## The Development of the Neural Substrates of Cognitive Control in Adolescents with Autism Spectrum Disorders

## Supplemental Information

## Table S1. Between Group Comparisons

| Region                                        | Cluster | Cluster p-value | Voxel <i>p</i> -value |         | Talairach<br>coordinates |     |     |
|-----------------------------------------------|---------|-----------------|-----------------------|---------|--------------------------|-----|-----|
|                                               | Size    | FWE corrected   | Uncorrected           | Z-score | X                        | у   | z   |
| Control                                       |         |                 |                       |         |                          |     |     |
| LH Middle Occipital Gyrus (BA18) <sup>a</sup> | 1144    | 0.00            | 0.00                  | 5.09    | -32                      | -88 | -2  |
| LH Precuneus (BA7) <sup>a</sup>               | 4868    | 0.00            | 0.00                  | 5.06    | -10                      | -60 | 44  |
| RH Middle Occipital Gyrus (BA18) <sup>a</sup> | 514     | 0.00            | 0.00                  | 4.43    | 26                       | -93 | 10  |
| RH Middle Temporal Gyrus (BA20) <sup>a</sup>  | 785     | 0.00            | 0.00                  | 4.37    | 53                       | -33 | -7  |
| LH Precentral Gyrus (BA6) <sup>a</sup>        | 323     | 0.01            | 0.00                  | 3.96    | -42                      | -3  | 57  |
| RH Cingulate Gyrus (BA32)                     | 2838    | 0.00            | 0.00                  | 4.19    | 12                       | 23  | 38  |
| LH Middle Frontal Gyrus (BA9)                 | 1147    | 0.02            | 0.00                  | 4.06    | -36                      | 31  | 33  |
| LH Posterior Cingulate (BA23)                 | 846     | 0.06            | 0.00                  | 3.96    | -4                       | -26 | 23  |
| RH Superior Frontal Gyrus (BA10)              | 1520    | 0.00            | 0.00                  | 3.85    | 28                       | 54  | -3  |
| LH Superior Temporal Gyrus (BA38)             | 218     | 0.94            | 0.00                  | 3.35    | -48                      | 13  | -11 |
| LH Calustrum                                  | 181     | 0.98            | 0.00                  | 3.18    | -24                      | 29  | -1  |
| LH Middle Frontal Gyrus (BA10)                | 184     | 0.97            | 0.00                  | 3.16    | -30                      | 52  | -6  |
| Autism                                        |         |                 |                       |         |                          |     |     |
| RH Parahippocampal Gyrus (BA34)               | 47      | 1.00            | 0.00                  | 3.31    | 14                       | -3  | -13 |
| RH Middle Temporal Gyrus (BA21)               | 159     | 0.99            | 0.00                  | 3.22    | 55                       | -1  | -13 |
| Brainstem, medulla                            | 71      | 1.00            | 0.00                  | 3.10    | 2                        | -37 | -40 |
| RH Middle Temporal Gyrus (BA21)               | 38      | 1.00            | 0.00                  | 2.91    | 57                       | -37 | -2  |
| Brainstem, pons                               | 11      | 1.00            | 0.00                  | 2.83    | -6                       | -15 | -19 |
| RH Hippocampus                                | 23      | 1.00            | 0.00                  | 2.81    | 28                       | -18 | -9  |
| RH Superior Frontal Gyrus (BA9)               | 19      | 1.00            | 0.00                  | 2.76    | 22                       | 56  | 29  |
| RH Thalamus, Pulvinar                         | 15      | 1.00            | 0.00                  | 2.71    | 8                        | -29 | 7   |
| LH Precentral Gyrus (BA6)                     | 10      | 1.00            | 0.00                  | 2.71    | -22                      | -14 | 71  |
| RH Culmen                                     | 24      | 1.00            | 0.00                  | 2.66    | 10                       | -26 | -17 |

BA, Brodmann area; LH, left hemisphere; RH, right hemisphere.

Regions of activation for red trials minus green trials during the cue phase in controls (n = 27) and patients (n = 27) for T > 2.4 (p = .01). Statistical values are cluster corrected at a family-wise error (FWE) rate of p < .05. Regions were defined using Talairach Daemon and the "Nearest Gray Matter" option (1-3).

<sup>a</sup> These clusters are part of a very large (22117 voxels) cluster at a threshold of p < .01. These are the subclusters that make up that cluster, using a more stringent p < .001 threshold to better localize the activation.

<sup>b</sup> Approximate Talairach coordinates were derived by using a MATLAB function written by Matthew Brett (http://www.imaging.mrc-cbu.cam.ac.uk/downloads/MNI2tal/mni2tal.m) to convert from Montreal Neurological Institute space.



**Figure S1.** Significant within group functional connectivity in younger and older adolescents with autism spectrum disorder (ASD) and typical development (TYP). BA, Brodmann area.

## Supplemental References

- 1. Lancaster JL, Rainey LH, Summerlin JL, Freitas CS, Fox PT, Evans AC, *et al.* (1997): The Talairach Daemon, a database server for Talairach Atlas Labels. *Neuroimage*. 5:S633.
- 2. Lancaster JL, Woldorff MG, Parsons LM, Liotti M, Freitas CS, Rainey L, *et al.* (2000): Automated Talairach atlas labels for functional brain mapping. *Hum Brain Mapp.* 10:120-131.
- 3. Maldjian JA, Laurienti PJ, Kraft RA, Burdette JH (2003): An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. *Neuroimage*. 19:1233-1239.