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Supplemental METHODS

RNA preparation for HelicosCAGE

RNA was first isolated from the 9 MC samples specified above using the QIAGEN miRNEasy
kit (cat#: 217004). To remove contaminating heparin, which inhibits reverse transcriptase,
RNA samples were treated with heparinase (Sigma H2519-50UN) using a modification of
Gilchrist et al.” Briefly, a 50 pl reaction containing 10 ug total RNA, 1 unit heparinase, 40 units
RNAsin (Promega N2111), 5 mM Tris pH 7.5, 1 mM CaCl2 was incubated at 22° C for 2 h.
The sample was then cleaned using a minelute column (QIAGEN cat#: 74204), with the
following modification to keep small RNAs. At step 2, 1.5 volumes of 100% ethanol were used.

5 ug of total RNA was then subjected to the Helicos CAGE protocol.?

Bioinformatics analysis

Data Extraction

We used samtools® to extract the raw data counts for each Transcription Start Site (TSS) from
all FANTOMS .bam files (Forrest et al., manuscript submitted January 2013). Approximately, 4
million CAGE tags for each library were aligned to the genome (Hg19). For each TSS, s, we
estimated a mapping quality score Qg, Qs = —10 X log,ops’. Term pY denoted the posterior
probability that s was incorrectly mapped and was estimated by approximation.* Only TSSs
with p¥ < 1% were kept for further analysis, corresponding to Q; = 20 (Forrest et al.,
manuscript submitted January 2013). The quality mapped TSSs were grouped into CTSS
(clusters of TSS with common start site).

The CTSS data were the summarized counts from all TSS included in the cluster (summation
per sample). Then, “robust” and “permissive” Decomposition-based Peaks (DPI) were
estimated (Forrest et al., manuscript submitted January 2013). These DPI peaks were
annotated based on known transcript 5’-ends within 500 bases. We extracted the CAGE tags
for 9 Mast Cell samples from the “robust” DPI peaks. The data consisted of 3 friplicated

conditions: ex vivo MCs, cultured MCs (expanded) and cultured MCs (expanded & stimulated).
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The raw counts K; ; of each promoter i,i = 1,..,N (N = 184,827), and sample j,j = 1,...,] (J =
9), were used for pre-processing (normalization and filtering) and subsequently for the main
bioinformatics/statistical analysis (differential expression, correlation, multivariate analysis). To

obtain the raw count data K jfor each gene and other transcribed regions g in sample j, we

summarized the promoter counts as K, ; = Y51 K;, ;, where P is gene’s/transcribed region’s g

g
number of promoters. Similar to the above pre-processing and main analysis steps were
followed. For simplicity, hereafter we will use the term DPI for promoters, genes for the

RefSeq annotated genes and regions for the whole set of genes and other transcribed regions.

Data filtering

We applied a pre-processing, filtering step on the DPI and the region data, separately, in order
to keep only expressed DPIs/regions for further analysis. Filtering consisted of viewing the
data and identifying an arbitrary cut-off with both biological and mathematical significance: the
DPIs (or/and regions) falling below the cut-off are not expressed (CAGE expression counts
are very low) and, in this sense, they did not contribute biologically in differential expressions
analysis. Removing those DPls/regions we reduced the dimensionality of the study, estimated
dispersions from the expressed candidates and minimized the false positives/negatives. The
procedure is part of both the DESeq®® and edgeR"? algorithms that are widely used in RNA-
seq differential expression.

The DPIs (and likewise the regions’) filtering consisted of the following steps (to simplify the
notation we use {i,g} subscript to denote the processing of DPI or the region data,

respectively): (i) In order to adjust for the unequal sample library sizes, we transformed Kj; 4 ;
into tags-per-million (TPM). The TPM-transformed data were obtained as tmp(K{i_g},j) =
(Kii,gy,; X 1e +6) /3.1 Ky 153 (if) we transformed the original counts into vst(Ky; g3 ;). i.€. the

variance stabilized (generalized log transformation) expressions, by the R function

varianceStabilizing Transformation;>® (iii) we filtered out the DPIs/regions with tprm(Kggyj) <t

in at least J* samples in all experimental conditions (ex vivo MCs, cultured MCs expanded and
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cultured MCs expanded and stimulated). We varied t to take values {0.5,1,1.5,2}
(Supplemental Figure 1A, left); (iv) using vst(Ky g4, ;) , we plotted the histograms of
DPIs/regions intensities for each sample and associated each ¢ level to vst(Ky; g3 ;), i.e. we
found which VST expression level corresponds to the TPM cut-off ¢, {t = 0.5,1,1.5,2}. In short,
steps (i)-(iv) attempt to find the minimum TPM that removes most of the background noise (the
left end of the vst(Ky; 5 ;) densities).

In the promoter level, we ended up with t = 1 for at least J* > 2 corresponding to vst(K{i,g}_j) =
3.2 and leaving for further study 55,355 DPIs. In the region level, we ended up with t = 1 for at
least J* > 2 (Supplemental Figure 1A, left) corresponding to vst(l{{i,g},j) = 3.5 (Supplemental

Figure 1A, right) and leaving for further study 33,515 RefSeq genes and other transcribed

regions.

Principal Component Analysis and heatmaps

We ran the quality control algorithm of the Bioconductor R package arrayQualityMetrics
(Bioconductor 2.11) to the filtered vst(K, ;) data matrix’ (see paragraph ,Data Filtering“ for
vst(K, ;) description). Package arrayQualityMetrics checked for possible outlier samples
through a series of visual, descriptive and statistical tests. Among them are heatmap / bi-
clustering, density plots and Principal Components Anaysis (PCA). All heatmaps and PCA
modelling of the main text were based on the filtered vst(K) expressions using functions of

the arrayQualityMetrics R package.

Correlation and multivariate analysis of the FANTOMS blood cell samples

We estimated the correlation pattern of the 50 FANTOMS5 blood cell samples (Forrest et al.,
manuscript submitted January 2013) by the function cor.test in R. We calculated all possible
0.5 x 50 x 49 Pearson correlation coefficients and the respective p-values of the 50 samples

from the filtered vst(K, ;) data® (see paragraph ,Data Filtering* for vst(Ky ;) description). To
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relax the distributional assumption of normality we also estimated the rank-based Kendal
correlations.’

We ran PCA on the same 50 blood cell samples and selected by scree plot® (R function
screeplot) the first 3 principal components (PC1-3), explaining approximately 82.3% of the
total data variance (the cumulative variances explained by the 3 components were: 69%, 77.3%
and 82.3%; the addition of the forth component added only 2% more). We plotted PC1 vs PC2
and PC1 vs PC3 (Figure 4A). PC1 separated the samples by the different compartments the
cells were derived from (blood, skin, bone marrow) and treatments (cultured vs. ex vivo). It
placed ex-vivo MCs and cultured MCs in different groups (Figure 4A left). PC2 mainly
separated lymphoid from myeloid cells. PC3 showed the uniqueness of MCs compared to
other blood samples as it clearly separated both ex-vivo and cultured MCs from the rest

(Figure 4A right).

Model goodness of fit

I"° vs Poisson-Tweedie'", is more

We tested which of the competing models, Negative Binomia
appropriate for analyzing the data. Poisson-Tweedie is a generalization of the Negative
Binomial distribution®, obtained as a mixture of overdispersed Poisson and Tweedie
distributions. The respective algorithm of the tweeDESeq R package'” was applied on the
filtered DPI and region counts. The null hypothesis that the data fit the Negative Binomial
model was tested with the likelihood ratio (LR) test'" and the visually informative quantile-
quantile (QQ) plot for model selection (Supplemental Figure 1B, left). The test statistic did not

offer enough evidence to reject the null hypothesis (LR p-value = 0.376), which was also

reflected in the QQ-plot of the deviance statistics.

Differential expression analysis
We employed two alternative models, DESeq® and edgeR’, suggesting different

parameterization and dispersion estimation algorithms, to identify sets of differentially
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expressed DPIs and regions (from which we extracted the significant genes) between MCs
treatment groups. Using as input the filtered counts of each dataset, we followed the
experimental design and compared ex vivo MC vs cultured MC expanded and cultured MC
expanded vs cultured MC expanded and stimulated. The common DESeq/edgeR hits of each
comparison (as identified by the Benjamini-Hochberg (BH) adjusted p-values™ at significance
level 1%) were considered the most reliable targets. DESeq dispersions were estimated by
Cox-Reid, pooled-CR parameterization. In edgeR we estimated the tagwise dispersions®,
whose fit we QQ-plotted in Supplemental Figure 1B (right).

The estimated log Fold Changes and BH adjusted p-values are given in Supplemental Tables
3a-c and 4a-c. The former set of tables gives the up-, down- and non-differentially regulated
genes of ex vivo MC vs cultured MC expanded, respectively. Each gene’s differentially
expressed promoters are also depicted. Similar results for the cultured MC expanded vs
cultured MC expanded and stimulated comparison are given in the latter set of tables.
Supplemental Table 8a-c shows the comparison between the ex-vivo MCs vs basophils (3
FANTOMS5 CAGE samples from independent donors), conducted in the same way as above.
The ex-vivo MC samples were the most similar to basophils according to the correlation and

PCA analysis (Figure 4A).

Promoter hyperactivity

We estimated for each cell type C= {c=1,..,41=ex—vivoMCs,2 = cultured
(expanded) MCs, 3 = cultured (expanded and stimulated) MCs,4 = basophils} the t{pm mean
of replicates p; ;e ¢,y and py«jec,y Where g* denotes the genes and j € C. the samples of
each of the four cell types. Next, we defined the set C' ={c=1,2;1=all FANTOMS
samples without MCs,2 = all FANTOMS samples without basophils}. For each of the MCs
types, we estimated the fold changes FCic, = Pigje Cc}/ﬂi,{j ec;y and
Corc, = uug*,{jECc}/Hg*,{jecl’} . For basophils we estimated FC;., = Hi,{jec4}/#i,{jec2’} and

FCyc, = By (j e c)/ By (je cpy IN @ similar fashion.
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These fold changes indicated the promoters and genes, respectively, that were highly
expressed in each cell type compared to the rest of the FANTOM5 samples. Using them, we
found promoters i that are hyperactive in each MCs type and in basophils compared to their

associated gene g, i.e. promoters with FCic, /FCgy ;> 50. The analytical results are given in

Supplemental Tables 5a-d.

Swapping promoters

An interesting finding of the MCs differential expression analysis is the identification of four
differentially expressed and two non-differentially expressed genes having both up-regulated
and down-regulated promoters in ex vivo MC vs cultured MC comparison. We present the
gene names/locations, the promoter names/locations and the differential expression statistics

(fold changes and BH P-values) at Supplemental Table 6.

Motif analysis

We run Motif Activity Response Analysis (MARA') to generate the motif activities, estimate
differential activity p-values and extract motif importance scores for each C, (see paragraph
“Promoter hyperactivity” for the C. definition) as in Forrest et al. (manuscript submitted
January 2013). Denote by K; ; the expression level of promoter i in sample j, by S;,, the
predicted number of functional sites for motif m in promoter i and 4,, ; the activity of motif m in
sample j. Assuming Gaussian noise, we fit the model K;; = ¥ (Sim — Sm) X Ay j +noise
where S, is the mean of S ,,, across the promoters. The model’s likelihood and 4,, ; parameter
of interest are estimated by the Bayesian maximal posterior probability which is determined by
the Singular Value Decomposition'. From this we calculate the standard error of Am,js Omj
and subsequently the z-statistic z,,, ; = Ay, j /o, ;-

To estimate differential activities among the C.’s, we exploit the Gaussian noise assumption
and fit two linear weighted regression models: the full model A,, ; = a;, + B, X Group; +

noisen, ; and the reduced/nested 4,, ; = an." Variable Group takes values 0 or 1 depending
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on which of the C, the 4,, ; belongs to. For example to estimate differential activity between
ex-vivo and cultured (expanded) MCs, Group takes O’s for the j's belonging to ex-vivo and 1’s
otherwise. The weights of the regression are the estimated a,,, ;. We compare the two nested
models with the Likelihood ratio test” and estimate the associated BH P-values. When the BH
P-value is lower than 0.01, we conclude that the mean motif activity in the first C, (e.g. ex-vivo
MCs) are significantly different from the mean motif activity in the second C, (e.g. cultured
(expanded) MCs). These results are obtained for all comparisons of interest: ex-vivo MCs vs
cultured (expanded) MCs, cultured (expanded) MCs vs cultured (expanded and stimulated)
MCs, ex-vivo MCs vs basophils and each of the C,’s versus the rest of the FANTOMS samples
as before (paragraph “Promoter hyperactivity”).

Finally, we calculate an overall importance of the motif by averaging the absolute values of
Zm,je CC.M Supplementary Table 7 depicts the differential activity p-values and the ranks of the
motifs based on the importances (the most important motif is ranked as 1, the second most

important as 2 and so on).

MC treatments

For functional studies involving BMPR1, MCs were treated with BMP2/BMP4 (both from R&D

Systems, Wiesbaden, Germany) for the times and at the concentrations given in the Figure 1

legend prior to RNA extraction, stimulation, re-stimulation and histamine release experiments.

For the single stimulation experiment, MCs were pre-treated with BMP4 and after 24 h

assayed for histamine release. To assess the effect of BMP on MC recovery from

refractoriness, MCs were stimulated with AER-37 for 2 h and then washed twice to remove
unbound antibody. Cells were re-plated in fresh media with/out the addition of BMP4 (20 ng/ml)
and SCF (100 ng/ml). After 48 h, MCs were stimulated by a second round of FceRI-
crosslinking and the released histamine quantified. For survival assessments, MCs were
plated at 5x10* cells per 100 pl in 96-well-plates in the presence of the mediators given in the

figure.
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Reverse transcription-quantitative PCR (RT-qPCR)

RT-gPCR was performed as described.”'® Briefly, total RNA was isolated using the RNeasy
Total RNA Kit, digested with RNAse free DNAse (Qiagen, Hilden, Germany), and PCR carried
out with the LC Fast Start DNA Master SYBR Green kit (Roche Applied Science). Primers for
c-kit were 5’-CTATGCTCTCGCACCTTTCC and 5- CAATGAAGTGCCCCTGAAGT; those for

tryptase 5-CACCTTGGCGCCTACACGGG and 5-CACCTTGCACACCAGGGGCC. Other

primer pairs were as described.”>" Values were normalized to the housekeeping gene B-actin.

Flow-cytometry

Flow-cytometric staining and analysis were performed according to established protocols.” ' In
brief, MCs were blocked for 15 min at 4° C with human AB-serum (Biotest, Dreieich, Germany)
and incubated with anti-OX40L-PE (clone Ik-1, Becton Dickinson) or anti-CD137-PE (clone 4B4,

eBioscience). For negative control, cells were stained with the corresponding isotype control

antibodies (clone MOPC-21, Becton Dickinson and clone eBMG2b, eBioscience).

Histamine release

Quantification of histamine release was performed exactly as described.'®'® In brief, MCs
were re-suspended in PAG-CM (at 1 x 10°/ml), divided into aliquots and challenged at 20,000
cells/tube for 30 min at 37° C with the anti-IgER AER-37 (0.25 pg/ml) or kept in PAG-CM for
spontaneous release. Supernatants were stored at 20° C until measurement. For total
histamine content, mast cells were lysed in 1% perchloric acid for 30 min at 37° C centrifuged
and the cell free supernatants stored at 20° C until measurement. Quantification of histamine
content was performed by an automated fluorescence method, using an autoanalyzer
(Borgwald Technik, Germany, Hamburg) referring to a 5-point histamine standard curve. All

histamine determinations were performed in triplicate.
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IL-31 ELISA
MCs were stimulated with AER-37 for 24 h in serum-free media and the concentration of IL-31

in the supernatants determined by ELISA (R&D Systems, Wiesbaden, Germany).
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Supplemental Figure Legends

Supplemental Figure 1

DPI filtering and model goodness of fit

(A) DPI data filtering Left: Number of remaining regions at TPM cut-off t = 1; Right: Densities
of VST-transformed region data by sample/condition. (B) Quantile-quantile plots for Goodness
of fit. Left: fit of count data to the Negative Binomial model; Right: fit of count data with

Tagwise dispersions to the edgeR model.

Supplemental Figure 2

Upregulation of T cell co-stimulatory receptors and donor-dependent IL-31 induction by
FceRI aggregation

(A) Cultured MCs were analyzed by flow-cytometry for ILA, OX40L expression 24 h following
FceRI crosslinking or with no stimulus Upper panel: mean values from 10 (ILA), and 5 (OX40L)
independent assays * p < 0.05; *** p < 0.001. Lower panel: representative histograms (B).
Quantification of IL-31 in the supernatant of MCs from 10 donors 24 h upon FceRI aggregation.

Note the great inter-individual variability in IL-31 production.

Supplemental Figure 3
Hierarchical clustering results for (A) GATA1/GATA2, (B) MITF, and (C) MRGPRX2
Higher-resolution heatmaps/hierarchical clustering of 50 blood FANTOMS5 samples (as in Fig.

3) are provided.
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Supplemental Figure 4

Promoter Swap in EXOC6B by cultured MCs

Comparison of preferential promoter activity of the EXOC6B gene between ex-vivo and
cultured/expanded MCs. Note that cultured MCs acquire additional promoters barely

expressed by other FANTOMS samples.

Supplemental Table Legends

Supplemental Table 1

Number of differentially expressed DPIs (and RefSeq annotated genes) by method and

MCs comparison

The table contains the number of differentially expressed DPIs (and RefSeq annotated genes)
at BH adjusted P-value significance level = 0.01. Analytical results are given for each method
(edgeR and DESEq; see Supplementary Methods) and each comparison of MC types. The
actual genes, their annotation and the statistical estimates are provided in Supplementary

Tables 3-4.

Supplemental Table 2

Genes overexpressed by MCs

Genes with highest expression in at least one of the 9 MC samples and enrichment by at least
10-fold compared to the mean of all 893 FANTOMS samples. Expression levels (in tpm) are
given individually for each MC preparation, followed by the mean of the 3 MC subsets (ex vivo,
expanded, expanded+stimulated) and of the mean of all MCs. The mean of all FANTOMS
samples and sample with next best expression are also given for comparison. The (putative)

gene function is specified whenever information was available.
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Supplemental Table 3

Comparison between ex vivo and cultured MCs

Differentially expressed and non-differential genes of ex vivo and cultured MCs are given in
separate worksheets (genes form the basis of Fig. 2A/B). Significantly differential promoters

between the MC subsets are also specified.

Supplemental Table 4

Comparison between resting and stimulated MCs

Differentially expressed and non-differential genes of expanded and expanded+stimulated
MCs are given in separate worksheets (genes form the basis of Fig. 2C/D). Significantly

differential promoters between the MC subsets are also specified.

Supplemental Table 5

MC specific promoters and promoter versus gene expression analysis

Given are promoters with at least 50-fold higher activity in MCs than in non-MCs
(FC=mean(MC)/mean(F5 w/o MC) >50). The fold change is likewise calculated for the level of
the entire gene (i.e. all promoters combined). These two levels are compared to each other. At
the top of the list are promoters with greatest selectivity in MCs if contrasted against their
respective genes. At the bottom are those promoters for which full gene activity surpasses
activity of the selected promoter (even though the promoter is still much more active in MCs
than in non-MCs). Ex vivo MCs, expanded MCs, and expanded+stimulated MCs are given in

separate worksheets. Basophils are also included for comparison.
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Supplemental Table 6

Genes with different promoter sets active in ex vivo as compared to cultured MCs

Given is a list of genes, for which the two MC subsets utilize a different set of promoters. No
genes of this kind were detected for expanded versus expanded+stimulated MCs. The

promoter swap for the gene EXOCGEB is illustrated in Suppl. Figure 4.

Supplemental Table 7

Motif activity in MCs

Motif activity was calculated by MARA (supplemental Methods) and is given for ex vivo,
expanded, and expanded+stimulated MCs, as well as for basophils and non-MC blood
samples (used for direct comparison). The motifs are ranked and sorted by “best motif ranking”
for the ex vivo samples. Gene expression levels of the TFs binding to these motifs are also

given for comparison.

Supplemental Table 8
Comparison between basophils and MCs
Differentially expressed and non-differential genes of basophils and ex vivo MCs are given in

separate worksheets (genes form the basis of Fig. 4C/D).
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Supplemental Fig 3B
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Supplemental Fig 4
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Supplemental Table 1

Number of differentially expressed DPIs (and RefSeq annotated genes) by method/comparison

Ex vivo MC cultured MC expanded
Vs VS
cultured MC expanded cultured MC expanded/stimulated
Hev > Hexp Hev < Hexp Hexp > Hexpastim Hexp < Hexpastim
edgeR 7,369 (1,875) 1,392 (838) 104 (84) 638 (260)
DESeq 5,077 (1,322) 922 (583) -2 ---2
Common 4,980 (1,264) 846 (538) 104 (84) 638 (260)

" Uev is the mean of ex vivo samples, pex is the mean of cultured (expanded) samples, pexpssti is the mean of cultured (expanded, stimulated) samples
2 DESeq is not suitable for paired samples comparison
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