Supplemental Data

Supplemental Methods

Isolation and culture of primary BM-MSC

BM-MSC were isolated from BM of consented AML patients undergoing diagnostic BM aspiration and from healthy donors who were undergoing BM harvest for use in allogeneic BM transplantation. BM was subjected to centrifugation (700 *g* for 15 minutes at 4°C) over a Ficoll-Hypaque (Sigma-Aldrich) gradient to separate mononuclear cells. After centrifugation, the buffy coat layer was carefully extracted and resuspended in α MEM (Cellgro, Mediatech, Inc.) supplemented with 10% pooled human platelet lysate (pHPL, kindly provided by Dr. Dirk Strunk, Department of Hematology and Stem Cell Transplantation, Medical University of Graz, Austria), ¹ supplemented with 2 mM L-glutamine, 100 U/mL penicillin, and 100 mg/mL streptomycin (Sigma-Aldrich). Detailed information on pHPL preparation method has been previously described. ¹Briefly, platelet rich plasma (PRP) from forty to fifty single blood donations units prepared by cytapheresis or derived from buffy coats are subjected to several freeze/thaw cycles to damage the platelet membranes and efficiently release growth factors into the plasma. Finally, the platelet fragments are removed by centrifugation to avoid extensive aggregate formation and deplete potential antigens and then the lysates are pooled.

The BM mononuclear cell content was analyzed by automated blood count (Beckman Coulter), and mononuclear cells were seeded at a density of 5×10^4 cells/cm² in tissue-culture flasks and cultured at 37°C in an atmosphere of 5% CO₂ at 95% humidity. The non-adherent cells were removed by completely changing the medium after 3 days, and the adherent cells were continuously cultured. The cultures were fed twice weekly by replacing 30% of the medium with fresh supplemented medium. The cells were harvested before reaching confluence by applying 0.25% trypsin and 1 mM EDTA (Life Technologies). BM-MSC aliquots were frozen after primary culture and stored in liquid nitrogen. For large-scale

expansion, the BM-MSC derived from primary culture were seeded in α MEM/10% pHPL at a density of 300 cells/cm² in four-layered cell factories. The culture medium was changed (i.e., 30% was replaced) twice weekly, and BM-MSC were harvested on days 11 through 15 by trypsinization. According to our previously published data these isolated BM-MSC are CD14-/CD31-/CD34-/CD45-/D44+/CD73+/CD90+/CD105+.²

Isolation and Expansion of Endothelial Colony-forming Cells (ECFCs)

Heparinized blood (6 mL) from a healthy donor was directly diluted in EGM/10% pHPL without additional cell separation and placed in a 75-cm² culture flask. Non-adherent cells were removed by washing with warm PBS after culturing for 24 hours. Cultures were maintained until the outgrowth of cobblestone-type colonies was observed, which were defined as ECFCs. The primary culture–derived ECFCs were then expanded in EGM/10% pHPL in two four-layered cell factories for 2 to 3 weeks.

Lentiviral Constructs and Stably Transduced Cells.

FLAG epitope-tagged wild-type IκBα or super-repressor (SR) IκBα (S32G/S36A) coding sequences ³ were subcloned into pCDH-CMV-MCS-EF1-copGFP lentiviral vector (System Biosciences, Cat#CD511B-1). A human codon optimized firefly luciferase sequence was excised from pGL4.51 (Promega) and cloned into pCDH-CMV-MCS-EF1-copGFP to generate pCDH-Luc-CopGFP. Lentiviral infections were carried out according to standard procedures. Briefly, 293T cells were co-transfected with pMD2.G and psPAX2 (Addgene, Inc.) along with pCDH-IκBα-SR, pCDH-Luc-CopGFP or pCDH empty vector using JetPrime transfection reagent (Polyplus-transfection, Inc.) according to the manufacturer's protocol. The transfection medium was replaced after 12 hours with fresh DMEM with 10% FBS, and 48 hours later the viral supernatants were collected and concentrated by using Centricon Plus-70 filter units (EMD Millipore). Normal BM-MSC were infected overnight with either pCDH empty vector (control) or

pCDH-IκBα-SR virus-containing supernatants supplemented with 8 µg/mL Polybrene (Sigma-Aldrich) to enhance lentiviral infection. NALM-6 cells were infected with pCDH-Luc-CopGFP viral supernatants. Two days after infection stably transduced BM-MSC and NALM-6 cells were sorted by FACS resulting in homogeneous populations of CopGFP-positive cells.

Induction of MSC Differentiation

MSCs were grown to 90% confluence in αMEM/10% pHPL and then moved to NH OsteoDiff medium or NH Adipo-Diff medium (Miltenyi Biotec, Inc.) to induce osteoblastic or adipogenic differentiation, respectively. Each differentiation medium was changed every 3 days. To confirm that BM-MSC differentiated into osteocytes and adipocytes, they were stained with alizarin red or alkaline phosphatase (to detect calcium deposits indicative of osteocytes) and oil red O (to detect lipids indicative of adipocytes).⁴ Cells were photographed with a Hamamatsu-C4742-95 camera (Hamamatsu Photonics,) attached to an Olympus BX41 microscope (Olympus America, Inc.,).

Co-culture Isolation and RNA Extraction

Normal BM-MSC were plated at a density of ~ 3×10^6 cells/175-cm² flask. Approximately 24 hours later, the supernatant medium was replaced by 21 mL of RPMI with 10% FBS for BM-MSC alone or RPMI 10% FBS containing 5 to 7×10^6 REH cells for the REH–BM-MSC co-culture. REH/BM-MSC ratio was ~ 2 to 1 at the seeding time. After 48 hours of incubation, the supernatant medium was removed along with nonattached REH cells. Attached REH cells were collected by flushing the co-culture monolayer with 10 mL PBS. A second collection was done by incubating the co-culture monolayer with 5 mL of PBS with 5mM EDTA for 2 to 3 minutes. Both collections were pooled in one 50-mL tube. Monocultures of REH cells and MSC seeded at the same density as for the co-culture were collected as controls. After collection, the cells were stained for ~ 20 minutes with allophycocyanin (APC)-conjugated anti-human CD90 (Thy-1) antibody (BM-MSC marker) and phycoerythrin (PE)-conjugated anti-human CD45 antibody (leukemia cells marker) and then separated by FACS (FACSAria II; BD Biosciences).

After sorting, cells were pelleted and lysed with 0.7 mL of QIAzol lysis reagent for total RNA extraction. The same procedure was applied to co-cultures of BM-MSC with OCI-AML3 cells. In co-cultures experiments where ALL or AML patient samples where used, only CD90⁺, CD19⁻, CD45⁻, BM-MSC were collected.

mRNA Hybridization and Gene-expression Profiling.

After confirmation of RNA quality using a Bioanalyzer 2100 instrument (Agilent Technologies, Inc.-), 300 ng of total RNA was amplified and biotin-labeled through an Eberwine procedure using an Illumina TotalPrep RNA Amplification kit (Life Technologies) and hybridized to Illumina HT12 version 4 human whole-genome arrays. Each of these arrays has an average of 15 beads for each of > 48,000probes measuring > 25,000 annotated genes and additional transcripts. Bead-level data were processed by methods previously described.⁵ In brief, outlier-filtered bead values underwent model-based background correction.⁶ quantile normalization, filtering for probe quality,⁷ and log2 transformation. Candidate differentially-expressed probes (DEPs) were then determined for each of 3 independent experiments, comparing co-cultured to monocultured MSC, by the Wilcoxon rank-sum test of processed bead values, with a significance threshold of p value < 0.01, false discovery rate q statistic < 0.1.⁸ Final DEPs were those candidates found in all 3 experiments, and their fold-change was determined from the average of mean bead values for each experiment. Assessment of the possibility that DEPs were due to contamination of co-cultured and purified BM-MSC by REH cells was done as follows. For any probe, the intensity values from an experimental replicate were considered to be A for co-cultured and purified BM-MSC, B for the monocultured BM-MSC, and C for co-cultured and purified REH cells. A is the theoretical sum of A1, the unknown true value attributable to co-cultured BM-MSC, and A2, the calculated value attributable to contaminating REH cells. Based on 1.5% being the maximum measured frequency of contaminating REH cells, we calculated A2 as C*0.015. Setting a fold-change threshold of 1.5, a contaminating DEP must satisfy three conditions: 1) The DEP must be upregulated in co-cultured

BM-MSC samples, i.e., A must be > 1.5*B; 2) the contribution attributable to contaminating REH cells must be required for the fold-change threshold to be exceeded, (i.e., A-A2 must be < 1.5*B, or, using direct measurements, A-(C*0.015) must be < 1.5*B and 3) these conditions must be met in all 3 experiments.

Gene set enrichment analysis (GSEA)⁹ was performed using gene sets from the Molecular Signatures Database (<u>www.broadinstitute.org/gsea/msigdb/</u>).

Reverse Transcription-PCR Analysis

Reverse transcription reactions were carried out using 1 μ g of total RNA and the Super Script III First Strand cDNA synthesis kit according to the manufacturer's instructions (Life Technologies). All the cDNA samples were divided into aliquotes and stored at -70° C for further use. Real-time PCR reactions were performed on a 7900 Real-Time System (Applied Biosystems) using the SYBR Green qPCR kit (Applied Biosystems) and gene-specific primers. A list of primer sets used in this study is provided in Supplemental Table 3.

Co-culture and BM-MSC-mediated Chemoresistance Experiments

Normal BM-MSC were plated on day 0 at a density of ~ 2.5×10^4 cells/well in 24-well plates. Twenty four hours later, the supernatant medium was replaced with RPMI with 10% FCS containing ~ 1 x 10⁵ leukemia cells for co-culture purposes. The leukemic cells/BM-MSC ratio was ~ 4 to 1 at the seeding time. After incubation for 24 hours, all floating leukemia cells in the co-culture wells were removed by aspirating the supernatant medium and fresh medium (0.5 mL) was added to each well without disturbing the remaining attached leukemia cells. In order to determine the average number of attached leukemic cells per well in co-culture dishes and to establish the monoculture condition with same number of leukemia cells, the absolute number of adherent leukemia cells was determined in separate triplicate dishes destined for this purpose only. Once non-attached leukemia cells were removed from these three wells by aspirating the supernatant medium, remaining attached leukemia cells were collected along with BM-MSC by mild trypsinization. After collection, leukemia cells were labeled with CD45 antibody and counted by flow cytometry using counting beads (CountBright Absolute Counting Beads, Life Technologies). Once the average absolute number of attached leukemia cells per well was determined, the same number of leukemia cells was plated in 0.5 mL of medium in each well of empty plates. Chemotherapy treatment started in both monoculture and co-culture plates immediately at this point. Viability and absolute number of cells were determined after 48 to 72 hours of treatment by flow cytometry. Percentage of apoptosis was estimated by measuring phosphatidylserine externalization in cells using APC-conjugated annexin V (BD Biosciences) in combination with DAPI (Sigma-Aldrich) staining in CD45⁺ cells. Percentage of viable cells was calculated by subtracting annexin V⁺ and DAPI⁺ cells from the total of CD45⁺ cells. To determine the absolute number of viable cells a total of 10,000 beads was added to each test tube and the acquisition stop criterion was set at 1,000 beads. Absolute number of cells was calculated by multiplying number of events by ten.

Immunohistochemical Analysis

Fresh tissues collected from mice were fixed in 4% PFA and embedded in paraffin. The sections (5 μm) were stained with hematoxylin and eosin (Sigma-Aldrich) and analyzed by light microscopy. For immunohistochemical staining, the tissue sections were first incubated with sodium citrate buffer (pH 6.0) for antigen retrieval and then for 30 minutes in blocking solution (PBS, 0.5% Tween 20, 0.1% BSA and 10% FBS), followed an overnight incubation with the primary antibody or negative control antibody. The tissue sections were then sequentially incubated with a biotinylated antibody and peroxidase-labeled streptavidin (Dako North America, Inc.,). The staining was completed by a 5-minutes incubation with 3,3'-diaminobenzidine tetrahydrochloride/hydrogen peroxide, which yields a brown precipitate at the antigen site. Spectral images were obtained using a Cri attachment (CRi) on an Olympus IX81 DSU microscope equipped with disc-scanning unit confocal attachment using Nuance software (Nuance Communications, Inc.), and the images were analyzed using InForm software (InForm Software Corp.).

Five images per slide were quantified and averaged at three different focal depths within the tissue section.

BM biopsies from consented ALL patients were formalin-fixed and paraffin-embedded. Tissue sections (~ 5 μ m thick) were backed in a 70°C oven for 30 minutes, deparaffinized in xylene, and then rehydrated through graded concentrations of alcohol. For the antigen retrieval, tissue sections were heated in Diva Decloaker (Biocare Medical, Concord, Calif) (Biocare Medical) for 30 minutes in a Decloaking Chamber (Biocare Medical). The tissue sections were incubated with 3% peroxidase blocking reagent for 10 minutes and subsequently with protein block Background Sniper (Biocare Medical) for 10 minutes. The tissue sections were then incubated with specific antibodies against human CD90 (1:50; Cat# 328101, Biolegend Inc.) and phospho-NF- κ B p65 (Ser276) (1;100; Cat#3037, Cell Signaling Technologies) overnight at 4°C. Detection was achieved with Mach 2 dual stain kit #2 (Biocare Medical) using DAB (Dako) and Fast Red (Biocare Medical) as substrates for color development. All sections were counterstained with hematoxylin (Biocare Medical) for 2 minutes. The slides were then air dried and cover-slipped.

Cell Fractionation and Western Blot Analysis

Co-cultured cells were separated by extensive washing the BM-MSC monolayer with ice-cold PBS containing proteinase inhibitors cocktail (Roche) and phosphatases inhibitors. After separation cells were collected by centrifugation using a microcentrifuge at 1000 g. Cell pellets were resuspended in 5 pellet volumes (~ 150 μ l) of CE buffer (10 mM HEPES, 60 mM KCl, 1 mM EDTA, 0.075% (v/v) NP40, 1mmol/L DTT and 1 mmol/L PMSF, adjusted to pH 7.6) and incubated on ice for 3 minutes. After centrifugation at 1000 g for 5 minutes, the cytoplasmic extract was collected and transferred to a clean tube without disturbing the nuclear pellet. Nuclei were gently washed four times with 300 μ L of CE buffer without detergent and centrifuged 1000 g for 5 minutes. Nuclear pellets were resuspended in 50 μ L of NE buffer (20 mM Tris-Cl, 420 mM NaCl, 1.5 mM MgCl₂, 0.2 mmol/L EDTA, 1 mM PMSF, adjusted

to pH 8.0) and incubated on ice for 10 minutes. Resuspended pellets were sonicated using microprobes three times for 5 seconds each on ice and the centrifugated at 12000 g for 5 minutes. The nuclear fractions were transferred to a clean tube and stored at -80° C until used.

Cell lysates were separated on 12% polyacrylamide gels, transferred to nitrocellulose membrane, immunoblotted with rabbit monoclonal anti–NF-κB p65 (1:500; Cat#8242, Cell Signaling Technologies), mouse monoclonal anti-PARP-1 (1:500; Cat#sc-8007, Santa Cruz Biotechnology, Inc.) and mouse monoclonal anti-GAPDH (1:5000; Cat#MAB374, EMD Millipore) followed by infrared secondary antibodies (LI-COR Biosciencesand then detected by the Odyssey imaging system (LI-COR Biosciences).

Immunofluorescence Staining and Confocal Microscopy

Monocultured or co-cultured BM-MSC were seeded on chamber slides at a density of 1×10^4 cells/slide. At the end of the experiment, cell cultures were washed with PBS twice and fixed with 4% PFA in PBS for 10 minutes at room temperature, then subjected to permeabilization with cold 0.5% Triton X-100 for 15 minutes. After extensive washing with PBS, fixed cells were incubated for 1 hour at 25°C in blocking buffer (PBS, 5% BSA) and then stained at 4°C overnight with anti–NF- κ B p65 (1:100; Cat#8242, Cell Signaling Technologies). Slides were then washed with PBS and incubated for 60 minutes with Alexa Fluor 488 goat anti-rabbit IgG (1:1000) or Alexa Fluor 647 goat anti-rabbit IgG (1:1000) (Life Technologies) at 25°C according to the manufacturer's instructions. After further washing with PBS and counterstaining with DAPI, samples were mounted with Dako Fluorescent Mounting Medium and were visualized and photographed under a confocal laser-scanning microscope (Olympus IX81 DSU, (Olympus America, Inc.) featuring a water immersion 60 × 1.25 NA objective. Images were captured with an Orca II ER camera and processed with Slidebook 5.0 software (Intelligent Imaging Innovations).

In Vivo Extramedullary Bone Formation and Murine Leukemia Model

NOD/SCID/IL-2rγ^{null} mice were obtained from The Jackson Laboratory. All protocols concerning animal use were approved by the Institutional Animal Care and Use Committee at The University of Texas MD Anderson Cancer Center and conducted in accordance with the NIH Guide for the Care and Use of Laboratory Animals. Human BM-MSC (1.5×10^6) transduced with empty vector (controls) or with IkBα-SR were mixed with human ECFCs $(1.5 \times 10^6 \text{ cells})$ in 0.2 mL Matrigel (BD Biosciences) immediately before being subcutaneously injected into the flanks of NOD/SCID/IL-2rγ^{null} mice. Each mouse was injected with control BM-MSC–ECFC–Matrigel in one flank and IkBα-SR–BM-MSC–ECFC–Matrigel in the other flank. Both the BM-MSC and ECFCs were obtained from the largescale expansions described above, with low passages (i.e., passages 1 to 3). To monitor bone formation in mice, we utilized animal micro computed tomography weekly, starting on the fourth week after injection. At each time point, mice were anesthetized, and detailed three-dimensional images of the soft tissue and bone structure were obtained. When a positive signal was observed from the implants, the mice were injected with OsteoSense 750 and further scanned with a VisEn FMT 2500 imaging system to generate a tomographic database consisting of the bone structure and fluorescence signal.

The extramedullary bones were fully developed at ~ 8 weeks after implantation and the NALM6luciferase-CopGFP leukemia cells were intravenously injected into each mouse. The leukemia burden was subsequently monitored by noninvasive imaging of isoflurane-anesthetized mice injected intraperitoneally with luciferin in the *in vivo* imaging system (IVIS system; Xenogen/Caliper Life Sciences). Ten days after injection of the leukemia cells, engraftment was confirmed and chemotherapy treatment started. The mice were injected i.p. with VCR (150 μ g/kg) every 3 days for a total of 10 days. At the end of this chemotherapy regimen, the mice were imaged one more time and then sacrificed to remove extramedullary bones for *ex-vivo* imaging and immunohystochemical staining.

Cell culture in VCAM-1-coated dishes

Human recombinant VCAM-1 was purchased from R&D Systems, Inc. (cat# ADP5-050). Tissue culture dishes were coated with 0.25 mL of VCAM-1 solution (5 μ g/mL in PBS) at 4 °C for 24 hours. After removing the VCAM-1 solution, dishes were incubated with 2% BSA in PBS for 30 minutes and then rinse twice with PBS before addition of the cell suspension.

Supplemental References:

1. Schallmoser K, Strunk D. Preparation of pooled human platelet lysate (pHPL) as an efficient supplement for animal serum-free human stem cell cultures. *J Vis Exp*. 2009(32).

2. Chen Y, Jacamo R, Shi YX, et al. Human extramedullary bone marrow in mice: a novel in vivo model of genetically controlled hematopoietic microenvironment. *Blood*. 2012.

3. Davis RE, Brown KD, Siebenlist U, Staudt LM. Constitutive nuclear factor kappaB activity is required for survival of activated B cell-like diffuse large B cell lymphoma cells. *J Exp Med*. 2001;194(12):1861-1874.

4. Chen Y, Shao JZ, Xiang LX, Dong XJ, Zhang GR. Mesenchymal stem cells: a promising candidate in regenerative medicine. *Int J Biochem Cell Biol*. 2008;40(5):815-820.

5. Ma W, Wang M, Wang ZQ, et al. Effect of long-term storage in TRIzol on microarray-based gene expression profiling. *Cancer Epidemiol Biomarkers Prev.* 2010;19(10):2445-2452.

6. Ding LH, Xie Y, Park S, Xiao G, Story MD. Enhanced identification and biological validation of differential gene expression via Illumina whole-genome expression arrays through the use of the model-based background correction methodology. *Nucleic Acids Res.* 2008;36(10):e58.

7. Barbosa-Morais NL, Dunning MJ, Samarajiwa SA, et al. A re-annotation pipeline for Illumina BeadArrays: improving the interpretation of gene expression data. *Nucleic Acids Res.* 2010;38(3):e17.

8. Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. *Journal of the Royal Statistical Society Series B (Methodological)*. 1995;57(1):289-300.

9. Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. *Proc Natl Acad Sci U S A*. 2005;102(43):15545-15550.

Supplemental Tables and Figures

Table S1: List of upregulated DEPs in co-culured BM-MSC

ILMN_Gene	Probe ID	Mean_P	Mean_q	Mean_Fold_Change
ABCA1	4060358	1.94974E-07	4.19E-05	1.773097972
ADAM15	3440452	0.002593522	0.025043	1.27824948
ADAMTS1	6900086	0.000377196	0.006473	2.011960501
ADSS	5960097	0.004900036	0.038127	1.280485809
AFAP1	2690187	0.000654003	0.010343	1.31177752
ALDH1A3	4920148	2.92263E-05	0.00156	1.46045852
ALDOC	7330544	0.000635018	0.010135	1.249633565
APBB3	4120279	3.45987E-05	0.001763	1.262693809
ARPC1B	130717	4.46352E-07	8.81E-05	2.959519524
ASB1	1820347	0.001877551	0.012754	2.096819619
ASNS	1510296	7.49184E-05	0.002636	1.450951441
BAX	3520092	4.57368E-07	9.29E-05	2.001206552
BHLHB2	2640735	0.002016317	0.018441	1.274387227
BMS1	1190717	0.001110939	0.013185	1.302890382
C19ORF10	1030458	1.94627E-05	0.001225	2.143667754
CA12	150474	0.001761628	0.017394	1.452786704
CALD1	4230328	1.26557E-06	0.00018	1.450299098
CCDC16	5900112	0.002029948	0.025201	1.625541382
CCL2	1030333	2.38791E-08	1.1E-05	3.037619312
CCT7	7160719	0.000641461	0.011533	1.362747336
CDC42EP4	1070047	0.001061204	0.01637	1.447680153
CDK10	1850309	0.003516645	0.027728	1.478557567
CDK6	670286	0.000243219	0.005302	1.530366597
CDR2L	3940482	0.000101549	0.002815	1.259702074
CMTM7	2140239	3.88355E-06	0.000417	1.329387936
CNTNAP1	4570358	0.004614007	0.038209	1.225674352
COL6A2	2750356	7.97191E-06	0.000615	1.541904814
COX4I1	3390022	0.001990145	0.019634	1.187638417
CRIM1	3930040	5.69861E-05	0.002005	1.416028426
CYR61	3930605	1.13023E-08	5.85E-06	1.764095259
DCBLD2	60132	0.004105771	0.032772	1.292297
DDOST	6450605	0.000521999	0.00918	1.509965031
DEXI	2470386	0.001251681	0.017155	1.510976358

DKK3	4070133	0.001848961	0.01456	1.285937684
DKK3	5390451	0.000312254	0.0067	1.238956164
DRAM1	4280482	3.04768E-07	7.42E-05	1.644735281
ECGF1	2350504	0.000260726	0.005509	1.738106113
ECOP	870692	0.00064891	0.009225	1.802510615
EGLN2	7650653	0.002527153	0.02061	1.264537646
EIF2S3	2850440	1.41994E-05	0.000571	1.32692448
EIF4A1	3400403	0.005263818	0.044581	1.452442445
EIF4H	4540397	0.00018622	0.004604	1.536485782
ERCC6	520168	0.002284312	0.023411	1.697202279
FAM129B	3180053	0.001179404	0.017001	1.281096963
FER1L4	4640039	0.003660034	0.031476	1.245299219
FKBP2	1010068	0.000382057	0.008808	1.723835885
FLJ39632	1660341	0.000924017	0.012156	1.527887752
FN1	4040592	0.00040257	0.005625	1.392973232
GADD45A	4880673	0.004363624	0.032533	1.303087946
GAK	7210767	0.001451926	0.019891	1.200249811
GSTO2	2260730	0.001938643	0.021973	1.254404075
HCLS1	1300408	0.001397915	0.019113	1.25112663
HES4	5260070	0.000107777	0.002547	2.038181232
HMGN1	4390195	0.001072403	0.014712	1.330689626
IER3	1190367	6.02618E-07	9.79E-05	1.713170702
IGF2R	2810156	0.000682747	0.012666	1.265036593
IL32	3440754	2.34684E-07	5.29E-05	2.431616936
IL6	4040576	9.0641E-10	1.51E-06	2.092396402
IL8	1980309	2.72556E-07	4.18E-05	35.6317444
IRF1	6250064	1.04024E-05	0.000736	1.932757364
KCNG1	1400427	7.53577E-05	0.00257	1.630269507
KCTD11	2760008	0.002674098	0.025913	1.619102015
KLF9	3390292	0.00144625	0.017978	1.280231716
LDLR	1440736	0.000926083	0.012196	1.54145786
LEPREL1	4280524	0.006345432	0.047529	1.20726589
LEPREL2	6760632	0.00189602	0.022684	1.494112325
LOC100008589	6290142	1.08626E-08	8.02E-06	1.825911843
LOC100128892	1770100	0.001225142	0.017718	1.488415814
LOC100132717	650044	0.003140911	0.03098	1.440367826
LOC100133372	2340703	0.002355015	0.017226	1.457644112
LOC389168	3060148	0.002805297	0.025624	1.315391022
LOC441089	6660086	0.003909958	0.03314	1.635250209
LOC642755	5860242	0.003247375	0.032592	1.50258295
LOC644063	1770470	0.000175414	0.004448	1.418317547

LOC645385	2490445	0.001714281	0.014283	1.472763361
LOC647276	360653	0.000500737	0.010715	1.293970103
LOC648210	6900048	0.000394137	0.005804	1.456050807
LOC653888	4860093	2.44491E-07	4.89E-05	2.818566957
LOC728059	4040519	0.000343508	0.006455	1.573304563
LOC730417	7200612	0.003119008	0.026427	1.830145876
LRRC42	5570524	0.001069391	0.011814	1.321066021
LRRFIP2	4150438	1.95569E-06	0.000239	1.65071689
MARCH6	780544	0.000382986	0.007844	1.627514576
MICAL2	1430463	0.001957166	0.020678	1.708231477
MLPH	2120452	0.003340951	0.027821	1.362108752
MRPL17	6660270	0.00303538	0.029961	1.269340172
MSC	7510377	0.000302247	0.006749	1.521234065
MSRB2	2710646	0.00030646	0.006304	1.274865726
MTP18	7400025	0.004655457	0.040678	1.259230322
MX1	1690066	3.40706E-09	3.73E-06	2.570861001
MYC	6270646	0.000685148	0.00801	1.564085672
NBPF10	1510681	0.004356735	0.035733	1.510912819
NENF	3120139	0.005804265	0.044775	1.262053843
NFKB1	7400626	0.000740235	0.011394	1.375922077
NFKBIA	4280113	2.88467E-07	4.52E-05	2.012053708
NOTCH3	2340692	5.42968E-05	0.001748	1.355252079
PAM	4210670	0.001944925	0.02427	1.239241139
ΡΑΡΡΑ	730754	0.001239349	0.009847	1.421826274
PCNX	7050626	0.000843248	0.014804	1.159621711
PENK	6220019	0.002653865	0.02478	1.534531141
PFKFB4	7400653	0.002271022	0.022063	1.254143601
PIPSL	4640070	0.002368947	0.022161	1.708645586
PLSCR3	6940255	0.001772795	0.017956	1.254369737
PPP3R1	6200768	0.002582297	0.021918	1.538764965
PRIC285	5960343	0.005382949	0.046086	1.290265804
PSAP	6200086	0.000150563	0.003126	1.250088343
PTPRF	3060398	0.000851004	0.012776	1.275746259
PTRF	4850301	0.002876538	0.023371	1.272089655
RAB2B	670609	0.001491404	0.017866	1.208050657
RCN3	2100431	0.004135131	0.038589	1.223992732
RHBDF2	3420523	0.004754475	0.038619	1.455606745
RNASET2	2850100	0.001224071	0.017993	1.250387667
SAE1	7160753	0.001228878	0.018518	1.164416011
SAT1	5490431	7.7087E-05	0.001735	1.379230902
SBDSP	5260717	0.00085691	0.01283	1.562675516

SCD	2140128	2.62907E-06	0.000179	1.606536009
SDF2L1	3120079	1.00646E-05	0.000753	1.734499398
SDF4	3310167	0.003610239	0.032808	1.43170374
SEPT5	6960022	0.001255626	0.013752	1.364371395
SERPINB6	4220504	5.99051E-05	0.002659	1.25819048
SFRS5	4730543	7.3385E-08	2.84E-05	1.807921499
SFRS5	6380445	0.000570616	0.006193	1.560661307
SIPA1	5810068	0.000272465	0.006463	1.521816907
SIVA1	1450477	0.004410662	0.040676	1.320280185
SLC25A28	2360392	0.002284892	0.014977	1.367274548
SLC3A2	2450725	0.003691944	0.033775	1.590485068
SOD2	3420373	5.05086E-05	0.002345	2.095530152
SOD2	3890326	1.80093E-06	0.000247	3.857144773
SQSTM1	4260044	0.001099174	0.015189	1.250007165
SULF1	2570240	0.000643557	0.01041	1.320955122
TAP1	7330392	3.77259E-07	8.29E-05	1.566465899
TFPI	1340039	1.55104E-05	0.000631	1.79542027
TFPI	4850731	1.09251E-05	0.000562	1.670571888
TINF2	1740471	0.002426453	0.017208	1.240617189
ТКТ	6860202	0.001530007	0.017994	1.32290813
TMBIM1	5820097	0.002849125	0.022812	1.669406308
TMED3	5550408	2.03864E-06	0.000259	1.353798225
TMED9	5390202	4.51066E-05	0.002136	1.657677932
TMEM138	6290598	0.000954803	0.011576	1.320421768
TMEM14C	3840167	0.003383498	0.030195	1.188227835
TMTC3	7000286	0.001571426	0.013905	1.746044751
TNFAIP3	3360681	9.81875E-07	0.000146	2.983388209
TNPO1	5080482	0.000411137	0.007379	2.166854013
TNS3	5560561	2.78359E-05	0.001393	1.577449969
TRIB3	1990630	0.001776982	0.019333	1.257730361
TRPM4	870437	0.000135235	0.003675	1.406908078
TUBB	6580474	0.002273414	0.026985	1.145680987
UPP1	7570673	0.000557313	0.008987	1.553847558
VCAM1	1240519	0.000107605	0.002079	2.517183873
VCAM1	2900390	8.65745E-10	1.62E-06	2.711085309
VCAM1	4290390	6.66682E-05	0.002099	2.372113221
VPS16	3830180	0.000528441	0.009271	1.238342447
VPS37C	6510528	0.002605891	0.022548	1.267716813
WDR1	4860239	0.002026263	0.019563	1.606882241
WDR45L	2600646	0.000272882	0.006129	1.480419124
WDR74	2190537	0.003538765	0.028579	1.542574566

YIF1A	4590494	0.002601095	0.027045	1.22550939
YRDC	3440224	0.000322341	0.006817	1.324921502
ZBTB43	2060037	0.000484724	0.01046	1.73562041
ZFYVE21	380594	6.63238E-06	0.000575	2.209174276

Supplemental Table 1. List of upregulated DEPs in co-culured BM-MSC. Differentially-expressed probes (DEPs) were determined for each of 3 independent experiments, comparing co-cultured to monocultured MSC with a significance threshold of p value < 0.01, false discovery rate q statistic < 0.1. ILMN_Gene: Illumina gene nomenclature.

Table S2: List of downregulated DEPs in co-culured BM-MSC

ILMN_Gene	Probe ID	Mean_P	Mean_q	Mean_Fold_Change
ANGPTL4	4610433	5.26858E-06	0.000393912	0.716526063
ARL4A	1410113	3.1506E-05	0.001276343	0.629676042
ARMCX6	4490215	0.002247328	0.024837408	0.599694544
ATP5E	3710725	0.001137393	0.013710578	0.725968044
ATP5EP2	6900324	1.02826E-05	0.000781339	0.770178685
ATP5J	5860162	0.000131119	0.003983872	0.726632189
ATP5J	6560180	0.000613493	0.009710386	0.799816823
ATP5L	6370411	0.000593529	0.007819321	0.725251048
ATP5O	6110754	0.000291166	0.005537993	0.756586814
ATP6V0E1	2320110	0.000378919	0.008580054	0.765110813
ATP6V1D	1660736	0.004171039	0.032210345	0.828137731
BANF1	150767	0.001223371	0.015752948	0.795361703
C11ORF1	610400	0.003884287	0.030752968	0.735561308
C110RF10	630445	0.001818016	0.021479648	0.847408956
C110RF51	6840100	0.001279444	0.018897623	0.525965949
C14ORF156	5290025	1.28203E-06	0.000176514	0.704493976
C1ORF166	6400097	0.001922271	0.023248964	0.628688906
C200RF117	290132	0.004974493	0.042819864	0.699797161
C210RF51	60041	0.001288365	0.016349919	0.688796161
C22ORF25	630446	0.001642342	0.019838156	0.730544252
C8ORF59	1510452	0.003207121	0.032004189	0.698284191
CAT	1770500	0.003108713	0.025368401	0.709289591
CBX5	7150685	0.002955841	0.022204726	0.587068314
CDC5L	6760189	0.005687313	0.044314058	0.595799122
CDK5RAP2	4260017	0.001163293	0.017292795	0.628467562
CHMP5	6450326	0.002417858	0.026082008	0.813113788

CHST3	3930736	0.002360627	0.024224417	0.767728622
CKLF	5080367	0.000464377	0.007538655	0.710045202
CNN1	4850630	0.001871341	0.020585672	0.67876572
COPS4	4290400	0.003411182	0.027997838	0.773145169
COX17	630735	5.65864E-05	0.001924115	0.725346632
COX6B1	4250095	0.000112712	0.003890401	0.745480709
COX7A1	5390138	0.00092959	0.013747331	0.819172462
COX7A2	540491	0.001550036	0.016528998	0.797775865
CPA4	520682	8.59212E-05	0.003293226	0.646035674
CRIP1	1170047	0.003133502	0.026791921	0.748845719
CRYAB	6110079	0.003314881	0.026226935	0.70427908
CSTB	1430187	0.001106103	0.016174704	0.819984825
DBI	1010195	0.000593382	0.010500834	0.745107111
DCLK2	2340129	0.003572337	0.029099377	0.594545661
DCLK2	2470403	0.002888403	0.027146698	0.606348484
DCP1A	1450370	0.004344883	0.039311478	0.679938875
DDIT3	830619	0.001082792	0.014044923	0.670073115
DLX5	3370767	0.003299152	0.033268262	0.756391162
DNAJB6	5860315	0.002431437	0.022569156	0.814236446
DPY30	6960025	0.004456309	0.038706776	0.817471634
DUSP3	6560156	8.39605E-05	0.003196195	0.704144061
DYNLL1	6220086	0.000123242	0.004027128	0.653736553
DYNLRB1	130603	0.001062051	0.013352971	0.755867477
DYNLRB1	6580369	0.000106419	0.003240488	0.740117017
DYNLRB1	7210224	0.001643103	0.014757821	0.750665707
FAM96A	6760202	0.002590665	0.028429579	0.574054948
FLJ40504	4880333	0.001032193	0.011121764	0.671100438
FLOT1	3780181	0.00316021	0.020879134	0.771031423
FLYWCH2	4920162	0.00621369	0.049209027	0.718787591
GDPD5	1010176	0.002761719	0.025002505	0.640981585
GLRX	4590228	0.00033358	0.00676316	0.694216764
GOSR2	2600288	0.003640312	0.030471841	0.689606818
GPC4	6330270	0.000175322	0.004976631	0.64951364
GTF2A2	2450368	9.92136E-05	0.003470801	0.806999669
HIST1H4C	3890349	8.26847E-06	0.000624744	0.707623748
HOXC4	6860717	0.00165459	0.020974998	0.629922162
HS.553187	6620390	0.000944215	0.009881646	0.626949793
HS.579631	3520168	0.002566409	0.021987776	0.730542178
HSPB7	4560523	0.002820773	0.023342008	0.675102067
HYOU1	5700041	0.000195314	0.005312529	0.578211386
ID2	1260086	0.000877104	0.011129931	0.647510672

T				1
IGFBP4	7510414	0.001158264	0.012613064	0.760688762
KIAA0367	3940392	0.000193975	0.004830939	0.629926738
KRT81	430446	0.001214966	0.010290648	0.615428293
LAGE3	1240482	0.002161026	0.016860618	0.783601255
LBH	2810246	0.000106253	0.002137329	0.596663749
LOC100128731	5130142	0.001118804	0.014188175	0.79182526
LOC100130516	6380037	0.000136288	0.003870431	0.666664218
LOC100131801	5260360	5.71194E-05	0.001894105	0.668237014
LOC100133477	3390072	0.000125634	0.004023846	0.736656857
LOC100134537	2360082	0.00062077	0.011777942	0.700851876
LOC134997	870537	0.000847774	0.008172289	0.661179919
LOC389342	5090484	9.70036E-07	9.55909E-05	0.524001642
LOC399988	4850136	0.001796967	0.02258815	0.752364481
LOC400948	5860608	0.004289164	0.033110132	0.768173123
LOC402175	520468	0.000200635	0.00466896	0.803001831
LOC439953	2100112	0.002234664	0.019229024	0.802260639
LOC440957	540240	0.000368966	0.006018455	0.707923875
LOC644039	7000274	0.002447529	0.023040672	0.714238964
LOC645058	1980600	0.001095148	0.015078799	0.749775745
LOC646785	1170551	0.000392979	0.008017093	0.726406706
LOC647886	4260440	0.000602793	0.01009495	0.67011336
LOC650646	6960195	0.00147102	0.021038401	0.805127185
LOC729236	2320709	2.60286E-05	0.001153251	0.6937029
LOC730278	6770601	0.001433062	0.016218938	0.712450074
LOC730833	580441	3.01864E-05	0.001456319	0.51971162
MAP1A	4920202	0.000253831	0.005627278	0.723903465
МАРК7	1190300	0.00041501	0.008641566	0.626556704
MEIS2	20358	4.99705E-06	0.000505847	0.683124941
MGST1	5080131	0.000285519	0.006825836	0.777078957
MGST3	7160400	0.000844036	0.012480832	0.792263879
MRPL21	1300315	0.000740086	0.009728269	0.69400705
MRPL21	6250576	0.002522671	0.019325008	0.79629083
MRPL33	5570494	0.000886926	0.010958185	0.761299533
MRPS18C	1430639	0.000192583	0.004265842	0.723276562
MRPS21	3830671	0.000119666	0.004017128	0.733915238
MT1A	6200402	0.001600002	0.018180527	0.807264781
MT1E	2070288	0.000892911	0.0118812	0.622530218
MT1X	6620528	3.68606E-07	6.39743E-05	0.625957936
MT2A	450615	0.000951932	0.010610786	0.739201597
MYST3	3930195	0.003740799	0.037070445	0.60264629
NDUFA2	6840189	0.001921535	0.019702953	0.74416866

NDUFA3	50240	0.00248142	0.024250167	0.806382759
NDUFB3	1770102	0.001704368	0.015626356	0.800937512
NDUFS5	6980398	0.000428667	0.008624778	0.775451172
NEU1	4200692	0.001175552	0.017205074	0.646293799
OBFC2B	270196	0.002558842	0.026035066	0.558960621
OLFML3	3180070	0.000845038	0.010664789	0.649013226
PITX2	3990440	0.000268235	0.006927126	0.706718873
PLIN2	460204	6.06819E-05	0.0022706	0.742037101
PNMA1	6350608	0.004065148	0.031415261	0.719355538
POLR2L	6200017	0.000825359	0.011032208	0.518664315
PPAP2B	6220097	8.8928E-07	0.00013595	0.477428772
PRICKLE4	730114	0.00285383	0.023027571	0.732524813
PSG9	4120243	0.002873769	0.027985727	0.615587493
RAB5C	450164	0.001058337	0.016725464	0.767029663
RBX1	2070746	0.002467085	0.026414148	0.745891369
RDH10	7050433	0.000457524	0.010025094	0.606553397
RHOB	3400332	0.000106513	0.003500009	0.651326319
RHOD	4180270	0.004070359	0.035393304	0.728637104
RNU6-1	3610279	0.000837876	0.012744314	0.77012134
RPL14L	2360102	0.007159898	0.054204167	0.803577587
RPL24	1940546	0.001015995	0.011532046	0.825445407
RPL26L1	6130390	0.001156601	0.017810546	0.810529797
RPL35A	6370504	0.002322074	0.023716831	0.812431761
RPL36AL	3170184	0.000449009	0.007791201	0.797810655
RPL36AL	5220161	0.000194257	0.005501862	0.720689893
RPS15A	7100717	0.000149295	0.003689508	0.770275108
RPS21	2690338	0.000362133	0.006936411	0.814878574
RPS26L	4230121	0.003936607	0.03419686	0.747354127
RPS26L	5890730	0.000179262	0.004935114	0.690005129
RTN4	2230161	0.003962981	0.030801505	0.888034163
RXRA	7000356	0.001533133	0.021096483	0.833341713
SEC31A	3840100	0.000756972	0.011123498	0.730166176
SF3B14	2000500	0.00072264	0.011378352	0.736157846
SFRS2	3940414	0.004362946	0.039534293	0.803944642
SLC16A2	2650112	0.000221267	0.00576985	0.585892116
SMG7	6270706	0.003193219	0.030167805	0.845194623
SNHG5	1050475	0.004631248	0.034540312	0.80255382
SRP14P1	1300072	0.002031228	0.023216198	0.703710326
TBC1D24	3120161	0.003135765	0.025803169	0.634172414
THEM2	1580427	0.000660585	0.009524499	0.715307305
THYN1	2140176	0.000764193	0.010452478	0.647135073

TMEM119	3830762	0.003838014	0.034875244	0.782589748
TMEM126A	7560092	0.00100356	0.010675072	0.767123776
TMEM189-UBE2V1	4390220	0.003501325	0.027466323	0.774653776
TP53I3	1260020	0.002094459	0.021478238	0.823671011
TRAPPC2P1	4590121	0.000594453	0.011025683	0.588438109
TRAPPC4	1230639	0.00647702	0.049980142	0.812485026
TRMT112	5420398	0.003447882	0.031325163	0.738424562
TSC22D2	2450082	0.003298718	0.032740112	0.648745051
TSC22D3	6350632	0.001771592	0.013287196	0.774360708
TSPYL1	3780689	0.004461247	0.041245986	0.719109313
TXN	4290543	0.000198802	0.004433462	0.706048125
UBE2A	6960440	0.000416066	0.00876554	0.778115896
UQCRB	3830746	0.002192156	0.025528735	0.686763466
UTP11L	6280152	0.002853042	0.026744264	0.703124387
VAMP5	2630195	0.002350105	0.015998328	0.710873955
WNK4	7150411	0.000594928	0.010164536	0.6833168
XKR8	7560435	0.004156889	0.03694921	0.699712499

Supplemental Table 2: List of downregulated DEPs in co-culured BM-MSC. Differentially-expressed probes (DEPs) were determined as described above (Supplemental Table 1). **ILMN_Gene:** Illumina gene nomenclature.

Table S3: "Hinata_NFKB_Targets_Fibroblasts_Up" data set

NAME	PROBE	DESCRIPTION (fro	RANK IN	RANK	RUNNING	CORF
		m dataset)	GENE LIST	METRIC	ES	ENRICHMEN
				SCORE		Т
row_0	IL8	3576	0	5.011204243	0.23966059	Yes
row_1	SOD2	6648	1	1.790762305	0.3253037	Yes
row_2	TNFAIP3	7128	3	1.482197762	0.39610356	Yes
row_3	IL6	3569	10	1.085379481	0.44749472	Yes
row_4	NFKBIA	4792	14	0.994617343	0.49480373	Yes
row_5	IER3	8870	34	0.759403825	0.5294848	Yes
row_6	MSC	9242	65	0.625448227	0.5568115	Yes
row_7	RELB	5971	107	0.53741473	0.5789801	Yes
row_8	SEC24A	10802	168	0.483969897	0.5969553	Yes
row_9	GADD45	1647	273	0.420894474	0.6081221	Yes
	А					
row_10	RND3	390	276	0.418772727	0.62797755	Yes

row_11	VEGFA	7422	280	0.417971373	0.6477085	Yes
row_12	TNFAIP8	25816	306	0.407739908	0.6650542	Yes
row_13	NFKB1	4790	371	0.383867532	0.6778973	Yes
row_14	NFKB2	4791	537	0.333318114	0.67961895	Yes
row_15	BIRC2	329	540	0.333025903	0.6953736	Yes
row_16	GSTO1	9446	910	0.277104586	0.6768267	No
row_17	GABBR1	2550	1082	0.257824957	0.6744209	No
row_18	MAPK9	5601	1226	0.242013365	0.67367184	No
row_19	CDH2	1000	2064	0.177541375	0.61003244	No
row_20	ETS1	2113	2186	0.17010361	0.60774016	No
row_21	LITAF	9516	2609	0.14549394	0.57833165	No
row_22	EGFR	1956	2683	0.141073629	0.57878757	No
row_23	FGF1	2246	3997	0.080990486	0.4695103	No
row_24	MTSS1	9788	4174	0.072895199	0.45782933	No
row_25	FGF2	2247	4226	0.07118167	0.45683855	No
row_26	FN1	2335	5142	0.032139495	0.37952352	No
row_27	RAC1	5879	6555	-	0.25918493	No
				0.028093996		
row_28	CCNB1	891	7431	-	0.18700053	No
20		2009	7052	0.067342065	0 14649922	No
row_29	HDGF	3068	7953	-	0.14648832	NO
row 30	TAF15	8148	8109	-	0.13793208	No
	_			0.100391373		-
row_31	VIM	7431	8145	-	0.13981873	No
				0.102516599		
row_32	SOD1	6647	8616	-	0.10543617	No
row 22		2067	9901	0.127981603	0.00622662	No
10w_55	ERCCI	2007	8001	- 0.138987169	0.09022002	NO
row 34	EXOSC9	5393	9005	-	0.08597218	No
				0.151375443		-
row_35	ARHGDI	396	9031	-	0.091114	No
	А			0.152561575		
row_36	ABCC1	4363	9293	-	0.07675499	No
	FOFF	2250	0720	0.170062497	0.04044076	NI-
row_37	FGF5	2250	9738	-0.20191215	0.04814876	NO
row 38	KRT7	3855	9795	-	2	Νο
				0.206292331		
row_39	MYBL1	4603	10218	-	0.02832496	No
				0.240522489	7	
row_40	RABEP1	9135	10340	-	0.02997479	No
			400.45	0.252530605	2	
row_41	CCNH	902	10345	-	0.04173521	NO

				0.253113359	7	
row_42	AP2B1	163	10547	-0.27699697	0.03766097	No
row_43	SERPINB	5055	11077	-	0.00924608	No
	2			0.359076947	1	
row_44	CD9	928	11210	-0.38908869	0.01647884	No
row_45	GREM1	26585	11395	-	0.02188898	No
				0.444678873	6	

Supplemental Table 3: "Hinata_NFKB_Targets_Fibroblasts_Up" data set. List of genes of corresponding to one of the Molecular Signatures Database that was significantly enriched in co-cultured samples (q value < 0.1). More information is available at http://www.broadinstitute.org/gsea/msigdb/search.jsp

Table S4: "Kegg_Cytokine_Cytokine Receptor_Interaction" data set

NAME	PROBE	DESCRIPTION (fro	RANK IN	RANK	RUNNING	CORE
		m dataset)	GENE LIST	METRIC	ES	ENRICHMEN
				SCORE		Т
row_0	IL8	3576	0	5.01120424	0.23010653	Yes
				3		
row_1	CCL2	6347	2	1.60873210	0.30389053	Yes
				4		
row_2	IL6	3569	10	1.08537948	0.35312453	Yes
				1		
row_3	LIF	3976	58	0.6397416	0.37843892	Yes
row_4	CCL5	6352	236	0.43916779	0.38330927	Yes
				8		
row_5	VEGFA	7422	280	0.41797137	0.39878598	Yes
				3		
row_6	CCL3	6348	338	0.39905655	0.41218433	Yes
				4		
row_7	CX3CR1	1524	342	0.39712306	0.43016034	Yes
				9		
row_8	IL1RAP	3556	344	0.39592424	0.44825414	Yes
row_9	IL9	3578	357	0.38877651	0.46506917	Yes
				1		
row_10	OSMR	9180	402	0.37210154	0.4783532	Yes
				5		
row_11	CXCL2	2920	490	0.34427973	0.48664382	Yes
				6		
row_12	IL15	3600	591	0.32466104	0.4929102	Yes
				6		

row_13	TNFRSF4	7293	612	0.32158613 2	0.5059486	Yes
row_14	LTBR	4055	714	0.30587786 4	0.51126605	Yes
row_15	VEGFB	7423	745	0.30208110 8	0.5225447	Yes
row_16	IFNGR2	3460	750	0.30118727 7	0.53602904	Yes
row_17	IL13RA1	3597	931	0.27499616 1	0.5331017	Yes
row_18	IL4R	3566	1026	0.26367092 1	0.53708595	Yes
row_19	IL5RA	3568	1166	0.24827989 9	0.5364748	Yes
row_20	TNFRSF14	8764	1195	0.24523098 8	0.5453158	Yes
row_21	IFNAR1	3454	1258	0.23960320 7	0.55096024	Yes
row_22	IL7R	3575	1526	0.21672654 2	0.53783906	No
row_23	CSF1R	1436	2193	0.16957148 9	0.48807278	No
row_24	CRLF2	64109	2200	0.16917210 8	0.4953224	No
row_25	EGFR	1956	2683	0.14107362 9	0.460148	No
row_26	CXCL13	10563	2798	0.13553474 8	0.4565202	No
row_27	TNFRSF21	27242	3082	0.12177877 1	0.4376565	No
row_28	GHR	2690	3202	0.11634001 9	0.4327152	No
row_29	IL24	11009	3294	0.11218769 8	0.43000287	No
row_30	IFNAR2	3455	3298	0.11188139 8	0.43488106	No
row_31	ACVR1B	91	3300	0.11176179 3	0.43992656	No
row_32	ACVR1	90	3600	0.09842582 8	0.4186079	No
row_33	TNFSF4	7292	3816	0.08833766 7	0.4040849	No
row_34	TNFRSF10 B	8795	3992	0.08117347 2	0.39268953	No
row_35	VEGFC	7424	4016	0.08010564	0.3943803	No
row_36	PDGFC	56034	4435	0.06143755 1	0.36107972	No

row_37	IL20RB	53833	4739	0.04841123 9	0.3371188	No
row_38	ACVRL1	94	5542	0.01445106	0.26847717	No
row_39	TGFB2	7042	5646	0.01037049 4	0.26005256	No
row_40	TNFRSF12 A	51330	5704	0.00800554 3	0.25549448	No
row_41	BMPR1A	657	5847	0.00197163 6	0.24331401	No
row_42	IL17RA	23765	5868	0.00121918 1	0.24164169	No
row_43	TNFRSF25	8718	6437	- 0.02204335 9	0.19356988	No
row_44	TNFSF13B	10673	6447	- 0.02293503 5	0.19384529	No
row_45	LEP	3952	6479	- 0.02432068 4	0.19228317	No
row_46	IFNA21	3452	6590	- 0.02994170 6	0.18415235	No
row_47	IFNW1	3467	6656	- 0.03275006 6	0.18003917	No
row_48	CD40	958	6871	- 0.04217421 3	0.16348283	No
row_49	LEPR	3953	6890	- 0.04308211 4	0.16390562	No
row_50	KITLG	4254	7089	- 0.05139417 6	0.14915529	No
row_51	TGFBR2	7048	7468	- 0.06936360 9	0.1196753	No
row_52	BMPR2	659	7605	- 0.07476073 5	0.11135568 5	No
row_53	IL9R	3581	7687	- 0.07844682 8	0.10795818	No
row_54	IL11RA	3590	7800	- 0.08328530	0.10210398	No

				9		
row_55	TNFSF9	8744	8270	- 0.10969784 9	0.06661226 6	No
row_56	EDA2R	60401	8322	- 0.11253484 3	0.0673725	No
row_57	MET	4233	8388	- 0.11628792 4	0.06709525	No
row_58	PDGFRB	5159	8455	- 0.12006937	0.06690522	No
row_59	КІТ	3815	8507	- 0.12213832 9	0.06810643	No
row_60	CXCL12	6387	8984	- 0.15040044 5	0.03387880 7	No
row_61	IL10RB	3588	8995	- 0.15075901 2	0.03993727	No
row_62	IL25	64806	9004	- 0.15136028 8	0.04619616 6	No
row_63	CCL25	6370	9070	- 0.15522655 8	0.04770691 7	No
row_64	CLCF1	23529	9157	- 0.16119855 6	0.04767716 7	No
row_65	FAS	355	9181	- 0.16268594 6	0.05315989 3	No
row_66	ACVR2A	92	9190	- 0.16319210 8	0.05996209	No
row_67	TNFRSF19	55504	9228	- 0.16624769 6	0.06439855	No
row_68	TNFSF12	8742	9245	- 0.16746214	0.07070549 6	No
row_69	CCL3L1	6349	9473	- 0.18338505 9	0.05950993	No
row_70	TNFRSF1A	7132	9890	- 0.21418656 4	0.03339619 2	No

row_71	CCL26	10344	10555	-	-	No
				0.27821278	0.01120860	
				6	1	
row_72	TNFRSF11	4982	10654	-	-	No
	В			0.29259932	0.00624162	
					4	
row_73	TNFRSF6B	8771	10929	-	-	No
				0.33169877	0.01468838	
				5	7	
row_74	PDGFRA	5156	11131	-	-	No
				0.37205007	0.01497395	
				7	1	
row_75	TSLP	85480	11155	-	3.46E-04	No
				0.37692406		
				8		
row_76	PPBP	5473	11338	-	0.00392725	No
				0.42049861	6	
row_77	PLEKHO2	80301	11493	-	0.01348113	No
				0.49788022	9	

Supplemental Table 4: "Kegg_Cytokine_Cytokine Receptor_Interaction" data set. Another gene set of the Molecular Signatures Database that was significantly enriched in co-cultured samples (q value < 0.1). More information is available at http://www.broadinstitute.org/gsea/msigdb/search.jsp

Table S5: Clinical data for leukemia patient samples

Patient #	Source	Dx	% Blast	Status	Cytogenetics
1	РВ	ALL	90%	new dx	Diploid
2	РВ	ALL	87%	new dx	Hyperdiploid clone 49,XY,t(6;14;12)(q27;q31;p11.2),+8,+13,+18[3]
3	РВ	ALL	74%	relapse/refractory	Hyperdiploid metaphases 52~54, inv(1)(p36.2q31),+4,+6, add(7)(p21),+9,-10,+14,+17,+21,+1~4mar[cp10]
4	РВ	ALL	57%	new dx	Pseudodiploid
5	РВ	ALL	42%	new dx	Diploid
6	РВ	AML	79%	new dx	Pseudodiploid clone 46,XY,+13,17p+,-20[10]
7	РВ	AML	78%	relapse/refractory	Hypodiploid
8	PB	AML	98%	relapse	Pseudodiploid clone 46,XX,der(16)del(16)(q22q22)inv(16)(p13q22),t(16;21)(p11.2;q22)
9	BM	AML	51%	relapse/refractory	Pseudodiploid clone 46,XX,t(11;19)(q12;q13.3),add(12)(p13)[12]
10	РВ	AML	96%	primary refractory	Pseudodiploid clone 46,XY,t(9;11)(p22;q23)
11	РВ	AML	24%	new dx	Hypodiploid clones 45,XY,-7
12	РВ	AML	67%	relapse	Hyperdiploid clone 47,XX,+8[20]
13	РВ	AML	67%	relapse	not data
14	РВ	AML	42%	relapse	not data
15	РВ	AML	82%	new dx	not data

Supplemental Table 5: ALL and AML Patients Clinical Data. PB: peripheral blood. BM: bone marrow. Dx: Diagnosis. New dx: newly diagnosed.

Patient #	source	%Blast	Cytogenetics	status	FAB	age	gender
1	BM	45%	47,XX,t(9;11)(p22;q23),+der(9)t(9;11)[17]	w/o maturation	AML-M1	21	F
2	BM	85	Diploid female karyotype 46,XX[20]	w maturation	AML-M2	25	F
3	BM	93	Diploid male karyotype 46,XY[20]	N/A	AML-M1	64	М
4	ВМ	58%	Pseudodiploid clone 46,XX,del(5)(q13q34)[20]	N/A	AML w/ MULTILINEAGE DYSPLASIA	70	F
5	BM	61%	48,XY,-7,+8,der(10)t(10;13)(p13;q14),+11,+15[19]	N/A	AML-M5a	73	М
6	BM	63%	46,XX,inv(3)(q21q26)[18]	N/A	N/A	75	F
7	BM	95%	Diploid female karyotype 46,XX	N/A	AML-M4	63	F
8	BM	86%	Diploid female karyotype 46,XX	w/ mamturation	AML-M2	21	F
9	BM	35%	Diploid male karyotype 46,XY[19]	persistent w/multiple dysplacia	N/A	80	М
10	BM	73%	Diploid male karyotype 46,XY	N/A	RAEB-T	62	М
11	BM	55%	Pseudodiploid clones 46,XY,del(5)(q15q33),add(12)(p11.2)	N/A	AML-M4	49	М
12	BM	70%	Pseudodiploid clone 46,XX,t(8;21)(q22;q22)[10]	persistent/relapse	N/A	57	F

Table S6: Clinical data for AML-BM–MSC patient samples

Supplemental Table 6. Clinical data for AML-BM MSC patient samples (n = 12). FAB: French-American-British (FAB) classification system.

Table S7: Primers used	l for SYB	R Green qF	RT-PCR	validation
------------------------	-----------	------------	--------	------------

Gene name	Primer designation	lenght	sequence
VCAM-1	VCAM-1-SyBR-FW	24	GAG GGG ACC ACA TCT ACG CTG ACA
	VCAM-1-SyBR-rev	21	ATC GGC TTC CCA GCC TCC AGA
TNFAIP3	TNFAIP3-SyBR-FW	20	CCG GCT GCC CCT TCA CAC TG
	TNFAIP3-SyBR-rev	20	TCC TGG AGG CAG GCT TGG CA
IL8	IL8-SyBR-FW	23	TGC AGC TCT GTG TGA AGG TGC AG
	IL8-SyBR-Rev	21	TGT GTT GGC GCA GTG TGG TCC
IL6	IL6-SyBR-FW	20	TCC ACA AGC GCC TTC GGT CC
	IL6-SyBR-Rev	21	TGT CTG TGT GGG GCG GCT ACA
CCL2	CCL2-SyBR-FW	21	TCG CAC TCT CGC CTC CAG CAT
	CCL2-SyBR-Rev	22	ACA GCA GGT GAC TGG GGC ATT G
IL-1β	IL1B-Sybr-rev	21	TTT TTG CTG TGA GTC CCG GAG
	IL1B-Sybr-FW	22	TTC GAC ACA TGG GAT AAC GAG G
IL-1α	IL1A-Sybr-Rev	22	ACT TTG ATT GAG GGC GTC ATT C
	IL1A-Sybr-FW	21	TGG TAG TAG CAA CCA ACG GGA

Supplemental Table 7. List of primers used for qRT-PCR validation of NF-kB target genes. Sets of primers were designed with Primer-Blast (NCBI) and specificity verified by PCR.

Supplemental Figure 1. Gene expression changes in BM-MSC induced by co-culture with REH cells. A, Experimental workflow of leukemia–BM-MSC co-culture experiments. Cells were co-cultured and separated by FACS based on their positive staining for CD90 (Thy-1) (BM-MSC marker) and CD45 (leukemia cells marker). Total RNA from either monocultured or co-cultured CD90 positive BM-MSC was amplified and hybridized to Illumina HT12 version 4 human whole-genome arrays. Data were processed and analyzed as described in Methods and differentially-expressed probes (DEP) were clustered and subjected to gene set enrichment analysis (GSEA). B, cDNA array fold expression change of a selected group of NF- κ B transcriptional targets in co-cultured BM-MSC compared to the monocultured BM-MSC from three independent co-culture experiments.

Supplemental Figure 2. Representative example of Fluorescence Activated Cell Sorting (FACS) profiles of co-cultured BM-MSC/leukemic cells used for FACS-sorting of purified populations. Monocultured leukemic cells (A) and BM-MSC (B) or co-cultures of leukemic cells and BM-MSC (C) were stained with Phycoerythrin (PE)-conjugated anti-human CD45 antibody (leukemic cells marker) and Allophycocyanin (APC)-conjugated anti-human CD90 (Thy-1) antibody (BM-MSC marker) and separated as indicated in Supplemental Methods.

Supplemental Figure 3. Examples of gene enrichment plots corresponding to BM-MSC in coculture conditions. The list of genes corresponding to each enrichment plot can be found in Supplemental Tables 3 and 4 respectively.

Supplemental Figure 4. Co-culture with OCI-AML3 cells induces p65 (NF- κ B) activation and nuclear translocation in BM-MSC. BM-MSC were cultured alone (monoculture) or co-cultured with OCI-AML3 cells for 24 hours and then fixed with 4% PFA. Immunofluorescence staining for p65/RelA shows p65 translocation into BM-MSC nuclei upon interaction with OCI-AML3 cells in co-culture conditions. Nuclei were counterstained with DAPI. Scale bar: 10 µm. Arrows point at absence (monoculture panel) or presence (co-culture panel) of p65 in nuclei of BM-MSC.

+ Doxo

Supplemental Figure 5. Blockade of NF-κB activation decreases viability in leukemic cells when combined with standard chemotherapy. REH (A and D), RS4;11 (B, E and F) and OCI-AML3 (C) cells were cultured alone (monoculture) or co-cultured with BM-MSC as indicated in Methods. Monocultured and co-cultured cells were treated for 72 hours with either vincristine (VCR, A and B) or doxorubicin (Doxo, C, D, E and F) as monotherapy or in combination with one of the IKKβ inhibitors MLN120B (MLN, A, B and C) or CDDO-Me (D, E and F). The absolute number of viable cells (A, B, C, D and F) was and calculated by subtracting the absolute number of apoptotic cells (annexinV⁺/DAPI⁺) to the total number of cells determined by flow cytometry using annexin V⁺/DAPI⁺ staining and counting beads. The percentage of apoptotic cells (annexinV⁺/DAPI⁺) (E) was assessed by flow cytometry using annexin V⁺/DAPI⁺ staining and counting beads. Results are expressed as the mean of the absolute number of viable cells (± SEM) (A, B, C, D and F) and the mean of the percentage of annexin V⁺/DAPI⁺ (± SEM) (E) of three independent experiments. The symbol (*) indicates a statistically significant difference at *P* ≤ 0.05. AnnV: annexinV.

Supplemental Figure 6. Effect of NF- κ B inhibition in combination with standard chemotherapy on primary leukemia samples. Three AML primary samples were cultured alone (monoculture) or co-cultured with BM-MSC as indicated in Methods. Monocultured and co-cultured cells were treated for 48 hours with AraC (1 μ mol/L) as monotherapy or in combination with MLN120B (MLN). The percentage

of apoptotic cells (annexinV⁺/DAPI⁺) was assessed by flow cytometry using annexin V⁺/DAPI⁺ staining and counting beads. Results are expressed as the mean of the percentage of annexin V⁺/DAPI⁺ (\pm SEM) of three independent experimental replicas. The symbol (*) indicates a statistically significant difference at $P \le 0.05$. AnnV: annexinV.

В

Oil Red O

Supplemental Figure 7. Characterization of BM-MSC expressing I κ Ba-SR. (A) Western blot analysis of lysates from BM-MSC stably transduced with empty control or I κ Ba-SR lentivirus. β -tubulin was used as loading control. MW: Molecular weight marker. **B**, Osteoblastic and adipogenic differentiation in MSC-Control and MSC–I κ Ba-SR. The calcium deposits, indicative of osteocytes, were detected with alizarin red and alkaline phosphatase. Accumulation of lipids droplets was detected with oil red O. Photographs are representative of three independent wells.

Supplemental Figure 8. Imaging and measurement of osteoblastic activity in fully developed extramedullary bones. Extramedullary bones with similar morphology were developed from control BM-MSC and I κ B α -SR-transduced BM-MSC (upper panel; left and right, respectively). Osteoblastic activity in extramedullary bones was measured by injecting mice with OsteoSense 750 (lower panel). Approximately 24 h after OsteoSense 750 injection, mice were sacrificed and extramedullary bones were removed and scanned with a VisEn FMT 2500 imaging system to detect the emerging fluorescence signal. Average radiance is expressed as photons per second per centimeter squared per steradian (p/s/cm2/sr).

Supplemental Figure 9. BM biopsy from a consented ALL patient. The patient was a 33 year old Hispanic female, who presented to our institution on 01/03/2007 and was diagnosed with PH-negative, CD20-negative B lymphoblastic leukemia/lymphoma. The patient did not receive any therapy before the admission. The immunohistochemical studies were performed on diagnostic bone marrow biopsy core. Subsequently, the patient received hyper-CVAD therapy and achieved complete remission. The patient remained in complete remission at her last follow-up visit on 9/12/2013. Arrows indicate CD90-positive (brown staining) BM stroma cells showing nuclear localization of phospho-NF-κB p65 (Ser276) (red staining). Nuclear localization of phospho-NF-κB p65 is also observed in some CD90-negative ALL blasts.

Supplemental Figure 10. Direct leukemia–BM-MSC contact is needed to fully activate NF- κ B transcriptional activity in BM-MSC. BM-MSC were cultured alone (monoculture) or co-cultured with REH (upper panel) or OCI-AML3 (lower panel) cells for 24 hours. A second set of BM-MSC was incubated with the corresponding conditioned medium from leukemia cells that were previously cultured alone for 24 hours (i.e., the BM-MSC plus the conditioned medium). After separating leukemia cells from BM-MSC as indicated in Methods, total RNA from BM-MSC was extracted and qRT-PCR was carried out to detect the expression of a selected group of NF- κ B target genes. Results of three independent experiments are expressed as the mean fold increase (\pm SEM) in different culture conditions over the expression levels in the monocultured BM-MSC in basal (not-conditioned) medium.

Supplemental Figure 11. The interaction between leukemic cells and BM-MSC is required to trigger the stroma-mediated chemoresistance. (A) Western Blot analysis of cytosolic (CF) and nuclear (NF) fractions of lysates from OCI-AML3 cells cultured for 1 hour on VCAM-1 coated-dishes (VCAM-1 +) or regular culture plates with (+) or without MLN-120B. (B) OCI-AML3 cells were cultured on VCAM-1 coated-dishes (VCAM-1) or regular culture plates (control). After 24 hours, cells were treated with Doxo alone or in combination with MLN-120B for another 72 hours. (C) OCI-AML3 cells cultured alone (monoculture) or with BM-MSC (co-culture) in control medium. Conditioned mediums from 48 hours cultures of BM-MSC alone (CM-monoculture) or BM-MSC/OCI-AML3 co-cultures (CM-coculture) were clarified, filtered and used to culture two more sets of OCI-AML3 monocultures. Cells

were treated for 72 hours with control vehicle or Doxo. The percentage of apoptotic cells (annexinV+/DAPI+) and the absolute number of viable cells was assessed by flow cytometry as previously mentioned. Results are expressed as the mean of the percentage of annexin V+/DAPI+ (\pm SEM) (**B** and **C**) or mean absolute number of cells (\pm SEM) (**D**) of three independent replicas. The symbol (*) indicates a statistically significant difference at P \leq 0.05. AnnV: annexinV.