.09
C2	64.86	65.05	66.90	54.02	52.69	53.84	65.21	66.00	71.67	56.29	59.26	60.59	56.78	53.84	54.32	66.28	65.83	65.18
C3	75.25	75.22	81.84	70.12	75.79	73.08	74.82	82.57	73.50	77.50	77.47	83.88	69.25	73.86	73.01	77.34	80.09	79.44
C4	88.38	92.47	85.42	88.13	80.02	80.22	88.93	83.25	88.71	88.46	92.14	86.28	85.89	80.67	80.12	75.63	82.91	85.18
C5	78.47	78.72	84.13	81.90	77.77	83.15	89.70	82.54	85.97	78.69	78.78	84.60	81.91	83.31	83.44	86.44	85.14	83.57
C6	65.48	69.09	70.98	71.27	67.51	71.71	69.67	72.64	79.38	66.56	69.66	70.74	72.17	71.12	70.96	69.46	71.30	78.19
C7	182.51	182.52	182.65	176.71	173.85	174.69	181.61	175.76	181.81	174.48	174.31	182.12	176.55	174.40	174.77	177.74	176.97	177.28
C8	23.97	24.03	24.91	24.07	24.37	24.25	24.17	24.32	23.84	24.72	24.62	24.76	24.11	24.34	24.27	24.21	24.29	24.19
H1	4.83	4.77	4.78	6.01	5.47	5.43	5.25	5.46	5.16	4.41	4.27	4.59	5.31	4.94	4.85	4.71	4.73	4.67
H2	3.63	3.67	3.45	4.19	4.51	4.54	3.61	4.30	3.39	4.54	4.46	3.74	4.07	4.38	4.42	4.00	4.05	4.02
H3	4.74	4.74	3.51	4.84	4.08	4.65	4.12	3.71	3.98	4.44	4.44	3.85	4.72	4.09	4.61	3.68	3.81	3.70
H4	4.43	3.66	4.23	4.80	4.67	5.11	5.08	5.05	5.04	4.55	3.68	4.74	4.80	4.64	5.12	5.06	4.75	5.35
H5	4.17	4.35	3.82	4.09	4.95	4.15	3.90	3.75	3.80	4.26	4.36	3.58	4.02	4.74	4.11	4.01	3.79	3.51
H6	4.05	3.69	4.06	4.18	4.00	4.66	4.05	3.81	4.33	4.46	3.76	4.21	4.21	3.94	4.62	3.88	3.59	4.31
H7	4.08	4.13	3.93	3.92	4.67	4.02	3.51	3.91	4.32	4.17	4.20	3.90	3.92	4.61	4.09	4.74	4.22	4.18
H8	5.86	5.77	5.74	6.86	6.52	7.08	6.55	5.10	6.07	4.81	4.48	5.91	6.98	6.83	7.12	5.34	5.22	5.18
H9	1.68	1.68	1.76	1.81	1.58	1.70	1.74	1.57	1.72	1.56	1.48	1.75	1.80	1.62	1.71	1.66	1.61	1.60
H10	2.16	2.19	2.24	1.91	2.03	1.09	2.16	2.06	2.16	2.19	2.11	2.24	1.93	2.01	1.99	2.13	2.10	2.08
H11	2.21	2.21	2.30	2.02	2.11	2.09	2.18	2.19	2.19	2.19	2.17	2.26	1.97	2.11	2.08	2.23	2.21	2.18

Supplementary Table 2. Chemical shifts (ppm) calculated by GIAO approach (B3LYP/6-311++G(2d,p)) for GlcNAc(4S)

	GlcNA	ac(6S)					<u> </u>			M-Glc	NAc(6S)		<u> ()</u>			/	
Atom	⁴ C ₁			${}^{1}C_{4}$			${}^{2}S_{0}$			${}^{4}C_{1}$			${}^{1}C_{4}$			${}^{2}S_{0}$		
	gg	gt	tg	gg	gt	tg	gg	gt	tg	gg	gt	tg	gg	gt	tg	gg	gt	tg
C1	104.16	104.27	107.93	100.62	103.05	102.83	107.55	106.24	106.85	109.72	111.25	104.06	105.74	108.67	109.08	108.42	110.57	112.61
C2	65.71	65.23	62.81	50.60	51.82	54.19	64.34	68.14	68.84	56.49	61.90	60.08	52.81	54.00	54.58	61.00	69.54	64.15
C3	81.49	82.45	81.85	76.90	74.49	75.05	81.98	84.24	73.86	84.77	83.53	81.62	76.66	73.59	74.94	85.35	85.48	80.72
C4	74.37	78.70	85.70	77.92	78.75	73.73	80.89	74.04	81.38	75.82	79.15	78.34	77.19	79.34	73.55	78.88	71.93	77.01
C5	86.78	87.11	76.13	88.57	87.56	82.72	85.41	82.44	89.45	85.46	89.07	80.00	87.86	86.12	82.86	78.82	85.90	85.90
C6	69.53	71.15	73.52	71.92	79.50	74.31	74.90	79.47	80.30	68.23	71.46	73.87	72.32	75.70	73.73	69.96	78.13	79.46
C7	184.44	184.56	182.66	174.26	173.41	173.99	179.50	178.75	180.56	177.29	178.48	180.86	174.58	174.33	173.90	173.57	178.50	176.19
C8	24.54	24.01	23.94	24.30	24.37	24.51	24.00	24.26	24.08	24.57	24.41	24.60	24.35	24.31	24.58	24.45	24.13	24.65
H1	4.99	4.88	4.63	5.54	5.51	5.25	5.29	5.12	5.22	4.78	4.27	4.55	4.99	4.98	4.61	4.86	4.40	4.21
H2	3.71	3.67	3.79	4.74	4.56	4.54	4.06	3.71	3.31	4.70	4.30	3.68	4.54	4.38	4.43	4.47	3.82	4.15
H3	3.34	3.41	3.65	4.11	4.07	4.38	3.46	3.73	3.86	3.16	3.31	3.84	4.02	4.06	4.32	3.64	3.63	3.68
H4	4.60	3.27	3.88	5.05	4.10	4.86	4.32	4.26	4.15	4.02	3.25	4.17	5.20	4.21	4.82	4.66	4.22	4.39
H5	3.24	3.82	3.50	3.97	3.97	3.78	4.24	3.92	4.11	3.10	3.69	3.83	3.93	4.01	3.75	3.72	3.97	3.85
H6	4.22	4.69	4.91	4.10	3.92	5.94	4.57	4.90	4.22	4.43	4.76	5.08	4.12	4.15	5.88	4.32	4.84	4.09
H7	4.96	4.25	4.40	4.51	5.37	4.03	4.42	4.38	5.09	5.21	4.30	4.52	4.47	4.64	4.07	4.48	4.42	5.09
H8	6.24	6.04	5.66	6.83	7.02	6.89	6.05	5.33	6.14	4.60	4.83	5.94	7.03	7.21	6.93	5.47	5.44	5.11
H9	1.77	1.76	1.67	1.56	1.51	1.52	1.66	1.59	1.68	1.64	1.72	1.72	1.58	1.57	1.54	1.50	1.59	1.60
H10	2.22	2.27	2.21	2.11	2.05	2.00	2.19	2.17	2.15	2.40	2.11	2.25	2.10	2.05	2.02	2.13	2.17	2.18
H11	2.32	2.32	2.26	2.14	2.05	2.07	2.19	2.20	2.19	2.15	2.37	2.28	2.12	2.09	2.07	2.17	2.19	2.19

Supplementary Table 3. Chemical shifts (ppm) calculated by GIAO approach (B3LYP/6-311++G(2d,p)) for GlcNAc(6S)

	GlcNA	ac(46S)								M-Glc	NAc(46	S)						
Atom	${}^{4}C_{1}$			${}^{1}C_{4}$			${}^{2}S_{0}$			${}^{4}C_{1}$			${}^{1}C_{4}$			${}^{2}S_{0}$		
	gg	gt	tg	gg	gt	tg	gg	gt	tg	gg	gt	tg	gg	gt	tg	gg	gt	tg
C1	104.76	105.53	106.98	100.23	102.43	102.41	105.02	106.70	106.72	111.01	109.46	109.34	105.35	108.51	108.82	106.69	112.78	110.28
C2	67.15	64.62	63.00	52.55	55.50	59.90	67.56	58.74	62.20	58.39	57.49	56.19	53.28	56.90	60.35	63.13	58.50	67.86
C3	77.22	75.49	80.23	75.59	68.40	76.03	82.73	75.74	75.09	76.70	76.83	82.29	74.56	67.93	75.76	77.64	75.42	76.99
C4	78.01	86.00	91.32	84.92	77.75	79.01	85.17	85.54	91.21	85.04	86.16	91.71	81.04	78.53	78.47	86.78	85.38	89.85
C5	83.98	77.51	76.83	81.27	84.99	81.04	83.52	84.81	89.77	82.60	78.64	77.47	84.63	84.30	80.88	85.45	84.87	79.78
C6	72.68	74.48	75.84	77.65	79.46	69.87	79.60	79.39	77.02	71.20	75.15	75.00	72.68	74.81	69.15	79.48	79.56	75.70
C7	184.50	184.81	183.89	173.86	185.93	181.24	179.85	175.44	183.43	178.84	178.44	175.73	174.70	186.21	181.22	177.73	175.17	178.22
C8	24.52	24.06	24.03	24.52	26.89	24.46	24.04	24.55	24.29	24.27	24.55	24.53	24.35	27.09	24.43	25.05	24.58	24.49
H1	5.15	4.97	4.63	5.52	5.52	5.74	5.32	5.02	5.25	4.71	4.68	4.45	4.98	4.90	5.12	5.17	4.44	5.16
H2	3.69	3.60	3.73	4.47	3.91	4.19	4.45	4.49	3.31	4.19	4.28	4.55	4.46	3.93	4.06	4.33	4.47	3.56
H3	3.66	5.14	3.86	3.86	5.21	4.22	3.72	3.74	3.85	4.53	4.90	3.63	4.53	5.26	4.19	5.54	3.74	3.99
H4	5.42	3.58	4.56	5.02	4.39	5.61	5.30	4.69	4.79	4.15	3.54	4.71	5.59	4.48	5.58	6.42	4.66	4.72
H5	3.71	5.56	3.43	4.89	4.40	4.57	4.91	5.54	5.92	4.53	5.48	3.31	4.21	4.44	4.57	4.44	5.48	4.64
H6	4.92	4.90	4.81	4.24	4.12	5.63	5.28	4.93	4.61	5.13	5.09	4.79	4.14	4.20	5.51	4.34	4.77	4.76
H7	4.59	3.73	4.50	4.37	5.20	4.04	5.02	5.20	4.18	4.31	3.81	4.47	4.61	4.79	4.07	5.17	5.19	4.59
H8	6.38	6.44	5.88	6.39	5.53	5.31	5.47	4.44	6.58	5.07	4.90	4.67	6.74	5.58	5.28	5.51	4.45	5.77
H9	1.81	1.82	1.73	1.61	1.77	1.78	1.67	1.60	1.81	1.69	1.73	1.55	1.63	1.78	1.78	1.64	1.53	1.69
H10	2.25	2.21	2.20	2.03	1.76	2.14	2.24	2.22	2.26	2.15	2.12	2.16	2.06	1.82	2.13	2.12	2.20	2.09
H11	2.33	2.29	2.22	2.06	3.14	2.41	2.24	2.26	2.33	2.26	2.36	2.26	2.07	3.17	2.39	2.13	2.23	2.13

Supplementary Table 4. Chemical shifts (ppm) calculated by GIAO approach (B3LYP/6-311++G(2d,p)) for GlcNAc(46S)

	GalNA	ic II						,		M-Gal	NAc							
Atom	${}^{4}C_{1}$			${}^{1}C_{4}$			${}^{2}S_{0}$			${}^{4}C_{1}$			${}^{1}C_{4}$			${}^{2}S_{0}$		
	gg	gt	tg															
C1	107.61	107.80	107.12	100.53	102.48	104.36	104.64	106.10	107.42	109.99	110.06	108.17	107.27	109.16	110.27	112.74	112.45	111.88
C2	62.41	64.23	62.65	54.64	54.15	55.07	63.75	62.29	64.02	59.30	66.62	54.42	56.55	55.54	55.65	62.78	60.53	60.72
C3	78.92	78.73	77.19	72.65	76.81	79.42	72.89	72.15	75.23	84.62	75.70	79.41	73.41	75.82	79.59	71.49	82.17	81.74
C4	78.46	76.07	74.61	69.47	70.96	74.89	76.88	75.82	74.13	81.12	77.96	74.87	70.43	71.08	75.34	75.58	72.82	72.77
C5	78.45	82.35	78.54	83.86	78.42	79.00	83.40	84.42	83.35	81.14	85.08	79.33	83.89	84.94	78.83	87.38	87.08	82.78
C6	71.58	67.57	68.44	65.97	68.14	73.41	69.71	66.99	68.83	72.12	70.78	67.70	67.16	68.84	72.64	66.45	69.41	68.67
C7	183.50	183.47	182.75	173.92	173.75	173.12	182.02	181.03	182.28	180.58	176.29	175.65	173.09	173.58	173.41	177.40	179.98	179.97
C8	24.11	24.01	24.08	24.31	24.32	24.51	24.01	24.09	24.26	24.07	26.14	24.75	24.43	24.26	24.64	25.98	24.24	24.22
H1	4.63	4.58	4.45	5.25	5.34	5.15	5.21	5.20	5.08	4.48	4.23	4.35	4.61	4.75	4.51	4.55	4.39	4.27
H2	4.04	3.60	3.94	4.76	4.89	5.10	3.47	3.66	4.26	4.65	3.13	4.70	4.75	4.79	5.04	4.11	4.08	3.98
H3	3.33	3.36	3.51	4.03	3.99	4.08	3.60	3.76	3.87	3.38	4.01	3.29	3.79	3.95	4.04	4.42	3.79	3.83
H4	4.31	3.77	4.35	4.16	4.03	3.88	4.56	4.67	4.81	4.35	3.93	4.40	4.19	4.04	3.85	4.83	4.34	4.54
H5	3.41	3.65	3.91	4.32	4.53	4.46	4.32	4.39	4.50	3.31	3.69	3.90	4.13	4.53	4.44	4.29	4.13	4.28
H6	4.05	4.10	4.15	3.88	4.46	4.20	4.14	4.38	3.76	4.06	4.28	4.15	4.03	4.38	4.30	3.83	4.50	3.73
H7	4.34	3.66	4.33	4.67	4.20	5.31	4.10	3.67	4.81	4.36	4.11	4.28	4.45	4.37	5.27	4.20	3.69	4.57
H8	5.67	5.61	5.67	5.16	5.21	5.17	6.15	6.16	4.95	5.03	5.71	4.59	5.17	5.23	5.20	5.51	5.19	5.22
H9	1.74	1.73	1.72	1.51	1.51	1.46	1.76	1.73	1.68	1.60	1.57	1.55	1.49	1.51	1.47	1.57	1.65	1.62
H10	2.23	2.23	2.18	2.14	2.14	2.12	2.19	2.18	2.25	2.17	2.20	2.18	2.13	2.11	2.11	2.21	2.26	2.23
H11	2.24	2.26	2.24	2.16	2.16	2.21	2.23	2.23	2.31	2.20	2.21	2.23	2.16	2.16	2.21	2.21	2.26	2.26

Supplementary Table 5. Chemical shifts (ppm) calculated by GIAO approach (B3LYP/6-311++G(2d,p)) for GalNAc

	GalNA	ac(4S)					<u> </u>			M-Gal	NAc(4S)		<u> ()</u>			/	
Atom	${}^{4}C_{1}$			${}^{1}C_{4}$			2 S ₀			${}^{4}C_{1}$			${}^{1}C_{4}$			${}^{2}S_{0}$		
	gg	gt	tg	gg	gt	tg	gg	gt	tg	gg	gt	tg	gg	gt	tg	gg	gt	tg
C1	105.90	108.34	101.40	99.78	103.20	100.34	105.84	110.95	109.12	113.78	107.68	104.41	107.57	109.73	107.09	115.45	112.43	114.76
C2	67.50	62.66	60.46	63.22	57.31	59.54	63.18	62.13	60.87	58.12	58.97	54.89	57.02	57.94	59.37	65.03	63.96	60.99
C3	78.37	78.49	80.51	75.25	74.58	73.83	72.47	76.88	75.22	79.91	82.05	81.52	74.97	73.68	73.81	76.76	76.15	75.46
C4	79.72	82.55	77.33	78.15	82.68	76.58	80.68	84.12	79.98	80.69	78.23	77.24	72.48	82.50	76.55	80.91	83.49	80.22
C5	80.39	81.13	81.88	81.71	76.85	81.25	85.99	90.95	87.65	81.38	84.02	82.04	82.21	80.98	81.46	86.80	86.17	87.08
C6	68.57	68.39	65.28	64.38	68.26	76.92	68.20	72.74	67.43	68.61	69.03	65.23	69.59	68.97	76.38	66.28	69.87	66.76
C7	183.94	183.62	182.10	174.80	173.33	175.07	183.20	183.48	183.38	176.44	181.74	182.04	174.90	173.00	174.78	180.01	177.60	183.00
C8	24.31	24.09	24.96	24.20	24.44	24.39	23.96	24.49	24.39	24.46	25.18	25.08	24.15	24.44	24.30	24.41	24.52	24.49
H1	4.95	4.59	4.94	4.89	5.28	5.50	5.23	5.44	5.23	4.13	4.43	4.67	4.61	4.65	4.86	5.22	5.27	4.57
H2	3.53	4.03	4.00	4.16	4.79	4.53	3.69	4.47	4.50	4.48	4.03	4.26	4.53	4.78	4.41	4.15	3.99	4.43
H3	3.35	3.59	3.88	4.51	4.69	4.74	3.89	3.85	3.92	3.22	3.80	3.86	5.41	4.72	4.71	3.53	3.66	3.96
H4	4.86	4.78	5.21	5.17	4.80	4.60	5.47	5.05	5.24	4.89	4.95	5.20	4.89	4.77	4.58	4.86	5.19	5.27
H5	3.25	3.77	3.95	4.50	4.41	3.87	4.53	4.39	4.35	3.20	3.79	3.95	4.26	4.32	3.84	4.39	4.26	4.32
H6	4.25	3.69	4.27	3.69	5.55	5.62	4.08	4.13	4.15	4.31	3.82	4.24	3.96	5.29	5.59	3.88	3.49	4.13
H7	4.01	4.05	3.84	4.35	3.91	4.18	3.85	4.25	3.75	4.01	4.48	3.90	4.09	4.00	4.09	3.98	4.40	3.74
H8	5.66	5.97	5.38	5.34	5.21	5.08	6.51	6.11	5.88	4.53	5.17	5.43	5.30	5.29	5.07	5.84	5.78	5.91
H9	1.77	1.76	1.70	1.57	1.52	1.56	1.84	1.80	1.74	1.55	1.64	1.73	1.57	1.52	1.54	1.79	1.69	1.72
H10	2.22	2.18	2.31	2.11	2.04	2.07	2.19	2.22	2.27	2.14	2.28	2.28	2.10	2.05	2.08	2.14	2.06	2.24
H11	2.32	2.20	2.31	2.17	2.19	2.15	2.25	2.36	2.40	2.29	2.29	2.36	2.32	2.21	2.14	2.25	2.11	2.41

Supplementary Table 6. Chemical shifts (ppm) calculated by GIAO approach (B3LYP/6-311++G(2d,p)) for GalNAc(4S)

	GalNA	ac(6S)							J	M-Gal	NAc(6S)					/	
Atom	${}^{4}C_{1}$			${}^{1}C_{4}$			${}^{2}S_{0}$			${}^{4}C_{1}$			${}^{1}C_{4}$			${}^{2}S_{0}$		
	gg	gt	tg															
C1	104.71	104.63	107.79	100.34	103.03	103.26	104.28	104.87	106.38	110.07	108.22	108.83	108.32	109.85	109.83	109.15	110.01	110.31
C2	63.50	64.97	62.80	58.38	54.89	58.23	66.06	60.86	62.91	53.94	55.31	54.87	57.16	55.24	58.85	57.17	58.69	63.26
C3	78.89	78.58	77.32	75.48	75.27	78.10	74.69	80.49	72.79	81.96	81.26	79.42	75.26	76.21	78.11	79.13	81.41	76.43
C4	76.67	77.82	72.60	72.79	71.31	78.69	74.01	73.87	73.80	78.28	79.28	72.72	72.42	71.69	78.70	73.79	72.58	74.26
C5	80.80	86.17	79.38	82.51	83.91	81.82	80.45	80.78	83.79	80.58	86.80	79.94	84.50	83.78	82.09	82.51	82.64	81.69
C6	74.74	72.63	70.57	68.22	78.23	73.90	73.88	74.21	75.63	75.36	73.79	70.31	71.41	73.93	73.26	73.78	70.95	73.74
C7	184.52	185.13	182.71	174.47	173.47	172.94	180.40	181.76	180.47	177.87	178.28	175.47	172.63	173.29	172.90	173.95	181.65	176.79
C8	24.55	24.12	24.07	24.02	24.39	24.27	24.31	24.18	24.07	24.59	24.62	24.69	24.67	24.38	24.33	24.44	24.00	24.50
H1	4.90	4.78	4.46	5.34	5.39	5.11	5.27	5.12	5.12	4.77	4.60	4.32	4.59	4.67	4.50	4.40	4.64	4.99
H2	3.87	3.41	3.90	4.30	4.77	4.93	5.09	4.28	3.74	4.98	4.35	4.64	4.82	4.93	4.84	5.75	4.54	3.82
H3	3.28	3.38	3.42	4.08	3.98	4.53	3.68	3.94	3.70	3.09	3.30	3.23	3.81	3.85	4.48	3.61	3.92	3.53
H4	4.39	3.91	4.24	4.55	4.08	4.04	4.53	4.47	4.57	4.36	4.00	4.29	4.04	4.03	4.03	4.34	4.57	4.41
H5	3.47	4.20	3.64	4.29	4.43	3.73	4.10	4.60	4.40	3.40	4.51	3.65	4.16	4.42	3.70	4.08	4.83	4.15
H6	4.34	4.81	4.77	4.79	4.62	6.12	4.89	5.00	4.31	4.32	4.71	4.77	4.07	4.74	6.03	4.45	4.93	4.08
H7	5.41	4.03	4.12	4.33	5.19	4.11	4.93	4.38	5.65	5.42	4.17	4.08	4.96	4.49	4.14	5.11	4.40	5.64
H8	6.18	5.91	5.64	5.18	5.17	5.00	5.36	5.12	5.99	4.61	4.76	4.62	5.18	5.24	5.02	4.77	5.04	5.48
H9	1.82	1.81	1.71	1.53	1.51	1.45	1.67	1.65	1.70	1.63	1.65	1.55	1.49	1.49	1.45	1.46	1.60	1.64
H10	2.26	2.31	2.16	2.18	2.09	2.13	2.18	2.23	2.14	2.18	2.21	2.13	2.07	2.12	2.12	2.20	2.21	2.08
H11	2.32	2.32	2.20	2.18	2.15	2.15	2.30	2.26	2.18	2.38	2.38	2.23	2.19	2.18	2.15	2.22	2.33	2.08

Supplementary Table 7. Chemical shifts (ppm) calculated by GIAO approach (B3LYP/6-311++G(2d,p)) for GalNAc(6S)

	GalNA	ac(46S)								M-Gal	NAc(46	S)					,	
Atom	${}^{4}C_{1}$			${}^{1}C_{4}$			$^{2}S_{0}$			${}^{4}C_{1}$			${}^{1}C_{4}$			${}^{2}S_{0}$		
	gg	gt	tg	gg	gt	tg	gg	gt	tg	gg	gt	tg	gg	gt	tg	gg	gt	tg
C1	105.58	107.39	108.15	101.58	102.65	102.95	108.31	102.39	108.93	111.31	113.72	109.40	104.89	108.93	108.10	113.09	112.17	111.81
C2	63.70	60.96	61.91	53.63	54.81	57.25	61.40	67.50	67.68	55.87	55.12	54.44	63.54	54.96	58.11	66.85	63.96	62.38
C3	77.19	80.14	78.24	72.92	78.34	77.48	72.55	66.27	76.10	80.10	82.20	80.33	67.95	78.57	77.51	85.06	67.01	75.51
C4	77.83	80.31	83.84	74.80	74.34	84.57	79.51	75.88	83.26	78.69	79.98	84.17	76.97	74.69	84.70	84.65	80.01	79.02
C5	81.65	79.40	76.57	79.26	78.37	82.22	84.07	84.66	82.06	80.51	79.20	77.17	81.58	80.43	82.00	84.64	86.97	80.38
C6	73.48	67.34	72.53	69.61	74.66	72.26	68.65	74.81	70.83	74.12	67.50	72.13	69.63	72.86	71.46	68.63	77.31	74.68
C7	185.08	184.85	183.33	173.61	174.83	174.88	183.55	182.12	182.45	178.57	179.71	176.07	182.87	174.81	174.91	183.03	179.68	176.95
C8	24.42	24.36	23.94	24.43	24.27	23.98	24.95	25.32	23.71	24.57	24.37	24.80	26.69	24.19	24.03	24.63	25.09	24.83
H1	4.91	4.83	4.49	5.26	5.43	5.35	5.08	7.13	5.47	4.77	4.60	4.31	4.73	4.79	4.69	4.45	6.05	5.21
H2	3.97	4.72	4.02	5.08	4.84	4.76	4.20	2.93	4.30	4.76	5.22	4.77	4.04	4.87	4.65	4.38	2.90	3.95
H3	3.51	3.57	3.50	4.74	4.27	5.15	4.00	4.71	3.74	3.37	3.49	3.39	5.67	4.39	5.09	4.10	4.70	3.63
H4	5.03	4.68	5.21	4.97	5.28	4.69	5.25	5.52	4.85	4.94	4.66	5.17	5.13	5.12	4.63	5.28	5.75	5.44
H5	3.64	4.02	4.36	4.42	4.49	4.53	4.62	5.49	4.59	3.60	3.92	4.34	4.47	4.54	4.44	4.09	4.89	4.54
H6	4.42	4.70	4.05	4.27	4.51	4.80	4.27	4.02	4.59	4.53	4.57	4.00	4.28	4.61	4.78	4.60	4.70	3.86
H7	4.96	4.25	4.92	4.15	4.87	4.36	4.57	5.59	4.40	4.95	4.19	4.90	4.44	4.71	4.51	4.22	5.53	5.38
H8	6.53	6.72	5.96	5.30	5.29	5.19	5.98	5.28	6.04	4.61	5.16	4.71	5.37	5.29	5.21	5.39	5.54	6.04
H9	1.84	1.87	1.74	1.55	1.60	1.55	1.83	1.86	1.78	1.68	1.76	1.56	1.78	1.60	1.55	1.73	1.75	1.70
H10	2.21	2.20	2.19	2.15	2.06	2.16	2.29	2.01	2.22	2.11	2.10	2.17	2.26	2.06	2.16	2.20	2.02	2.01
H11	2.35	2.35	2.21	2.35	2.29	2.21	2.35	2.45	2.24	2.43	2.36	2.22	2.28	2.32	2.22	2.37	2.37	2.11

Supplementary Table 8. Chemical shifts (ppm) calculated by GIAO approach (B3LYP/6-311++G(2d,p)) for GalNAc(46S)

	1 1	2		<u>`1</u>		2	1_		· /1	//		
Atom	GlcUA			M-GlcU	A		IdoUA			M-IdoU	4	
	⁴ C ₁	${}^{1}C_{4}$	${}^{2}S_{0}$	${}^{4}C_{1}$	${}^{1}C_{4}$	${}^{2}\mathbf{S}_{0}$	${}^{4}C_{1}$	${}^{1}C_{4}$	2 S ₀	${}^{4}C_{1}$	${}^{1}C_{4}$	2 S ₀
C1	104.49	105.19	105.93	107.26	113.74	118.95	101.26	106.04	106.86	107.20	111.78	112.41
C2	83.30	72.76	82.67	74.19	76.58	79.82	85.08	74.57	83.91	80.65	75.46	83.66
C3	85.19	75.16	79.30	85.69	75.14	81.85	82.85	76.30	83.73	83.34	76.58	83.90
C4	79.25	81.87	87.00	79.56	78.08	80.77	78.29	79.06	80.41	78.21	79.15	80.32
C5	80.44	86.73	93.05	80.54	83.96	87.25	79.21	72.32	78.49	78.92	72.23	78.23
C6	192.07	193.81	196.03	192.32	186.62	191.77	193.01	193.79	191.01	193.66	193.81	191.45
H1	4.60	5.56	4.86	4.66	5.12	4.81	5.31	5.47	5.36	5.07	4.92	4.44
H2	3.27	3.77	3.60	4.01	3.57	4.61	3.17	3.83	3.48	3.56	3.72	3.42
H3	3.65	4.27	3.94	3.66	4.50	3.86	3.34	4.37	5.02	3.33	4.33	3.72
H4	3.59	4.84	4.28	3.57	5.62	4.96	3.71	3.82	3.48	3.74	3.79	4.20
H5	3.91	4.39	4.56	3.91	4.29	4.35	4.61	5.07	3.70	4.61	4.84	4.46

Supplementary Table 9. Chemical shifts (ppm) calculated by GIAO approach (B3LYP/6-311++G(2d,p)) for GlcUA and IdoUA

Atom	GlcUA(2S	5)		M-GlcUA	(2S)		IdoUA(2S)		M-IdoUA	(2S)	
	⁴ C ₁	${}^{1}C_{4}$	${}^{2}S_{0}$	${}^{4}C_{1}$	${}^{1}C_{4}$	${}^{2}S_{0}$	${}^{4}C_{1}$	${}^{1}C_{4}$	${}^{2}S_{0}$	${}^{4}C_{1}$	${}^{1}C_{4}$	${}^{2}S_{0}$
C1	103.72	105.83	106.25	110.67	109.82	115.82	102.09	104.27	108.09	107.12	110.27	111.57
C2	86.42	75.70	88.53	84.00	80.24	82.42	84.67	77.25	86.77	85.10	74.83	86.21
C3	87.11	78.57	75.59	88.53	70.84	88.20	82.85	76.37	79.86	86.57	72.49	79.92
C4	79.62	77.39	85.30	79.03	78.80	82.33	79.70	76.31	79.66	78.23	78.43	79.64
C5	79.40	82.66	93.78	77.73	80.89	88.91	77.31	71.00	79.44	77.14	71.08	78.78
C6	191.00	185.73	196.46	191.88	194.08	189.20	192.78	193.83	190.27	192.73	193.27	190.63
H1	4.83	5.65	5.44	4.39	4.88	4.76	5.04	5.53	5.73	5.00	5.00	5.12
H2	4.59	4.57	4.32	4.84	4.56	6.08	4.32	4.29	4.49	4.65	4.52	4.36
H3	3.99	4.28	3.92	4.02	5.38	3.34	3.49	4.63	4.01	3.76	4.82	4.00
H4	3.75	5.16	4.14	3.74	4.44	4.95	3.84	4.15	4.31	3.79	4.16	4.28
H5	3.87	4.52	4.78	3.76	4.43	4.42	4.58	5.08	4.53	4.58	4.68	4.38

Supplementary Table 10. Chemical shifts (ppm) calculated by GIAO approach (B3LYP/6-311++G(2d,p)) for GlcUA(2S) and IdoUA(2S)

Atom	GlcUA(38	5)		M-GlcUA	(3S)		IdoUA(3S)		M-IdoUA((3S)	
	${}^{4}C_{1}$	${}^{1}C_{4}$	${}^{2}S_{0}$	${}^{4}C_{1}$	${}^{1}C_{4}$	${}^{2}S_{0}$	⁴ C ₁	${}^{1}C_{4}$	${}^{2}S_{0}$	${}^{4}C_{1}$	${}^{1}C_{4}$	${}^{2}S_{0}$
C1	103.49	105.28	104.96	110.68	110.36	106.24	103.87	106.25	106.05	110.28	112.13	111.77
C2	82.17	78.24	81.88	79.69	74.85	90.16	83.13	74.24	81.60	80.64	75.47	81.29
C3	87.51	83.41	86.79	89.75	82.05	85.48	86.36	79.59	94.06	87.27	79.82	94.10
C4	77.31	78.82	86.61	76.71	78.74	85.48	76.30	72.66	79.54	76.02	72.97	79.37
C5	82.85	87.03	89.66	81.98	84.54	89.76	81.97	73.21	78.56	81.88	72.77	78.34
C6	191.62	189.17	195.35	192.53	185.16	195.66	190.14	193.92	191.60	190.89	193.83	191.87
H1	4.99	5.39	4.98	4.48	5.13	5.12	6.25	5.45	5.31	5.82	4.92	4.78
H2	3.54	3.86	3.94	3.72	4.05	3.36	3.44	3.81	3.88	3.51	3.68	3.84
H3	4.43	4.52	4.44	4.46	4.68	4.58	4.43	5.05	4.91	4.36	5.02	4.91
H4	4.25	5.22	4.65	4.19	5.57	4.33	3.66	4.72	4.18	3.64	4.74	4.15
H5	4.15	4.47	4.75	4.06	4.28	4.78	4.78	4.96	4.74	4.69	4.82	4.52

Supplementary Table 11. Chemical shifts (ppm) calculated by GIAO approach (B3LYP/6-311++G(2d,p)) for GlcUA(3S) and IdoUA(3S)

Atom	GlcUA(23	S)		M-GlcUA	(23S)		IdoUA(23	S)		M-IdoUA((23S)	
	⁴ C ₁	${}^{1}C_{4}$	${}^{2}S_{0}$	${}^{4}C_{1}$	${}^{1}C_{4}$	${}^{2}S_{0}$	${}^{4}C_{1}$	${}^{1}C_{4}$	${}^{2}S_{0}$	${}^{4}C_{1}$	${}^{1}C_{4}$	${}^{2}S_{0}$
C1	106.78	97.91	106.13	111.01	103.63	115.64	102.18	100.07	105.87	112.60	104.25	112.50
C2	84.17	86.55	84.78	85.23	82.00	78.13	82.63	81.15	82.10	83.06	77.75	80.38
C3	86.38	86.46	85.30	92.54	85.04	85.59	90.11	85.69	90.86	87.21	84.49	92.83
C4	83.87	75.96	87.79	78.06	74.16	85.13	82.20	75.22	83.26	77.51	73.83	82.71
C5	84.02	91.78	90.07	82.04	89.88	92.82	76.73	77.10	74.27	81.34	79.54	73.91
C6	187.08	188.90	194.69	191.39	183.77	178.05	193.37	195.60	190.97	191.41	195.75	192.10
H1	5.03	7.10	4.95	4.36	6.70	4.85	4.91	6.72	5.54	5.58	6.46	4.88
H2	4.39	4.67	4.96	4.71	4.94	6.06	4.35	4.45	4.31	4.53	4.45	4.98
H3	4.47	4.42	4.43	4.79	4.58	4.02	4.56	5.08	4.81	4.54	4.95	4.70
H4	3.91	5.00	4.80	4.19	5.46	5.04	4.24	5.81	4.54	3.78	5.97	4.73
H5	4.01	4.78	4.79	4.09	4.44	3.91	4.52	6.18	4.87	4.80	6.60	4.62

Supplementary Table 12. Chemical shifts (ppm) calculated by GIAO approach (B3LYP/6-311++G(2d,p)) for GlcUA(23S) and IdoUA(23S)

Atomic	GlcN	Ac						5	11	M-Glc	NAc	<u>`</u>	<u></u>				,	
Atomic	${}^{4}C_{1}$			${}^{1}C_{4}$			${}^{2}\mathbf{S}_{0}$			${}^{4}C_{1}$			${}^{1}C_{4}$			${}^{2}S_{0}$		
pan	gg	gt	tg	gg	gt	tg	gg	gt	tg	gg	gt	tg	gg	gt	tg	gg	gt	tg
H1-H2	5.54	5.59	5.55	1.94	1.69	1.17	0.04	0.02	0.20	6.11	6.24	5.77	1.07	1.66	1.19	0.16	0.08	0.02
H2-H3	7.69	7.68	7.92	2.41	2.32	1.91	2.64	2.59	6.54	7.44	7.41	8.02	1.77	2.56	1.94	2.18	2.63	4.34
H2-H8	0.82	0.94	0.93	6.45	6.80	7.31	2.07	2.80	6.84	7.62	7.57	7.50	6.72	6.08	7.34	2.58	2.98	8.29
H3-H4	6.13	5.89	5.73	2.16	2.65	2.41	6.95	6.89	7.01	6.19	5.96	5.75	2.37	2.80	2.42	6.93	6.97	7.25
H4-H5	6.42	6.69	6.15	0.10	0.69	1.22	6.64	6.80	4.70	6.58	6.82	6.26	0.97	0.36	1.23	7.26	6.80	5.18
H5-H6	1.03	6.70	7.07	3.56	8.48	3.77	2.86	2.52	4.33	2.29	6.66	7.13	2.43	8.12	3.80	1.55	2.68	4.19
H5-H7	2.51	2.56	4.12	1.22	6.09	7.83	1.15	7.21	7.85	1.77	2.42	4.09	1.67	2.85	7.85	2.00	7.36	7.71
	GlcN	Ac(4S)								M-Glc	NAc(4S	5)						
Atomic	${}^{4}C_{1}$			${}^{1}C_{4}$			${}^{2}S_{0}$			${}^{4}C_{1}$			${}^{1}C_{4}$			${}^{2}S_{0}$		
pan	gg	gt	tg	gg	gt	tg	gg	gt	tg	gg	gt	tg	gg	gt	tg	gg	gt	tg
H1-H2	5.59	5.67	5.15	1.81	1.62	1.62	3.18	0.57	1.39	6.25	5.95	5.98	1.17	1.51	1.67	0.10	0.03	0.01
H2-H3	8.18	8.13	8.25	2.45	2.29	2.48	8.69	2.52	7.79	7.88	8.03	6.22	2.19	2.49	2.54	5.46	4.42	4.68
H2-H8	0.83	0.99	4.44	1.77	6.63	6.32	0.17	2.90	0.19	7.98	8.48	0.13	2.24	6.36	6.26	2.32	2.77	2.22
H3-H4	7.22	6.93	7.21	2.42	3.21	3.27	5.69	6.70	7.50	7.29	6.96	6.53	2.68	3.56	3.32	7.80	7.41	7.74
H4-H5	7.32	7.48	6.81	0.31	1.12	1.13	1.65	6.89	4.71	7.49	7.59	7.40	0.59	1.00	1.13	7.10	6.26	5.88
H5-H6	1.19	6.96	6.73	3.71	6.28	8.26	1.94	2.53	7.56	2.46	7.04	6.13	2.15	2.77	8.29	1.27	2.76	7.50
H5-H7	2.71	2.91	3.33	1.40	8.86	3.21	2.07	7.15	2.28	1.90	2.91	1.91	2.66	8.30	3.25	2.86	7.39	2.39

Supplementary Table 13. ³J_{H-H} (Hz) calculated by GIAO approach (B3LYP/6-311++G(2d,p)) for GlcNAc and GlcNAc(4S)

	GlcN	GlcNAc(6S)							1	M-Glc	NAc(68	5)	,					
Atomic	${}^{4}C_{1}$			${}^{1}C_{4}$			${}^{2}S_{0}$			${}^{4}C_{1}$			${}^{1}C_{4}$			${}^{2}S_{0}$		
pan	gg	gt	tg	gg	gt	tg	gg	gt	tg	gg	gt	tg	gg	gt	tg	gg	gt	tg
H1-H2	5.14	5.74	5.52	1.98	1.58	1.08	3.01	0.13	2.00	6.36	6.08	5.99	1.84	1.59	1.11	2.27	0.14	0.01
H2-H3	7.61	7.42	8.08	2.58	2.59	2.05	8.99	3.42	8.41	7.37	7.84	6.07	2.62	2.56	2.08	0.74	2.64	4.63
H2-H8	0.05	0.16	1.11	6.92	7.11	7.17	0.47	2.04	0.21	7.21	4.23	0.02	6.79	6.48	7.17	5.78	2.88	8.49
H3-H4	6.85	6.07	6.13	2.37	2.93	2.82	4.72	6.95	6.51	6.53	5.92	6.10	2.50	2.97	2.84	3.11	6.93	7.48
H4-H5	6.62	7.41	6.44	0.23	0.59	1.54	0.57	5.97	2.44	6.86	7.42	6.76	0.34	0.59	1.54	7.90	7.17	5.16
H5-H6	2.88	4.60	7.73	2.06	2.15	8.51	0.62	8.32	2.36	1.17	5.65	5.51	1.51	1.92	8.51	2.66	6.54	2.38
H5-H7	1.31	0.54	4.39	2.37	7.84	3.99	5.00	3.33	7.78	3.10	1.06	5.47	3.11	7.68	4.04	1.79	1.31	7.88
	GlcNAc(46S)																	
	GlcN	Ac(46S))							M-Glo	NAc(46	δS)						
Atomic	$\frac{\text{GlcN}}{{}^{4}\text{C}_{1}}$	Ac(46S))	${}^{1}C_{4}$			${}^{2}S_{0}$			M -Glc ${}^{4}C_{1}$	NAc(46	5S)	${}^{1}C_{4}$			${}^{2}S_{0}$		
Atomic pair	$\frac{\text{GlcN}}{{}^{4}\text{C}_{1}}$	fAc(46S)) tg	¹ C ₄ gg	gt	tg	² S ₀ gg	gt	tg	M-Glo ⁴ C ₁ gg	eNAc(46	5S) tg	¹ C ₄ gg	gt	tg	² S ₀ gg	gt	tg
Atomic pair H1-H2	$\frac{\text{GlcN}}{{}^{4}\text{C}_{1}}$ gg 5.14	gt 5.85) tg 5.76	¹ C ₄ gg 1.95	gt 1.73	tg 1.32	² S ₀ gg 3.13	gt 4.64	tg 4.50	M-Glc ⁴ C ₁ gg 6.74	eNAc(46 gt 6.67	tg 6.46	¹ C ₄ gg 1.87	gt 1.69	tg 1.33	² S ₀ gg 5.05	gt 4.72	tg 0.74
Atomic pair H1-H2 H2-H3	$ GlcN \frac{^{4}C_{1}}{gg} 5.14 7.85 $	gt 5.85 8.03) tg 5.76 8.09	¹ C ₄ gg 1.95 2.61	gt 1.73 3.37	tg 1.32 2.35	² S ₀ gg 3.13 8.55	gt 4.64 9.02	tg 4.50 9.08	M-Glo ⁴ C ₁ gg 6.74 8.05	eNAc(46 gt 6.67 8.00	5S) tg 6.46 7.65	¹ C ₄ gg 1.87 2.62	gt 1.69 3.35	tg 1.33 2.37	² S ₀ gg 5.05 8.99	gt 4.72 9.07	tg 0.74 6.93
Atomic pair H1-H2 H2-H3 H2-H8	GlcN ⁴ C ₁ gg 5.14 7.85 0.14	gt 5.85 8.03 0.10) tg 5.76 8.09 0.58	¹ C ₄ gg 1.95 2.61 7.13	gt 1.73 3.37 3.86	tg 1.32 2.35 0.25	² S ₀ gg 3.13 8.55 0.92	gt 4.64 9.02 8.57	tg 4.50 9.08 0.07	M-Glo ⁴ C ₁ gg 6.74 8.05 4.88	gt 6.67 8.00 5.74	tg 6.46 7.65 6.96	¹ C ₄ gg 1.87 2.62 6.40	gt 1.69 3.35 4.04	tg 1.33 2.37 0.29	² S ₀ gg 5.05 8.99 6.23	gt 4.72 9.07 8.70	tg 0.74 6.93 0.16
Atomic pair H1-H2 H2-H3 H2-H8 H3-H4	GlcN ⁴ C ₁ gg 5.14 7.85 0.14 7.27	gt 5.85 8.03 0.10 6.74) tg 5.76 8.09 0.58 5.60	¹ C ₄ gg 1.95 2.61 7.13 2.36	gt 1.73 3.37 3.86 3.30	tg 1.32 2.35 0.25 3.23	² S ₀ gg 3.13 8.55 0.92 2.82	gt 4.64 9.02 8.57 5.06	tg 4.50 9.08 0.07 5.05	M-Glo ⁴ C ₁ gg 6.74 8.05 4.88 7.22	gt 6.67 8.00 5.74 6.71	tg 6.46 7.65 6.96 6.16	¹ C ₄ gg 1.87 2.62 6.40 2.90	gt 1.69 3.35 4.04 3.33	tg 1.33 2.37 0.29 3.24	² S ₀ gg 5.05 8.99 6.23 4.58	gt 4.72 9.07 8.70 5.11	tg 0.74 6.93 0.16 7.62
Atomic pair H1-H2 H2-H3 H2-H8 H3-H4 H4-H5	GlcN ⁴ C ₁ gg 5.14 7.85 0.14 7.27 7.48	gt 5.85 8.03 0.10 6.74 7.88) tg 5.76 8.09 0.58 5.60 6.54	¹ C ₄ gg 1.95 2.61 7.13 2.36 0.46	gt 1.73 3.37 3.86 3.30 0.68	tg 1.32 2.35 0.25 3.23 1.93	² S ₀ gg 3.13 8.55 0.92 2.82 1.03	gt 4.64 9.02 8.57 5.06 1.10	tg 4.50 9.08 0.07 5.05 0.58	M-Glo ⁴ C ₁ gg 6.74 8.05 4.88 7.22 8.16	gt 6.67 8.00 5.74 6.71 7.94	tg 6.46 7.65 6.96 6.16 6.98	¹ C ₄ gg 1.87 2.62 6.40 2.90 0.79	gt 1.69 3.35 4.04 3.33 0.70	tg 1.33 2.37 0.29 3.24 1.94	² S ₀ gg 5.05 8.99 6.23 4.58 0.88	gt 4.72 9.07 8.70 5.11 1.16	tg 0.74 6.93 0.16 7.62 4.72
Atomic pair H1-H2 H2-H3 H2-H8 H3-H4 H4-H5 H5-H6	GlcN ⁴ C ₁ gg 5.14 7.85 0.14 7.27 7.48 3.40	gt 5.85 8.03 0.10 6.74 7.88 3.05) tg 5.76 8.09 0.58 5.60 6.54 7.82	¹ C ₄ gg 1.95 2.61 7.13 2.36 0.46 3.48	gt 1.73 3.37 3.86 3.30 0.68 2.57	tg 1.32 2.35 0.25 3.23 1.93 9.21	² S ₀ gg 3.13 8.55 0.92 2.82 1.03 0.58	gt 4.64 9.02 8.57 5.06 1.10 8.94	tg 4.50 9.08 0.07 5.05 0.58 0.58	M-Glo ⁴ C ₁ gg 6.74 8.05 4.88 7.22 8.16 1.13	gt 6.67 8.00 5.74 6.71 7.94 2.71	tg 6.46 7.65 6.96 6.16 6.98 7.56	¹ C ₄ gg 1.87 2.62 6.40 2.90 0.79 1.49	gt 1.69 3.35 4.04 3.33 0.70 2.69	tg 1.33 2.37 0.29 3.24 1.94 9.23	² S ₀ gg 5.05 8.99 6.23 4.58 0.88 0.73	gt 4.72 9.07 8.70 5.11 1.16 8.90	tg 0.74 6.93 0.16 7.62 4.72 4.67

Supplementary Table 14. ³J_{H-H} (Hz) calculated by GIAO approach (B3LYP/6-311++G(2d,p)) for GlcNAc(6S) and GlcNAc(46S)

Atomic	GalN	Ac						•		M-Ga	NAc					· · ·		
Atomic	${}^{4}C_{1}$			${}^{1}C_{4}$			${}^{2}S_{0}$			${}^{4}C_{1}$			${}^{1}C_{4}$			${}^{2}S_{0}$		
pan	gg	gt	tg	gg	gt	tg	gg	gt	tg	gg	gt	tg	gg	gt	tg	gg	gt	tg
H1-H2	5.68	5.70	5.53	1.99	1.46	1.17	2.75	3.37	2.03	5.73	5.33	6.19	1.29	1.46	1.27	5.14	0.14	0.15
H2-H3	7.52	7.66	7.87	3.07	2.94	3.14	8.22	8.42	8.04	7.82	7.54	7.84	3.07	3.21	3.16	8.74	4.32	4.29
H2-H8	0.86	1.08	0.88	6.44	7.17	8.81	0.17	0.10	7.27	1.58	1.10	8.20	7.37	7.11	9.15	3.06	3.73	3.61
H3-H4	3.14	3.08	3.90	4.56	3.70	2.61	3.95	4.94	3.57	2.61	3.22	3.72	3.95	3.45	2.57	4.74	2.94	3.31
H4-H5	1.91	1.49	2.08	7.28	6.07	5.23	7.31	6.55	6.51	1.43	1.23	1.88	6.88	6.49	5.23	7.31	5.14	5.50
H5-H6	1.00	6.96	6.40	3.13	8.19	3.74	1.65	8.32	4.45	1.25	5.87	6.49	1.77	8.43	3.95	3.02	7.16	5.26
H5-H7	2.81	2.60	5.65	1.43	6.30	8.37	2.08	4.39	7.88	2.64	1.23	5.49	2.78	3.23	8.41	1.10	2.68	7.78
	GalN	Ac(4S)								M-Ga	NAc(4S	5)						
Atomic	$\frac{\text{GalN}}{{}^{4}\text{C}_{1}}$	Ac(4S)		${}^{1}C_{4}$			${}^{2}S_{0}$			M-Gal	NAc(4S	5)	${}^{1}C_{4}$			${}^{2}S_{0}$		
Atomic pair	$\frac{\text{GalN}}{{}^{4}\text{C}_{1}}$	Ac(4S)	tg	¹ C ₄ gg	gt	tg	² S ₀ gg	gt	tg	$\frac{M-Ga}{^4C_1}$ gg	lNAc(4S	S) tg	¹ C ₄ gg	gt	tg	² S ₀ gg	gt	tg
Atomic pair H1-H2	$\frac{\text{GalN}}{{}^{4}\text{C}_{1}}$ $\frac{\text{gg}}{4.78}$	Ac(4S) gt 5.49	tg 5.27	¹ C ₄ gg 1.11	gt 0.82	tg 1.10	² S ₀ gg 2.92	gt 2.05	tg 2.81	M-Gal 4C1 gg 6.13	INAc(48 gt 5.54	5) tg 5.79	¹ C ₄ gg 1.34	gt 0.75	tg 1.10	² S ₀ gg 0.60	gt 0.76	tg 3.02
Atomic pair H1-H2 H2-H3	$ GalN \frac{^{4}C_{1}}{gg} 4.78 7.24 $	gt 5.49 8.06	tg 5.27 8.50	¹ C ₄ gg 1.11 2.82	gt 0.82 2.55	tg 1.10 2.06	² S ₀ gg 2.92 8.48	gt 2.05 8.16	tg 2.81 8.23	M-Gal ⁴ C ₁ gg 6.13 7.81	gt 5.54 8.23	5) tg 5.79 8.21	¹ C ₄ gg 1.34 2.56	gt 0.75 2.82	tg 1.10 2.06	² S ₀ gg 0.60 7.22	gt 0.76 7.58	tg 3.02 8.25
Atomic pair H1-H2 H2-H3 H2-H8	GalN $ $	gt 5.49 8.06 0.58	tg 5.27 8.50 6.61	¹ C ₄ gg 1.11 2.82 5.90	gt 0.82 2.55 7.60	tg 1.10 2.06 4.05	² S ₀ gg 2.92 8.48 0.39	gt 2.05 8.16 4.37	tg 2.81 8.23 7.32	M-Gal ⁴ C ₁ gg 6.13 7.81 7.00	gt 5.54 8.23 6.81	5) tg 5.79 8.21 7.07	¹ C ₄ gg 1.34 2.56 8.16	gt 0.75 2.82 7.86	tg 1.10 2.06 4.22	² S ₀ gg 0.60 7.22 0.12	gt 0.76 7.58 0.09	tg 3.02 8.25 7.69
Atomic pair H1-H2 H2-H3 H2-H8 H3-H4	$ GalN 4C_1gg4.787.240.472.74 $	gt 5.49 8.06 0.58 2.71	tg 5.27 8.50 6.61 3.71	¹ C ₄ gg 1.11 2.82 5.90 3.81	gt 0.82 2.55 7.60 3.43	tg 1.10 2.06 4.05 3.70	² S ₀ gg 2.92 8.48 0.39 2.95	gt 2.05 8.16 4.37 0.89	tg 2.81 8.23 7.32 1.34	M-Gal ⁴ C ₁ gg 6.13 7.81 7.00 2.98	gt 5.54 8.23 6.81 3.57	5) tg 5.79 8.21 7.07 3.68	¹ C ₄ gg 1.34 2.56 8.16 4.89	gt 0.75 2.82 7.86 3.08	tg 1.10 2.06 4.22 3.68	² S ₀ gg 0.60 7.22 0.12 1.50	gt 0.76 7.58 0.09 2.02	tg 3.02 8.25 7.69 1.41
Atomic pair H1-H2 H2-H3 H2-H8 H3-H4 H4-H5	$ GalN \frac{4C_1}{9g} 4.78 7.24 0.47 2.74 0.83 $	gt 5.49 8.06 0.58 2.71 1.92	tg 5.27 8.50 6.61 3.71 2.85	¹ C ₄ gg 1.11 2.82 5.90 3.81 6.40	gt 0.82 2.55 7.60 3.43 5.46	tg 1.10 2.06 4.05 3.70 5.63	² S ₀ gg 2.92 8.48 0.39 2.95 7.12	gt 2.05 8.16 4.37 0.89 3.80	tg 2.81 8.23 7.32 1.34 4.08	M-Gal ⁴ C ₁ gg 6.13 7.81 7.00 2.98 0.98	gt 5.54 8.23 6.81 3.57 2.48	tg 5.79 8.21 7.07 3.68 2.89	¹ C ₄ gg 1.34 2.56 8.16 4.89 6.63	gt 0.75 2.82 7.86 3.08 5.75	tg 1.10 2.06 4.22 3.68 5.58	² S ₀ gg 0.60 7.22 0.12 1.50 4.41	gt 0.76 7.58 0.09 2.02 5.70	tg 3.02 8.25 7.69 1.41 4.13
Atomic pair H1-H2 H2-H3 H2-H8 H3-H4 H4-H5 H5-H6	$\begin{array}{c} GalN \\ \begin{tabular}{c} & \\ \hline \end{tabular} \\ \hline tabu$	gt 5.49 8.06 0.58 2.71 1.92 2.71	tg 5.27 8.50 6.61 3.71 2.85 6.84	¹ C ₄ gg 1.11 2.82 5.90 3.81 6.40 2.66	gt 0.82 2.55 7.60 3.43 5.46 8.55	tg 1.10 2.06 4.05 3.70 5.63 6.09	² S ₀ gg 2.92 8.48 0.39 2.95 7.12 3.03	gt 2.05 8.16 4.37 0.89 3.80 1.48	tg 2.81 8.23 7.32 1.34 4.08 7.42	M-Gal ⁴ C ₁ gg 6.13 7.81 7.00 2.98 0.98 1.65	gt 5.54 8.23 6.81 3.57 2.48 2.49	tg 5.79 8.21 7.07 3.68 2.89 6.83	¹ C ₄ gg 1.34 2.56 8.16 4.89 6.63 1.01	gt 0.75 2.82 7.86 3.08 5.75 7.79	tg 1.10 2.06 4.22 3.68 5.58 6.03	² S ₀ gg 0.60 7.22 0.12 1.50 4.41 4.69	gt 0.76 7.58 0.09 2.02 5.70 2.69	tg 3.02 8.25 7.69 1.41 4.13 7.51

Supplementary Table 15. ³J_{H-H} (Hz) calculated by GIAO approach (B3LYP/6-311++G(2d,p)) for GlcNAc and GalNAc(4S)

	GalN	Ac(6S)				-	2		1	M-Gal	NAc(6S	5)	,		,		,	
Atomic	${}^{4}C_{1}$			${}^{1}C_{4}$			${}^{2}S_{0}$			${}^{4}C_{1}$			${}^{1}C_{4}$			${}^{2}S_{0}$		
pan	gg	gt	tg	gg	gt	tg	gg	gt	tg	gg	gt	tg	gg	gt	tg	gg	gt	tg
H1-H2	5.24	5.82	5.63	1.13	1.55	0.86	3.88	3.02	2.55	6.31	6.93	6.29	1.36	1.47	0.93	5.57	5.83	0.78
H2-H3	7.23	7.33	7.69	3.44	3.25	3.31	7.46	8.05	8.10	7.16	7.18	7.62	3.16	3.22	3.32	7.46	8.48	7.00
H2-H8	0.08	0.22	0.83	5.97	6.66	6.80	0.65	3.60	0.20	7.87	7.14	7.89	8.08	7.73	7.00	8.14	3.39	0.13
H3-H4	2.86	3.15	3.73	3.75	3.58	2.37	6.98	3.77	3.90	2.67	3.19	3.61	3.72	3.31	2.39	6.96	5.63	3.19
H4-H5	1.78	1.79	1.94	6.59	6.88	4.99	6.33	7.02	6.30	1.38	1.66	1.81	6.93	6.73	5.03	6.40	6.89	5.46
H5-H6	1.93	4.67	7.89	2.07	2.47	8.39	1.13	9.06	2.22	1.47	3.06	7.88	1.98	2.06	8.41	1.12	9.55	3.09
H5-H7	2.35	0.64	4.14	2.50	8.19	3.37	4.39	3.87	7.52	2.94	0.27	4.18	2.86	7.88	3.40	4.41	5.48	8.26
	GalN	Ac(46S)							M-Gal	NAc(46	S)						
Atomic	$\frac{\text{GalN}}{{}^{4}\text{C}_{1}}$	Ac(46S)	${}^{1}C_{4}$			${}^{2}S_{0}$			M-Gal ${}^{4}C_{1}$	NAc(46	S)	${}^{1}C_{4}$			${}^{2}S_{0}$		
Atomic pair	$\frac{\text{GalN}}{{}^{4}\text{C}_{1}}$	Ac(46S) tg	¹ C ₄ gg	gt	tg	² S ₀ gg	gt	tg	M-Gal ⁴ C ₁ gg	NAc(46	rS) tg	¹ C ₄ gg	gt	tg	² S ₀ gg	gt	tg
Atomic pair H1-H2	$ GalN \frac{^{4}C_{1}}{gg} 5.38 $	gt 5.49) tg 5.39	¹ C ₄ gg 1.31	gt 1.60	tg 1.37	² S ₀ gg 4.96	gt 5.65	tg 0.63	M-Gal ⁴ C ₁ gg 6.35	NAc(46	tg 6.07	¹ C ₄ gg 1.55	gt 1.48	tg 1.43	² S ₀ gg 7.09	gt 4.04	tg 1.61
Atomic pair H1-H2 H2-H3	GalN $ $	Ac(46S gt 5.49 7.99) tg 5.39 8.43	¹ C ₄ gg 1.31 2.47	gt 1.60 3.35	tg 1.37 3.55	² S ₀ gg 4.96 8.19	gt 5.65 8.45	tg 0.63 8.07	M-Gal ⁴ C ₁ gg 6.35 7.36	NAc(46 gt 6.23 8.02	S) tg 6.07 8.40	¹ C ₄ gg 1.55 3.79	gt 1.48 3.47	tg 1.43 3.65	² S ₀ gg 7.09 7.32	gt 4.04 8.56	tg 1.61 7.84
Atomic pair H1-H2 H2-H3 H2-H8	GalN $ $	Ac(46S gt 5.49 7.99 0.21) tg 5.39 8.43 0.64	¹ C ₄ gg 1.31 2.47 8.94	gt 1.60 3.35 7.25	tg 1.37 3.55 6.05	² S ₀ gg 4.96 8.19 4.17	gt 5.65 8.45 5.24	tg 0.63 8.07 0.38	M-Gal ⁴ C ₁ gg 6.35 7.36 6.32	gt 6.23 8.02 2.50	S) tg 6.07 8.40 7.14	¹ C ₄ gg 1.55 3.79 0.77	gt 1.48 3.47 7.91	tg 1.43 3.65 6.06	² S ₀ gg 7.09 7.32 10.48	gt 4.04 8.56 5.82	tg 1.61 7.84 0.02
Atomic pair H1-H2 H2-H3 H2-H8 H3-H4	GalN ⁴ C ₁ gg 5.38 7.57 0.14 2.90	Ac(46S gt 5.49 7.99 0.21 1.70) tg 5.39 8.43 0.64 3.36	¹ C ₄ gg 1.31 2.47 8.94 4.76	gt 1.60 3.35 7.25 4.00	tg 1.37 3.55 6.05 2.89	² S ₀ gg 4.96 8.19 4.17 3.00	gt 5.65 8.45 5.24 7.28	tg 0.63 8.07 0.38 1.40	M-Gal ⁴ C ₁ gg 6.35 7.36 6.32 2.87	gt 6.23 8.02 2.50 1.72	S) tg 6.07 8.40 7.14 3.34	¹ C ₄ gg 1.55 3.79 0.77 4.26	gt 1.48 3.47 7.91 3.56	tg 1.43 3.65 6.06 2.86	² S ₀ gg 7.09 7.32 10.48 3.15	gt 4.04 8.56 5.82 5.49	tg 1.61 7.84 0.02 2.97
Atomic pair H1-H2 H2-H3 H2-H8 H3-H4 H4-H5	GalN ⁴ C ₁ gg 5.38 7.57 0.14 2.90 2.21	Ac(46S gt 5.49 7.99 0.21 1.70 1.58) tg 5.39 8.43 0.64 3.36 2.97	¹ C ₄ gg 1.31 2.47 8.94 4.76 7.59	gt 1.60 3.35 7.25 4.00 7.19	tg 1.37 3.55 6.05 2.89 5.95	² S ₀ gg 4.96 8.19 4.17 3.00 6.93	gt 5.65 8.45 5.24 7.28 7.42	tg 0.63 8.07 0.38 1.40 4.95	M-Gal ⁴ C ₁ gg 6.35 7.36 6.32 2.87 1.84	gt 6.23 8.02 2.50 1.72 1.39	S) tg 6.07 8.40 7.14 3.34 2.81	¹ C ₄ gg 1.55 3.79 0.77 4.26 7.08	gt 1.48 3.47 7.91 3.56 6.90	tg 1.43 3.65 6.06 2.86 5.95	² S ₀ gg 7.09 7.32 10.48 3.15 6.43	gt 4.04 8.56 5.82 5.49 7.79	tg 1.61 7.84 0.02 2.97 6.96
Atomic pair H1-H2 H2-H3 H2-H8 H3-H4 H4-H5 H5-H6	GalN ⁴ C ₁ gg 5.38 7.57 0.14 2.90 2.21 2.26	gt 5.49 7.99 0.21 1.70 1.58 6.63) tg 5.39 8.43 0.64 3.36 2.97 6.23	¹ C ₄ gg 1.31 2.47 8.94 4.76 7.59 1.86	gt 1.60 3.35 7.25 4.00 7.19 3.58	tg 1.37 3.55 6.05 2.89 5.95 7.97	² S ₀ gg 4.96 8.19 4.17 3.00 6.93 3.94	gt 5.65 8.45 5.24 7.28 7.42 9.16	tg 0.63 8.07 0.38 1.40 4.95 7.09	M-Gal ⁴ C ₁ gg 6.35 7.36 6.32 2.87 1.84 1.71	gt 6.23 8.02 2.50 1.72 1.39 7.47	S) tg 6.07 8.40 7.14 3.34 2.81 6.14	¹ C ₄ gg 1.55 3.79 0.77 4.26 7.08 0.94	gt 1.48 3.47 7.91 3.56 6.90 2.94	tg 1.43 3.65 6.06 2.86 5.95 8.12	² S ₀ gg 7.09 7.32 10.48 3.15 6.43 4.13	gt 4.04 8.56 5.82 5.49 7.79 7.30	tg 1.61 7.84 0.02 2.97 6.96 4.45

Supplementary Table 16. ³J_{H-H} (Hz) calculated by GIAO approach (B3LYP/6-311++G(2d,p)) for GlcNAc(6S) and GlcNAc(46S)

Atomic pair	GlcUA		`	M-GlcUA			IdoUA			M-IdoUA		
	${}^{4}C_{1}$	${}^{1}C_{4}$	${}^{2}S_{0}$	${}^{4}C_{1}$	${}^{1}C_{4}$	${}^{2}S_{0}$	${}^{4}C_{1}$	${}^{1}C_{4}$	${}^{2}S_{0}$	${}^{4}C_{1}$	${}^{1}C_{4}$	${}^{2}S_{0}$
H1-H2	4.81	1.69	4.26	5.45	0.47	3.30	5.01	1.08	2.94	5.14	1.17	3.04
Н2-Н3	6.25	2.87	8.01	6.32	2.36	7.57	6.12	2.23	7.62	6.20	2.26	7.67
H3-H4	6.00	3.01	3.85	5.97	3.67	4.16	7.03	3.01	2.51	7.11	2.94	2.51
H4-H5	6.94	1.10	0.29	6.96	2.36	0.04	5.64	1.38	3.24	5.54	1.42	3.32
Atomic pair	GlcUA(2S)			M-GlcUA(2	2S)		IdoUA(2S)			M-IdoUA(2	S)	
	${}^{4}C_{1}$	${}^{1}C_{4}$	${}^{2}\mathbf{S}_{0}$	${}^{4}C_{1}$	${}^{1}C_{4}$	${}^{2}S_{0}$	${}^{4}C_{1}$	${}^{1}C_{4}$	${}^{2}S_{0}$	${}^{4}C_{1}$	${}^{1}C_{4}$	${}^{2}S_{0}$
H1-H2	4.82	0.82	3.46	5.22	1.69	4.05	5.61	1.12	2.94	5.24	1.70	3.01
H2-H3	7.00	2.66	8.00	6.64	3.13	8.86	7.44	2.17	7.60	6.38	2.87	7.55
Н3-Н4	6.40	3.68	5.43	6.55	2.99	4.67	6.91	2.40	2.61	7.23	2.91	2.87
H4-H5	7.08	2.69	1.02	7.08	1.84	0.16	5.70	1.75	3.12	5.48	2.13	3.40
Atomic pair	GlcUA(3S)			M-GlcUA(3	S)		IdoUA(3S)			M-IdoUA(3	S)	
	${}^{4}C_{1}$	${}^{1}C_{4}$	${}^{2}\mathbf{S}_{0}$	${}^{4}C_{1}$	${}^{1}C_{4}$	${}^{2}S_{0}$	${}^{4}C_{1}$	${}^{1}C_{4}$	${}^{2}S_{0}$	${}^{4}C_{1}$	${}^{1}C_{4}$	${}^{2}S_{0}$
H1-H2	5.16	0.88	1 17	5 54	0.63	3.08	2.92	1 11	2 27	4 23	1 10	2.40
H2 H3		0.00	4.47	5.54	0.05	5.90	5.05	1.11	2.21	7.23	1.18	2110
112-113	5.67	2.74	8.85	5.24	2.75	8.82	7.71	2.49	7.60	7.62	2.50	7.71
H3-H4	5.67 5.41	2.74 3.56	8.85 2.70	5.24 5.39	2.75 3.93	8.82 4.14	7.71 8.34	2.49 3.49	7.60 3.53	7.62 8.45	1.18 2.50 3.45	7.71 3.59
H3-H4 H4-H5	5.67 5.41 7.07	2.74 3.56 2.04	8.85 2.70 0.51	5.24 5.39 7.20	0.03 2.75 3.93 1.98	3.38 8.82 4.14 0.70	3.83 7.71 8.34 4.74	2.49 3.49 1.49	2.27 7.60 3.53 3.65	7.62 8.45 4.72	1.18 2.50 3.45 1.50	7.71 3.59 3.75
H2-H3 H3-H4 H4-H5 Atomic pair	5.67 5.41 7.07 GlcUA(23S)	2.74 3.56 2.04	4.47 8.85 2.70 0.51	5.24 5.39 7.20 M-GlcUA(2	2.75 3.93 1.98 (3S)	3.38 8.82 4.14 0.70	7.71 8.34 4.74 IdoUA(23S)	2.49 3.49 1.49	7.60 3.53 3.65	7.62 8.45 4.72 M-IdoUA(2:	1.18 2.50 3.45 1.50 3S)	7.71 3.59 3.75
H3-H4 H4-H5 Atomic pair	5.67 5.41 7.07 GlcUA(23S) ⁴ C ₁	2.74 3.56 2.04		5.24 5.39 7.20 M-GlcUA(2 ⁴ C ₁	2.75 3.93 1.98 3S) ¹ C ₄	3.98 8.82 4.14 0.70 ² S ₀	3.83 7.71 8.34 4.74 IdoUA(23S) ⁴ C1	2.49 3.49 1.49	$ \begin{array}{r} 2.27 \\ \overline{} \\ \overline{} \\ \overline{} \\ \overline{} \\ \overline{} \\ $ \overline{} \\	7.62 8.45 4.72 M-IdoUA(2. ⁴ C ₁	1.18 2.50 3.45 1.50 3S)	7.71 3.59 3.75 $^{2}S_{0}$
H2-H3 H3-H4 H4-H5 Atomic pair H1-H2	5.67 5.41 7.07 GlcUA(23S) ⁴ C ₁ 4.99	$ \begin{array}{r} 2.74 \\ 3.56 \\ 2.04 \\ 1.06 \\ \end{array} $	$ \begin{array}{r} $	5.24 5.39 7.20 M-GlcUA(2 ⁴ C ₁ 5.55	$ \begin{array}{r} 2.75 \\ 3.93 \\ 1.98 \\ 3S) \\ ^{1}C_{4} \\ 1.05 \\ \hline 1.05 \\ \hline $		3.83 7.71 8.34 4.74 IdoUA(23S) ⁴ C ₁ 6.04	$ \begin{array}{c} 2.49\\ 3.49\\ 1.49\\ ^{1}C_{4}\\ 1.55\\ \end{array} $	$ \begin{array}{c} 2.27 \\ \overline{} \\ \overline{} \\ \overline{} \\ \overline{} \\ \overline{} \\ \overline{} \\ $	7.62 8.45 4.72 M-IdoUA(2 ⁴ C ₁ 4.82	$ \begin{array}{r} 1.18 \\ 2.50 \\ 3.45 \\ 1.50 \\ 38) \\ ^{1}C_{4} \\ 1.53 \\ \end{array} $	$ \begin{array}{r} 7.71 \\ 3.59 \\ 3.75 \\ \overset{2}{}S_{0} \\ 3.66 \\ \end{array} $
H2-H3 H3-H4 H4-H5 Atomic pair H1-H2 H2-H3	5.67 5.41 7.07 GlcUA(23S) ⁴ C ₁ 4.99 8.06	$ \begin{array}{c} 2.74 \\ \hline 2.74 \\ \hline 3.56 \\ \hline 2.04 \\ \hline ^{1}C_{4} \\ \hline 1.06 \\ \hline 2.73 \\ \end{array} $	$ \begin{array}{r} $	5.24 5.39 7.20 M-GlcUA(2 ⁴ C ₁ 5.55 4.97	$ \begin{array}{r} 2.75 \\ 3.93 \\ 1.98 \\ 3S) \\ ^{1}C_{4} \\ 1.05 \\ 2.87 \\ \end{array} $	$ \begin{array}{r} 3.98 \\ 8.82 \\ 4.14 \\ 0.70 \\ \hline ^{2}S_{0} \\ 4.54 \\ 9.30 \\ \end{array} $	3.83 7.71 8.34 4.74 IdoUA(23S) ⁴ C ₁ 6.04 7.72	¹ 1 2.49 3.49 1.49 ¹ C ₄ 1.55 3.08	$ \begin{array}{r} 2.27 \\ \overline{} \\ \overline{} \\ \overline{} \\ \overline{} \\ \overline{} \\ \overline{} \\ $	7.62 8.45 4.72 M-IdoUA(2. ⁴ C ₁ 4.82 8.74	$ \begin{array}{r} 1.18 \\ 2.50 \\ 3.45 \\ 1.50 \\ 3S) \\ ^{1}C_{4} \\ 1.53 \\ 2.44 \\ \end{array} $	$ \begin{array}{c} 7.71 \\ 3.59 \\ 3.75 \\ ^2S_0 \\ 3.66 \\ 8.37 \\ \end{array} $
H2-H3 H3-H4 H4-H5 Atomic pair H1-H2 H2-H3 H3-H4	5.67 5.41 7.07 GlcUA(23S) ⁴ C ₁ 4.99 8.06 8.08	$ \begin{array}{r} 2.74 \\ 3.56 \\ 2.04 \\ \overline{} \\ ^{1}C_{4} \\ \overline{} \\ 1.06 \\ 2.73 \\ 2.90 \\ \hline $	$ \begin{array}{r} $	5.24 5.39 7.20 M-GlcUA(2 ⁴ C ₁ 5.55 4.97 5.46	$ \begin{array}{r} 2.75 \\ 3.93 \\ 1.98 \\ 3S) \\ ^{1}C_{4} \\ 1.05 \\ 2.87 \\ 3.02 \\ \end{array} $	$ \begin{array}{r} 3.98 \\ 8.82 \\ 4.14 \\ 0.70 \\ \hline ^{2}S_{0} \\ 4.54 \\ 9.30 \\ 2.70 \\ \end{array} $	3.83 7.71 8.34 4.74 IdoUA(23S) ⁴ C ₁ 6.04 7.72 6.89	¹ 1 2.49 3.49 1.49 ¹ C ₄ 1.55 3.08 3.17	$ \begin{array}{c} 2.27 \\ 7.60 \\ 3.53 \\ 3.65 \\ \hline ^{2}S_{0} \\ 3.32 \\ 8.85 \\ 2.37 \\ \end{array} $	7.62 8.45 4.72 M-IdoUA(2: ⁴ C ₁ 4.82 8.74 8.23	$ \begin{array}{r} 1.18 \\ 2.50 \\ 3.45 \\ 1.50 \\ 38) \\ ^{1}C_{4} \\ 1.53 \\ 2.44 \\ 2.57 \\ \end{array} $	$ \begin{array}{c} 7.71 \\ 3.59 \\ 3.75 \\ \hline ^2S_0 \\ 3.66 \\ 8.37 \\ 1.93 \\ \end{array} $

Supplementary Table 17. ³J_{H-H} (Hz) calculated by GIAO approach (B3LYP/6-311++G(2d,p)) for GlcUA and IdoUA derivatives

Monosaccharide	¹ H chemical shifts, ppm	Monosaccharide	¹ H chemical shifts, ppm
GlcNAc	2.047	GlcNAc	2.063
GlcNAc(4S)	2.048	GlcNAc(4S)	2.086
GlcNAc(6S)	2.089	GlcNAc(6S)	2.101
GlcNAc(46S)	2.096	GlcNAc(46S)	2.104
M-GlcNAc	1.968	M-GalNAc	1.990
M-GlcNAc(4S)	1.994	M-GalNAc(4S)	2.062
M-GlcNAc(6S)	2.071	M-GalNAc(6S)	2.038
M-GlcNAc(46S)	2.031	M-GalNAc(46S)	2.043

Supplementary Table 18. ¹H chemical shifts (ppm) in CH₃ of the acetyl group of Glc/GalNAc derivatives.

Chemical shifts presented are mean values for all gg/gt/tg conformations of the monosaccharide in ${}^{4}C_{1}$ ring conformation.

Molekule	Proton	ppm, gg	ppm, gt	ppm, tg
GlcNAc	Н9	1.70	1.69	1.70
	H10	2.21	2.22	2.21
	H11	2.25	2.23	2.21
GlcNAc(4S)	Н9	1.68	1.68	1.76
	H10	2.16	2.19	2.24
	H11	2.21	2.21	2.30
GlcNAc(6S)	Н9	1.77	1.76	1.67
	H10	2.22	2.27	2.21
	H11	2.32	2.32	2.26
GlcNAc(46S)	Н9	1.81	1.82	1.73
	H10	2.25	2.21	2.20
	H11	2.33	2.29	2.22
GalNAc	Н9	1.74	1.73	1.72
	H10	2.23	2.23	2.18
	H11	2.24	2.26	2.24
GalNAc(4S)	Н9	1.77	1.76	1.70
	H10	2.22	2.18	2.31
	H11	2.32	2.20	2.31
GalNAc(6S)	Н9	1.82	1.81	1.71
	H10	2.26	2.31	2.16
	H11	2.32	2.32	2.20
GalNAc(46S)	Н9	1.84	1.87	1.74
	H10	2.21	2.20	2.19
	H11	2.33	2.35	2.21
M-GlcNAc	Н9	1.53	1.54	1.49

Supplementary Table 19. ¹H chemical shifts (ppm) in CH₃ of the acetyl group of Glc/GalNAc derivatives for gg/gt/tg conformations

	H10	2.19	2.20	2.08	
	H11	2.24	2.24	2.20	
M-GlcNAc(4S)	Н9	1.56	1.48	1.75	
	H10	2.19	2.11	2.24	
	H11	2.19	2.17	2.26	
M-GlcNAc(6S)	H9	1.64	1.72	1.72	
	H10	2.15	2.11	2.25	
	H11	2.40	2.37	2.28	
M-GlcNAc(46S)	H9	1.69	1.73	1.55	
	H10	2.15	2.12	2.16	
	H11	2.26	2.36	2.26	
M-GalNAc	H9	1.60	1.57	1.55	
	H10	2.17	2.20	2.18	
	H11	2.20	2.21	2.23	
M-GalNAc(4S)	H9	1.55	1.64	1.73	
	H10	2.14	2.28	2.28	
	H11	2.29	2.29	2.36	
M-GalNAc(6S)	H9	1.63	1.65	1.55	
	H10	2.18	2.21	2.13	
	H11	2.38	2.38	2.23	
M-GalNAc(46S)	H9	1.68	1.76	1.56	
	H10	2.11	2.10	2.17	
	H11	2.43	2.36	2.22	

Supplementary Figure 1. Comparison of the simulated (blue) and measured NMR spectrum (green) of NAcGlc. The simulated spectra were calculated using a self-written Octave [43] script and simulating the alpha- and beta form by assuming a single line width per molecule. The signal intensities were normalized to the highest sugar peak in the present subpart of the spectrum.

Supplementary Figure 2. Comparison of the simulated (blue) and measured NMR spectrum (green) of NAc6SGlc. The simulated spectra were calculated using a self-written Octave [43] script and simulating the alpha- and beta form by assuming a single line width per molecule. The signal intensities were normalized to the highest sugar peak in the present subpart of the spectrum.

Supplementary Figure 3. Comparison of the simulated (blue) and measured NMR spectrum (green) of NAcGal. The simulated spectra were calculated using a self-written Octave [43] script and simulating the alpha- and beta form by assuming a single line width per molecule. The signal intensities were normalized to the highest sugar peak in the present subpart of the spectrum.

Supplementary Figure 4. Comparison of the simulated (blue) and measured NMR spectrum (green) of NAc6SGal. The simulated spectra were calculated using a self-written Octave [43] script and simulating the alpha- and beta form by assuming a single line width per molecule. The signal intensities were normalized to the highest sugar peak in the present subpart of the spectrum.

Supplementary Figure 5. Comparison of the simulated (blue) and measured NMR spectrum (green) of NAc4SGal. The simulated spectra were calculated using a self-written Octave [43] script and simulating the alpha form only by assuming a single line width per molecule. The signal intensities were normalized to the highest sugar peak in the present subpart of the spectrum.