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1. Classifiers

In the current investigation, we compared the performance of nine well-known classifiers

(see Ref. [1]), which are available in the WEKA framework. Following the hierarchy

defined in Ref. [2], these classifiers can be divided into the following groups: Bayesian

an lazy classifiers, trees, and functions.

1.1. Bayesian classifiers

Bayesian classifiers assign membership probabilities to classify new objects. The method

is fast and is known to yield fairly good results [3], even when applied to large volumes

of data. The two bayesian classifiers, namely Naive Bayes and Bayesian Network, are

described below.

1.1.1. Bayesian Network: A Bayesian Network model [4] is a probabilistic graph

model (a type of statistical model) that represents a set of random variables and their

conditional dependencies via a directed acyclic graph (DAG). The nodes represent

random variables and the edges represent conditional dependencies. Each node is

associated with a probability function. Typically, the task of learning a Bayesian

Network can be divided into two subtasks: initially, the DAG structure is formed;

then its parameters are estimated. With regard to the general framework for creating

Bayesian Networks, there are two possible scenarios. In the first, the structure of the

network is given beforehand, for example, by an expert. In the second case, when the

structure of network is unknown, several methods to learn the most accurate structure

have been proposed in literature (see e.g. [5]). The parameter of this classifier, as in

Weka, is:

• D: Use ADTree for learning.

Default : false. Range: true or false.

1.1.2. Naive Bayes: The Naive Bayes classifier [3, 6, 7] is based on the so-called

Bayesian theorem and is particularly suitable for high-dimensional datasets. Despite its

apparent simplicity, this method can often outperform more sophisticated classification

methods [8]. To classify new objects, the Bayes rule is applied to assign the membership

of an object to a given class. Then the class displaying the highest posterior probability

is chosen as the most likely class. This classifier is usually considered a naive approach

because it assumes conditional independence and normal distribution for attributes

in each class. Anyway, this classifier performs very well in many complex real-world

situations [3]. A general discussion of the Naive Bayes method and its advantages are

provided in Ref. [9]. The parameters of this classifier, according to Weka, are:

• K: use the kernel density estimator rather than normal distribution for numeric

attributes.

Default value: false. Range: true or false.
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• D: use supervised discretization to convert numeric attributes to nominal ones.

Default : false. Range: true or false.

1.2. Trees

A decision tree is a supervised automatic learning method that is employed for tackling

both classification and regression tasks. It derives rules from a training set of objects

represented by a number of attributes. The derived rules can be interpreted in a

straightforward manner because they can be be visualized as a tree-like graph. An

overview of decision tree methods is provided in Ref. [10]. In the current paper, the

following algorithms were analyzed: C4.5, Random Forest and Simple CART.

1.2.1. C4.5: The C4.5 algorithm [11] derives from the Concept Learning System (CLS)

and Iterative Dichotomiser 3 (ID3) algorithms [12, 13]. Given a set S of cases, the C4.5

first grows an initial tree using the divide-and-conquer algorithm as follows: if all the

cases in S belong to the same class or S is small, the tree is a leaf labeled with the

most frequent class in S. Otherwise, a test based on a single attribute with two or more

outcomes is chosen. Then this test becomes the root of the tree with one branch for

each outcome of the test, partitioning S into the corresponding subsets S1, S2 and so

forth, according to the outcome for each case. Finally, the same procedure is applied

recursively to each subset. There are usually many tests that can be chosen in this last

step. The parameters present in the Weka implementation of the C4.5 are:

• U: whether pruning is performed.

Default : false. Range: true or false.

• S: whether to consider the subtree raising operation when pruning.

Default : true. Range: true or false.

• A: whether counts at leaves are smoothed based on Laplace.

Default : false. Range: true or false.

• C: the confidence factor used for pruning (smaller values incur more pruning).

Default : 0.25. {C ∈ R | 0 < C ≤ 0.5}.
• M: the minimum number of instances per leaf.

Default : 2. Range: {M ∈ N | M ≥ 1}.
• N: determiner the amount of data used for reduced-error pruning.

Default : 3. Range: {M ∈ N | M ≥ 2}.

1.2.2. Random Forest: The Random Forest classifier [14] is a set of classification

trees. Each tree provides an indication about the class of the object. The class with

the most votes is chosen as the most likely class. The method combines Breiman’s

bagging idea [15] with the random selection of features in order to construct a collection

of decision trees with controlled variation. For each tree the training set is given

by choosing n times with replacement from all N available training cases (i.e., the
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method takes a bootstrap sample). For each node of the tree, m variables are randomly

chosen from all M available features, which are then used for decision at that node. As

an optional step, the tree obtained previously can be pruned using several strategies.

Details concerning the implementation of this method can be found in Ref. [16]. The

parameters of this classifier, as in Weka, are listed below.

• I: number of trees to build.

Default : 10.

• K: number of features to consider.

Default : 0. Range: {K ∈ N | 0 ≤ K ≤ dim‡}.
• depth: the maximum depth of the tree.

Default : 0. Range: {depth ∈ N}.
• S: seed for random number generator.

Default : 1.

1.2.3. Simple Classification and Regression Tree (Simple CART): The Simple

CART method [17] is a modification of C4.5. In this algorithm, the decision represented

in the tree may involve combinations of attributes, so the assumptions are no longer

restricted to hyper-rectangular partitions. While C4.5 employs the gain ratio metric to

rank tests, the Simple CART uses the Gini diversity index [18]. After the tree formation,

a pruning step is applied via cost-complexity methods [19]. A pruning rule is applied

to the split with the least contribution to the overall performance on the training data.

Further details concerning CART methods can be found in Ref. [20, 21]. The involved

parameters, according to Weka, are:

• S: random number seed.

Default : 1.

• C: percentage of training data size.

Default : 1. 0 < C ≤ 1. Range: {C ∈ R | 0 ≤ C ≤ 1}
• M: the minimal number of instances at the terminal nodes.

Default : 2.

• N: the number of folds used in the minimal cost-complexity pruning.

Default : 5.

• A: use “1 SE” rule to make pruning decision.

Default : false. Range: true or false.

• H: do not use the heuristic method for binary split.

Default : false. Range: true or false.

• U: do not use the minimal cost-complexity pruning.

Default : false. Range: true or false.

‡ dim is the number of attributes describing the dataset.
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1.3. Lazy

Lazy (or instance-based) classifiers store all of the training samples and do not build a

classifier until a new instance needs to be classified. It differs from eager classifiers that

generalize the training data before receiving queries. Lazy-learning algorithms require

less computation time during the training phase than eager-learning algorithms (such as

decision trees, neural and Bayes nets). Nevertheless, instance-based classifiers demand

more computation time during the classification process. A review of instance-based

learning classifiers can be found in Ref. [22]. The lazy method studied here is the

k-Nearest Neighbors, which is presented below.

1.3.1. k-Nearest Neighbors (kNN): The kNN method [23] is one of the simplest

instance-based learning algorithms for supervised classification. The classification is

based on the consensus among the classes of the nearest k neighbors of the unknown

object. To classify an unlabeled object, initially the distance of the new object to the

objects in the training dataset is computed. Then the k-nearest neighbors are identified

and the most frequent class labels in the k-set used to determine the class label of the

object through a voting process. According to Ref. [24], the k-Nearest Neighbors method

tends to outperform SVM especially in multiclass classifications. The main parameters

of the kNN, as in Weka, are:

• K: number of nearest neighbors used in classification.

Default : 1. Range: {K ∈ N | K ≥ 1}.
• I: weight neighbors by the inverse or their distance.

Default : false. Range: true or false.

• F: weight neighbors by 1 - their distance.

Default : false. Range: true or false.

• X: select the number of nearest neighbors using hold-one-out evaluation on the

training data.

Default : false. Range: true or false.

1.4. Functions

This class of methods includes non-probabilistic classifiers, but unlike lazy classifiers, the

system tries to generalize the training data before receiving queries. Most of the methods

included in this family can be viewed as a straightforward application of optimization

theory and statistical estimation. Three function algorithms are used in this paper:

Logistic, Multilayer Perceptron and Support Vector Machines.

1.4.1. Logistic: The Logistic algorithm [6] uses the maximum likelihood rule for

logistic (sigmoidal) posterior probabilities. It is a linear classifier and optimal for a family

of different distributions. The idea behind it, as in many other statistical classification

techniques, is to construct a linear predictor function that constructs a score from a
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set of weights that are linearly combined with the explanatory variables (features) of a

given observation using a dot product. The predicted outcome is that with the highest

score. The difference between the multiclass Logistic model and other methods with

the same basic setup (like linear discriminant analysis) is the procedure for determining

(i.e. training) the optimal weights and the way in which the score is interpreted [25].

According to Weka, the parameters of this classifier are:

• R: set the ridge in the log-likelihood.

Default : 10−8. Range: {R ∈ R }.
• M: set the maximum number of iterations.

Default : -1. Range: {M ∈ N | M ≥ 1}.

1.4.2. Multilayer Perceptron: Neural networks are motivated by neuroscience,

especially the McCulloch-Pitts’ artificial neuron [26]. The Multilayer Perceptron [27]

consists of multiple layers of nodes organized as a directed graph. It is a feed-forward

artificial neural network model that maps the input dataset onto a set of appropriate

outputs. The goal of the training process is to find the set of weight values that will

cause the output from the neural network to match the actual target values as closely

as possible. This task is done by an back-propagation training algorithm [28]. For

classification tasks with categorical target variables, there are N neurons in the output

layer producing N values, one for each of the N categories of the target variable. The

parameters of this classifier, as described in Weka, are:

• D: learning rate decay will occur.

Default : false. Range: true or false.

• C: normalizing a numeric class will not be done.

Default : false. Range: true or false.

• H: the hidden layers to be created for the network.

Default : ‘a’. Range: {0,‘a’,‘i’,‘o’,‘t’}.
• L: learning rate for the back propagation.

Default : 0.3. Range: {L ∈ R | 0 ≤ L ≤ 1}.
• M: momentum rate for the back propagation.

Default : 0.2. Range: {M ∈ R | 0 ≤M ≤ 1}.
• N: number of epochs to train through.

Default : 500. Range: {N ∈ N | N ≥ 1}.
• V: percentage size of validation set to use to terminate training.

Default : 0. Range: Range: {V ∈ N | 0 ≤ V ≤ 100}.
• E: the consecutive number of errors allowed for validation testing before the network

terminates.

Default : 20. Range: {E ∈ N | E ≥ 1}.
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1.4.3. Support Vector Machine (SVM): Currently support vector machines [29]

are considered one of the most robust pattern recognition methods [18]. A SVM

classifier is statistically based on the Vapnik-Chervonenkis (VC) dimension [27, 30]

and assumes the soft margin hypothesis [30] (allowing mislabeled examples). It uses

sequential minimal optimization (SMO) to solve the optimization problem (SMO breaks

the problem into a series of smallest possible sub-problems, which are then solved

analytically). The aim is to separate classes with hyperplanes. Geometrically, the

margin corresponds to the shortest distance between the closest data points to a point

on the hyperplane. For linearly inseparable data, some kernels have been proposed [31].

An efficient implementation is the core vector machine [32]. Because there are many

such linear hyperplanes, the SVM guarantees that the function is found by maximizing

the margin between the two classes. The involved parameters, as in Weka, are:

• C: set the parameter C of C-SVC, ε-SVR and ν-SVR

Default : 1.

• L: tolerance parameter.

Default : 0.001.

• P: set the ε in loss function of ε-SVR.

Default : 0.1.

• V: turn off missing value replacement.

Default : false. Range: true or false.

• N: set the parameter ν of ν-SVC, once-class SVM and ν-SVR.

Default : 0.5.

• E: sets the exponent employed in the polynomial kernel K(x, y) = 〈x, y〉E.

Default : 1.0.

• E: sets the exponent employed in the normalized polynomial kernel :

K(x, y) = 〈x, y〉/
√
〈x, x〉〈x, y〉,

where 〈x, y〉 = PolyKernel(x, y).

Default : 2.0.

• G: sets the γ value employed in the RBF kernel :

K(x, y) = exp(−γ〈x− y, x− y〉2).

Default : 0.01.

• S: sets the σ value employed in the Pearson VII function-based universal kernel.

Default : 1.0.
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2. Analysis with default parameters

Table S1. Statistics regarding the accuracy rate obtained in DB2F with classifiers set

with the default values of parameters.

# Classifier
Average Deviation Best case Worst case

(%) (%) (%) (%)

1 Naive Bayes 74.39 6.61 88.50 59.00

2 Logistic 72.67 6.67 86.25 58.75

3 Perceptron 72.67 6.38 85.50 59.50

4 C4.5 70.24 6.66 84.75 54.50

5 Simple CART 70.23 6.48 86.25 57.00

6 Bayes Net 68.68 7.00 85.25 54.75

7 Random Forest 69.94 6.80 83.25 53.75

8 kNN 68.67 7.49 82.50 51.00

9 SVM 67.44 6.62 82.75 52.00

Simple statistics summarizing the accuracy rate obtained in DB2F (dataset with two

features) when all the parameters are set with their respective default values.

3. Statistical significance in the comparison of classifiers

Tables S3 displaying the statistical significance of the differences in performance. The

database DB2F was evaluated with the default configuration of parameters.

Table S2. Statistics regarding the accuracy rate obtained in DB10F with classifiers

set with the default values of parameters.

# Classifier
Average Deviation Best case Worst case

(%) (%) (%) (%)

1 kNN 94.28 1.76 97.50 90.00

2 Perceptron 83.65 3.94 91.75 74.00

3 Random Forest 80.14 2.83 86.00 71.50

4 Naive Bayes 76.78 4.23 85.00 60.25

5 SVM 74.01 4.70 84.25 59.75

6 Logistic 71.16 4.69 80.25 59.00

7 Simple CART 71.07 4.71 80.25 59.00

8 C4.5 65.70 3.62 73.75 56.75

9 Bayes Net 56.87 5.16 67.00 41.25

Simple statistics regarding the accuracy rate obtained in DB10F when all the

parameters of the classifiers are set with their respective default values.
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Table S3. Information concerning the statistical significance of the difference between

average accuracy rates considering the two-tailed t-student test under the homogeneity

of variance hypothesis. The difference of average accuracy rates between two classifiers

is marked with a • if they are significantly different.

NBY LOG PRC J48 SCA BNT RDF kNN SVM

NBY – • • • • • •
LOG – • • • •
PRC – • • • •
J48 • – •
SCA • – •
BNT • • • –

RDF • • • –

kNN • • • –

SVM • • • • • –

4. One-dimensional analysis

Figure S1 shows the behavior of the accuracy in DB2F for all integer and real classifier

parameters. Each dataset is represented by a different line. An interesting pattern refers

to the oscillations in the accuracy along the neighborhood of the default parameter.

Apart from the kNN classifier, the accuracy does not increase substantially when only

one parameter varies. As for the C4.5, the accuracy rate seems to depend weakly upon

the confidence factor (C). The variation of the other two parameters (M and N) above

their default value seems to reduce the quality of the classification, as revealed by the

decreasing behavior). With regard to the Logistic method, the value of the ridge in

the log-likelihood does not affect the classifier, provided that it assumes a value below

a given threshold. Whenever that threshold is exceeded, the quality of classification

worsens considerably. Concerning the maximum number of iterations, the best choice

is the default value. The Multilayer Perceptron classifier also seems to yield its best

classification when parameters are set at their default values. Likewise the parameter R

(the ridge in the log-likelihood) of the Logistic, when the parameters L (the learning rate

for the back-propagation), M (momentum rate for the back-propagation), V (fraction

of the validation set employed) and N (number of epoch to train through) take extreme

values the quality of the classification decreases substantially. A similar behavior in

DB10F can be observed in Figure S2.
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Figure S1. Variation of the accuracy rate when one varies a single parameter while

keeping the remaining set at their default values in DB2F. Each line with the respective

parameters represents the behavior of the accuracy rate concerning a single dataset.

The default parameter is marked with a red vertical line. Note that, apart from the IBk

classifier, all the classifiers usually achieve their best discriminability with the default

parameters.
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Figure S2. Variation of the accuracy rate when one varies a single parameter

while keeping the remaining set at their default values in DB10F. Each line with the

respective parameters represents the behavior of the accuracy rate concerning a single

dataset. The default parameter is marked with a red vertical line. Note that, apart

from the IBk classifier, all the classifiers usually achieve their best discriminability with

the default parameters.
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