Supporting Information for

Ferrous Carbonyl Dithiolates as Precursors to FeFe-, FeCo-, and FeMn-Dithiolates

Maria E. Carroll, Jinzhu Chen, Danielle E. Gray, James C. Lansing, Thomas B. Rauchfuss,* David Schilter, Phillip I. Volkers, and Scott R. Wilson

Page Contents

- S3. Figure S1. ¹H NMR spectrum of Fe(edt)(CO)₂(dppv) (1a).
- S3. Figure S2. ³¹P NMR spectrum of **1a**.
- S4. Figure S3. IR spectrum of 1a.
- S5. Figure S4. ¹H NMR spectrum of Fe(edt)(CO)₂(dppe) (1b).
- S6. Figure S5. ³¹P NMR spectrum of **1b**.
- S7. Figure S6. IR spectrum of 1b.
- S8. Figure S7. ¹H NMR spectrum of Fe(pdt)(CO)₂(dppv) (1c).
- S9. Figure S8. ³¹P NMR spectrum of **1c**.
- S10. Figure S9. IR spectrum of 1c.
- S11. Figure S10. ¹H NMR spectrum of Fe(pdt)(CO)₂(dppe) (1d).
- S12. Figure S11. ³¹P NMR spectrum of 1d.
- S12. Figure S12. IR spectra of 1d.
- S13. Figure S13. ¹H NMR spectrum of Fe(pdt)(CO)₂(dpbbz) (1e).
- S14. Figure S14. ³¹P NMR spectrum of **1e**.
- S14. Figure S15. IR spectrum of 1e.
- S15. Figure S16. ¹H NMR spectrum of $Fe(pdt)(CO)_2(dcpe)$ (1f).
- S15. Figure S17. ³¹P NMR spectrum of **1f**.
- S16. Figure S18. IR spectrum of 1f.
- S17. Figure S19. ¹H NMR spectrum of $Fe(Me_2pdt)(CO)_2(dppe)$ (1g).
- S17. Figure S20. ³¹P NMR spectrum of **1g**.
- S18. Figure S21. IR spectrum of 1g.
- S18. Figure S22. Positive ion ESI mass spectrum of ⁵⁷Fe₂I₄(ⁱPrOH)₄.
- S19. Figure S23. Positive ion ESI mass spectrum of 1d and ⁵⁷1d.
- S19. Figure S24. IR spectrum of ⁵⁷1d.
- S20. Figure S25. IR spectra for $(bda)Fe(CO)_3 + 1d$.
- S20. Figure S26. ³¹P NMR spectrum of $Fe_2(pdt)(CO)_4(dcpe)$ (2f).
- S21. Figure S27. IR spectra of Fe₂(pdt)(CO)₄(dcpe) (2f).
- S22. Figure S28. ¹H NMR spectrum of $[(CO)_3Mn(pdt)Fe(CO)_2(dppe)]BF_4$ ([**3d**(CO)]BF_4).
- S22. Figure S29. IR spectrum of $[3d(CO)]BF_4$ and 3d.
- S23. Figure S30. CV of [**3d**(CO)]BF₄.
- S23. Figure S31. CV of [**3d**(CO)]BF₄ at -78 °C.
- S24. Figure S32. CV of [3d(CO)]BF₄.
- S24. Figure S33. CV of (CO)₃Mn(pdt)Fe(CO)(dppe) and [3d(CO)]BF₄.
- S25. Figure S34. ³¹_aP NMR spectra for $1a + [(acenaphthene)Mn(CO)_3]BF_4$.
- S26. Figure S35. ³¹P NMR spectra for $1e + [(acenaphthene)Mn(CO)_3]BF_4$.
- S27. Figure S36. ³¹P NMR spectra for $1f + [(acenaphthene)Mn(CO)_3]BF_4$.
- S28. Figure S37. EPR spectrum of (CO)₃Mn(pdt)Fe(CO)(dppe) (3d).
- S29. Figure S38. ¹H NMR spectrum of (CO)₃Mn(pdt)(μ -H)Fe(CO)(dppe) (H**3d**).
- S29. Figure S39. ³¹P NMR spectrum of H**3d**.

- S30. Figure S40. ¹H NMR high field spectrum for $H3d + [H(Et_2O)_2]BAr^F_4$. S31. Figure S41. ³¹P NMR spectrum for H3d + 1 equiv $[H(Et_2O)_2]BAr^F_4$.
- S32. Figure S42. ³¹P NMR spectrum for H3d + 2 equiv $[H(Et_2O)_2]BAr^{F_4}$.
- S33. Figure S43. IR spectra for H3d before and after oxidation.
- S34. Figure S44. CV of H3d.
- S35. Figure S45. CV of H3d at various scan rates.
- S36. Figure S46. EPR spectrum of [H3d]BF₄.
- S36. Figure S47. ¹H NMR spectrum of CpCo(pdt)Fe(CO)(dppe) (4d).
- S37. Figure S48. Variable temperature ³¹P NMR spectra of 4d.
- S38. Figure S49. ³¹P NMR spectrum of the reaction of 1d and CpCo(CO)I₂.
- S39. Figure S50. IR spectrum of 4d.
- S40. Figure S51. ¹H NMR spectra for low temperature protonation of **4d**.
- S41. Figure S52. CV of 4d.
- S42. Figure S53. ¹H NMR spectrum of CpCo(edt)Fe(CO)(dppv) (4a).
- S42. Figure S54. IR spectrum of 4a.

Figure S3. IR spectrum of Fe(edt)(CO)₂(dppv) (1a) in THF solution.

Figure S4. ¹H NMR spectrum (500 MHz) of $Fe(edt)(CO)_2(dppe)$ (1b) in CD_2Cl_2 solution.

Figure S5. ³¹P NMR spectrum (202 MHz) of Fe(edt)(CO)₂(dppe) (1b) in CD₂Cl₂ solution.

Figure S6. IR spectrum of Fe(edt)(CO)₂(dppe) (1b) in THF solution.

Figure S7. ¹H NMR spectrum (500 MHz) of Fe(pdt)(CO)₂(dppv) (1c) in CD₂Cl₂ solution.

Figure S8. ³¹P NMR spectrum (202 MHz) of Fe(pdt)(CO)₂(dppv) (1c) in CD₂Cl₂ solution.

Figure S9. IR spectrum of Fe(pdt)(CO)₂(dppv) (1c) in THF solution.

Figure S12. IR spectrum of Fe(pdt)(CO)₂(dppe) (1d) in THF solution and as a solid (inset).

Figure S13. ¹H NMR spectrum (500 MHz) of Fe(pdt)(CO)₂(dppbz) (1e) in CD₂Cl₂ solution.

Figure S15. IR spectrum of Fe(pdt)(CO)₂(dppbz) (1e) in THF solution.

Figure S17. ³¹P NMR spectrum (202 MHz) of Fe(pdt)(CO)₂(dcpe) (1f) in CD₂Cl₂ solution.

Figure S18. IR spectrum of Fe(pdt)(CO)₂(dcpe) (1f) in THF solution.

Figure S19. ¹H NMR spectrum (500 MHz) of Fe(Me₂pdt)(CO)₂(dppe) (1g) in CD₂Cl₂ solution.

Figure S20. ³¹P NMR spectrum (202 MHz) of Fe(Me₂pdt)(CO)₂(dppe) (1g) in CD₂Cl₂ solution.

Figure S21. IR spectrum of Fe(Me₂pdt)(CO)₂(dppe) (1g) in THF solution.

Figure S22. Positive ion ESI mass spectrum of ⁵⁷Fe₂I₄(ⁱPrOH)₄.

Figure S23. Positive ion ESI mass spectrum of *cis/trans*-[⁵⁷Fe(pdt)(CO)₂(dppe)] (⁵⁷1d, top) and *cis/trans*-[Fe(pdt)(CO)₂(dppe)] (1d, bottom) prepared using the same method.

Figure S24. IR spectrum of $cis/trans-[^{57}Fe(pdt)(CO)_2(dppe)]$ (⁵⁷1d) in CH₂Cl₂ solution.

Figure S25. IR spectra of two stages in the reaction $(bda)Fe(CO)_3$ (triangle) + $Fe(pdt)(CO)_2(dppe)$ (1d) (star), and the purified $Fe_2(pdt)(CO)_4(dppe)$ (2d) (diamond).

Figure S26. ³¹P NMR spectrum of $Fe_2(pdt)(dcpe)(CO)_4$ (**2f**) in CD_2Cl_2 . Signal at 107 is impurity present as less than 2%.

Figure S28. ¹H NMR spectrum of $[(CO)_3Mn(pdt)Fe(CO)_2(dppe)]BF_4$ ([3d(CO)]BF₄) in CD₂Cl₂.

Figure S29. IR spectrum of (a) $[(CO)_3Mn(pdt)Fe(CO)_2(dppe)]BF_4$ ([**3d**(CO)]BF₄) at 25 °C and (b) (CO)₃Mn(pdt)Fe(CO)(dppe) (**3d**) at -78 °C in CH₂Cl₂.

Figure S30. Cyclic voltammogram of 1.0 mM $[(CO)_3Mn(pdt)Fe(CO)_2(dppe)]BF_4$ ([**3d**(CO)]BF₄) in CH₂Cl₂ at 25 °C. Conditions are described in the caption for Figure S42 but in this experiment, the scan rate was 1.0 V/s.

Figure S31. Cyclic voltammogram of 1.0 mM $[(CO)_3Mn(pdt)Fe(CO)_2(dppe)]BF_4$ ([**3d**(CO)]BF₄) in CH₂Cl₂ at -78 °C. Conditions are described in the caption for Figure S42.

Figure S32. Cyclic voltammogram of $[(CO)_3Mn(pdt)Fe(CO)_2(dppe)]BF_4$ in CH₂Cl₂, scanning 20 segments without disturbing the solution or polishing the working electrode. Conditions are described in the caption for Figure S42 but in this experiment, the scan rate was 1.0 V/s.

Figure S33. Black trace: Cyclic voltammogram of 1.0 mM $[(CO)_3Mn(pdt)Fe(CO)_2(dppe)]BF_4$ ([**3d**(CO)]BF₄) in THF at 25 °C. Red Trace: Cyclic voltammogram of 1.0 mM (CO)₃Mn(pdt)Fe(CO)(dppe) under identical conditions. *Conditions:* see Figure S42.

Figure S34. ³¹P NMR spectra for stages in the reaction of a 1:1 mixture of $[(\text{acenapthene})\text{Mn(CO)}_3]\text{BF}_4$ with Fe(edt)(CO)₂(dppe) (**1b**) in CD₂Cl₂ solution at 20 °C. From top to bottom reaction time = 15 min, 3.5 h, 30 h, 48 h, 3 weeks). Proposed reaction pathway and isomer assignments are shown below.

Figure S35. ³¹P NMR spectra related to the reaction of $Fe(pdt)(CO)_2(dppbz)$ (1e) and $[(acenaphthene)Mn(CO)_3]BF_4$ to give $[(CO)_4Mn(pdt)Fe(CO)(dppbz)]BF_4$ (CD₂Cl₂ solutions): *Top: unsym*-1e (triangle) and *sym*-1e (circle).

Middle: $1e + [(acenaphthene)Mn(CO)_3]BF_4$ after 3 h (diamond = *unsym*-[(CO)_4Mn(pdt)Fe(CO)(dppbz)]⁺, star = *sym*-[(CO)_4Mn(pdt)Fe(CO)(dppbz)]⁺)

Bottom: Same mixture was allowed to stand 12 h, evaporated and recrystallized from CH_2Cl_2 /hexanes (signals at δ 73.1 and 70.2 are unknown impurities).

Figure S36. ³¹P NMR spectra related to the reaction of $Fe(pdt)(CO)_2(dcpe)$ (**1f**) and $[(acenaphthene)Mn(CO)_3]BF_4$ to give $[(CO)_4Mn(pdt)Fe(CO)(dcpe)]BF_4$ (CD₂Cl₂ solutions): *Top: unsym*-**1f** (diamonds) and *sym*-**1f** (stars). *Bottom:* **1f** + $[(acenaphthene)Mn(CO)_3]BF_4$ after 16 h.

Figure S37. X-band EPR spectra of a mixture of $[(CO)_3Mn(pdt)Fe(CO)_2(dppe)]BF_4$ ([**3d**(CO)]BF₄) and Cp₂Co in 4:1 mixture of THF and toluene frozen at 77 K.

Figure S38. ¹H NMR spectrum of $(CO)_3Mn(pdt)(\mu-H)Fe(CO)(dppe)$ (H3d) in CD_2Cl_2 solution (*Inset:* High field region of spectrum, showing signal for the hydride ligand).

140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 Figure S39. ³¹P NMR spectrum of $(CO)_3Mn(pdt)(\mu-H)Fe(CO)(dppe)$ (H3d) in CD_2Cl_2 solution.

Figure S40. High field region of the ¹H NMR spectra of H**3d** (bottom) and a 1:1 mixture of H**3** and $[H(Et_2O)_2]BAr^{F}_{24}$ (top) in CH₂Cl₂ solution.

Figure S41. ³¹P NMR spectra of H**3d** (bottom) and of a 1:1 mixture of H**3d** and $[H(Et_2O)_2]BAr^F_{24}$ (top) in CH₂Cl₂ solution.

Figure S42. ³¹P NMR spectra of H**3** (bottom) and of a 1:2 mixture of H**3d** and $[H(Et_2O)_2]BAr_{24}^F$ (top). For the top spectrum, J_{P-P} is 21.5 Hz. The signal at $\delta 86$ is an unidentified impurity. *Note:* When the protonation was conducted under an atmosphere of CO, however, the IR spectrum of the reaction mixture did not indicate formation of $[\mathbf{3}(CO)]^+$.

Figure S43. IR spectra of CH₂Cl₂ solutions of (a) (CO)₃Mn(pdt)(μ -H)Fe(CO)(dppe) (H**3d**) before and after treatment with FcBF₄.

Figure S44. Cyclic voltammogram of $(CO)_3Mn(pdt)(\mu-H)Fe(CO)(dppe)$ (H3d) in CH₂Cl₂ solution. *Conditions:* 1.0 mM (CO)₃Mn(pdt)(μ -H)Fe(CO)(dppe) 0.1 M [Bu₄N]PF₆ working electrode: glassy carbon counter electrode: Pt pseudoreference electrode: Ag scan rate = 0.5 V/s

Figure S45. Cyclic voltammograms of $(CO)_3Mn(pdt)(\mu-H)Fe(CO)(dppe)$ (H**3d**) at various scan rates (top) and plot of $i_{pc}/(\text{scan rate})^{1/2}$ (bottom). *Conditions:* See Figure S42.

Figure S46. X-band EPR spectrum of a frozen (110 K) mixture of $(CO)_3Mn(pdt)(\mu-H)Fe(CO)(dppe)$ (H3) and [acetylFc]BAr^F₂₄ in 3:1 toluene:CH₂Cl₂ solution.

Figure S47. ¹H NMR spectrum of CpCo(pdt)Fe(CO)(dppe) (4d) in CD₂Cl₂ solution.

Figure S48. ³¹P NMR spectrum of CpCo(pdt)Fe(CO)(dppe) (4d) in CD₂Cl₂ solution at various temperatures.

Figure S49. ³¹P NMR spectra related to the reaction of $Fe(pdt)(CO)_2(dppe)$ (1d) and $CpCo(CO)I_2$ to give [CpCoI(pdt)Fe(CO)(dppe)]I (CD₂Cl₂ solutions):

Top: *unsym*-1d (triangle) and *sym*-1d (star).

Middle: $1d + CpCo(CO)I_2$ after 30 min. (diamond = *unsym*-[CpCoI(pdt)Fe(CO)(dppe)]⁺, circle = *sym*-[CpCoI(pdt)Fe(CO)(dppe)]⁺).

Bottom: Same mixture as in middle spectrum, but recorded after a total of 100 min.

Figure S50. IR spectrum of CpCo(pdt)Fe(CO)(dppe) (4d) in CH₂Cl₂.

Figure S51. Low field portion of ¹H NMR spectra for the low-temperature (-85 °C) protonation of CpCo(pdt)Fe(CO)(dppe) (**4d**) with one equiv [H(OEt₂)₂]BAr^F₄ in CD₂Cl₂ followed by warming to the indicated temperatures. For the high field portion of the same spectra, see Figure 9 in the paper.

Figure S52. Cyclic voltammogram of CpCo(pdt)Fe(CO)₂(dppe) (**4d**) in CH₂Cl₂. *Conditions:* See Figure S42.

S42