Supplementary Information

Magnetic-Assisted Triboelectric Nanogenerators as Self-Powered Visualized Omnidirectional Tilt Sensing System

Mengdi Han, Xiao-Sheng, Zhang, Xuming Sun, Bo Meng, Wen Liu, Haixia Zhang*

National Key Lab of Nano/Micro Fabrication Technology, Institute of

Microelectronics, Peking University, Beijing, China, 100871

*e-mail: zhang-alice@pku.edu.cn

1. Relationship between TA_1 , TA_2 and θ , φ

 TA_1 is the tilt angle of the first TENG.

 TA_2 is the tilt angle of the second TENG.

 θ is the rotation angle around X-axis.

 φ is the rotation angle around Y-axis.

Figure S1. (a) Relationship between TA_1 and θ , φ . (b) Relationship between TA_2 and θ , φ .

2. Output voltage of the two TENGs as a self-powered omnidirectional tilt sensor

Figure S2. Detailed output voltage of the two TENGs at different tilt angles, with both θ and φ vary from 0° to 90°.

3. Supplement experimental characterization of the magnetic-assisted TENG

Figure S3. Total output power of the device under different load resistances.

Figure S4. Stability measurement of the TENG. (a) Output voltage of the TENG at a 5 Hz external force. (b) Output voltage of the TENG after 1 hour.

4. Fabrication process of the polyimide wrapped copper electrode

Figure S5. Cross-section view of the fabrication process.

5. Simulink model of the magnetic-assisted TENG and self-powered tilt sensor

Table S1. Parameters used in the Simulink model.

Parameter	Value
Magnetization of the magnets	890000 A/m
Vacuum permeability	$4\pi \times 10^{-7} \text{ T}$
Height of the two magnets	0.5 mm
Radius of the two magnets	5.0 mm
Top mass	400 g
Acceleration of gravity	9.8 m/s ²
Friction coefficient	0.15
Initial gap distance	3 mm

Figure S6. Simulink model of the TENG as a self-powered tilt sensor.

Figure S7. Theoretical output by the Simulink model. (a) Calculated output voltage at different tilt angles. (b) Time domain displacement at the tilt angle of 90°. (c) Time domain normalized voltage at the tilt angle of 90°.