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Figure 1. Distribution Fittings for Mouse Stem Cell Data of Cell Division Times suggests that data do not fit to 
several common uni-modal distributions or to Gaussian bi-modal. a) Cumulative probability function of the 
recorded mouse muscle stem cell division times and several uni-modal maximum likelihood fittings (i.e., 
Gaussian, Gamma, Log-normal, Generalized extreme value (Gev), Rayleigh, Weibull, Student-t). b) Probability 
that cell division times exceed a given threshold and several uni-modal maximum likelihood fittings (i.e., 
Gaussian, Gamma, Log-normal, Generalized extreme value (Gev), Student-t, α-stable distribution). c) Probability 
density function of the cell division times and several uni-modal maximum likelihood fittings (i.e., Gaussian, 
Gamma, Log-normal, Generalized extreme value (Gev) distribution, Rayleigh, Weibull, Student-t, α-stable 
distribution). d) Comparison between the empirical PDF of mouse stem cell division times and the bi-modal 
Gaussian distribution with estimated parameters summarized in the legend of this plot. By simply graphically 
analyze the plot we can conclude that bi-modal Gaussian distribution does not provide a good fitting. 
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Figure 2.a) Cumulative probability function of the recorded rat musle stem cell division times and several uni-
modal maximum likelihood fittings (i.e., Gaussian, Gamma, Log-normal, Generalized extreme value (Gev), 
Rayleigh, Weibull, Student-t). b)Probability that cell division times exceed a given threshold and several uni-
modal maximum likelihood fittings (i.e., Gaussian, Gamma, Log-normal, Generalized extreme value (Gev), 
Student-t, α-stable distribution); for rat stem cell division times. c)Probability density function of the cell division 
times and several uni-modal maximum likelihood fittings (i.e., Gaussian, Gamma, Log-normal, Generalized 
extreme value (Gev) distribution, Rayleigh, Weibull, Student-t, α-stable distribution). d)Comparison between the 
empirical PDF of rat stem cell DTs and the bi-modal α-stable distribution for all 1055 samples. The p-value of 0.11 
for the Kolmogorov-Smirnov (K-S) test shows that the postulated bi-modal α-stable distribution cannot be rejected 
as a model. 

  



5 
 

 

Figure 3.a)Cumulative probability function of the recorded human mesenchymal stem cell division times and 
several uni-modal maximum likelihood fittings (i.e., Gaussian, Gamma, Log-normal, Generalized extreme value 
(Gev), Rayleigh, Weibull, Student-t). b) Probability that cell division times exceed a given threshold and several 
uni-modal maximum likelihood fittings (i.e., Gaussian, Gamma, Log-normal, Generalized extreme value (Gev), 
Student-t, α-stable distribution); for human stem cell division times. c)PDF of the cell division times and several 
uni-modal maximum likelihood fittings (i.e., Gaussian, Gamma, Log-normal, Generalized extreme value (Gev) 
distribution, Rayleigh, Weibull, Student-t, α-stable distribution). d) Comparison between the empirical PDF of 
human MSC division times and the bi-modal α-stable distribution for all 350 samples. The p-value of 0.81 for the 
Kolmogorov-Smirnov (K-S) test shows that the postulated bi-modal α-stable distribution cannot be rejected as a 
model. 
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Figure 4. Statistical investigation and interpretation of tracked MDSC division times. Exceedance probability 
analysis (i.e., probability of observing a MDSC division time greater than a specific threshold) and its maximum 
likelihood fittings with a few known mathematical distributions (i.e., Gamma, Gaussian, Log-normal, generalized 
extreme value (Gev), Student-t, asymmetric alpha-stable) for (a) mouse MDSC division times, (b) rat MDSC 
division times and (c) human MSC division times. d)  Maximum likelihood fittings of uni-modal bell-shaped 
probability density functions (PDF) cannot capture the complexity of mouse MDSC division times. Rejection of 
uni-modal mathematical modeling approaches for MDSC growth is motivated not only by the inconsistencies 
observed via graphical inspection of the empirical PDF against postulated PDF, but also by the very small p-value 
probabilities of the Kolmogorov-Smirnov (K-S) test. e) Maximum likelihood fitting of uni-modal PDFs does not 
offer a good characterization of human MSC division times.f) Plot showing the maximum likelihood fitting of a bi-
modal Gaussian distribution. Although graphical analysis shows a better PDF fitting of empirical data, bi-modal 
Gaussian modeling should be rejected upon K-S test investigation. The high and narrow peaks together with 
existence of long tails suggest a modeling approach that goes beyond Gaussian assumption. 
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Figure 5. Statistical analysis of bi-modal asymmetric α-stable distribution fitting of stem cell division times. 
a) Comparison between the empirical PDF of mouse MDSC division times (DTs) and the bi-modal α-stable 
distribution (estimated parameters summarized in the legend) for the first 200 samples. The high p-value of 0.89 
for the Kolmogorov-Smirnov (K-S) test shows that the postulated bi-modal α-stable distribution cannot be rejected 
as a model. b) Comparison between the empirical PDF of mouse MDSC DTs and the bi-modal α-stable 
distribution (estimated parameters summarized in the legend) obtained from first 400 samples. The K-S test shows 
that the postulated bi-modal α-stable distribution cannot be rejected (i.e., has a p-value of 0.93). c) Comparison 
between the empirical PDF of mouse MDSC DTs and the bi-modal α-stable distribution (estimated parameters 
summarized in the legend) for the first 600 samples. The p-value of 0.9 for the K-S test shows that the postulated 
bi-modal α-stable distribution cannot be rejected as a model. d) Comparison between the empirical PDF of mouse 
MDSC DTs and the bi-modal α-stable distribution for all 889 samples. The high p-value of 0.78 for the K-Stest 
shows that the postulated bi-modal α-stable distribution cannot be rejected as a model. e) Comparison between the 
empirical PDF of rat MDSC DTs and the bi-modal α-stable distribution for all 1055 samples. The p-value of 0.11 
for the K-S test shows that the postulated bi-modal α-stable distribution cannot be rejected as a model. f) 
Comparison between the empirical PDF of human MSC DTs and the bi-modal α-stable distribution for all 350 
samples. The p-value of 0.81 for the K-S test shows that the postulated bi-modal α-stable distribution cannot be 
rejected as a model. 
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Note 1.Goodness-of-fit Analysis for Uni-modal Distributions for Mouse Muscle Stem Cell division times. 

To investigate whether the cell division times can be well characterized by uni-modal distribution, we performed 
the following steps: 

• First, investigate the parameters of the postulated distribution (e.g., Gaussian, Gamma, Generalized 
extreme value, Log-normal, Rayleigh, Weibull, Alpha-stable) via maximum likelihood estimation method. 

• Generate 100,000 samples from the postulated distribution. 
• Perform the Kolmogorov-Smirnov (K-S) (a short description of the KS test is provided below) test to 

determine if cell division times and the newly generated samples are drawn from the same underlying 
distribution for a desired significance level (we used throughout the experiments 0.05 statistical 
significance value). More precisely, we performed a binary hypothesis testing problem characterized by 
two parameters: h and p-value. When h = 1 we reject the null hypothesis testing at predefined statistical 
significance level. When h = 0 we cannot reject the null hypothesis testing for the considered statistical 
significance level. The decision to reject the null hypothesis occurs when the considered significance level 
equals or exceeds the p-value.  

Summary of KS test:The KS test measures the distance between the empirical and the postulated CDFs as the 
maximum value of their absolute differences:  

( ) ( )xPxPcedisKS postulatedempiricaldomainsamplex −= −   maxtan_     (1) 
This KS distance is regarded as a random variable. At this point, we rely on the Glivenko-Cantelli theorem which 
states that there exists a uniform convergence of the empirical distribution (Fempirical) function to the true 
distribution (Ftrue) function from which the data samples originate; in mathematical terms this means that:  

( ) ( ) 0sup
..sa

trueempiricalx xFxF →−      (2) 
Using the Glivenko-Cantelli theorem5, the Kolmogorov-Smirnov test states that if the empirical observations 
characterized by the (Pempirical) come from the postulated distribution (Ppostulated), then the KS distance converges to 
zero almost surely (denoted as “a.s.” in equation (2) above). In addition, by central limit theorem, KS test states 
that:  

( ) ( ) ( ) ( )[ ]( )xXPxXPNxXPxXPn postulatedpostulated

d

postulatednempirical ≤−≤→≤−≤ 1,0   (3) 
or alternatively: 

( ) ( )( ) ( )∑
∞

=

−−−−=≤≤−≤
1

21 2
121

i

uii
postulatednempirical euxXPxXPnP    (4) 

Both relations (3) and (4) help us determine whether to reject the null hypothesis (that the postulated distribution is 
a good fit for the empirical data) when this probability is below the significance level of 0.05. 

The results concerning the appropriateness of modeling cell division times are summarized in Table 1. Note that 
because the data exhibited several peaks, we considered only uni-modal “bell-shaped” distribution (i.e., Gaussian, 
Gamma, Generalized extreme value, Log-normal, Weibull, Alpha-stable). Nevertheless, the analysis can be 
replicated for other types of distributions. Of note, to obtain these results we wrote several scripts in Matlab[4] and 
used advanced statistical techniques which are also described in [3]. 
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Table 1.Goodness-of-fit Results for Uni-modal Distributions for Mouse Muscle Stem Cell division times. 

Uni-modal 
Distribution 

Parameters Goodness-of-fit 
h p-value Test statistic 

Gaussian 
distribution 

µ = 15.60±0.14 
σ = 4.39±0.10 

1 2.9617 × 10-14 0.13904668 

Gamma 
distribution 

a = 16.46±0.77 
b = 0.94±0.04 

1 1.6363 × 10-10 0.11875231 

Generalized 
extreme value 

distribution 

k = 0.12±0.021 
σ = 2.66 ± 0.07 
µ = 13.68 ± 0.09 

1 2. 7646 × 10-3 0.05098503 

Log-normal 
distribution 

µ = 2.71 ± 0.007 
σ = 0.23 ± 0.005 

1 1.2421 × 10-6 0.09315231 

Weibull 
distribution 

a = 17.18 ± 0.19 
b = 3.13 ± 0.06 

1 5.6170 × 10-24 0.18145422 

α-stable 
distribution 

α =  1.49±0.03 
β = 1.00 ±0.00 
γ = 1.93± 0.05 
δ = 16.37± 0.15 

1 2.1029 × 10-4 0.13610798 

Student-t 
distribution 

µ = 14.63 ± 0.11 
σ = 2.55 ± 0.11 

   ν = 2.87 ± 0.32 

1 3.2196 × 10-7 0.09745309 

 

As we can observe from third column, for all “bell-shaped” considered probability distributions, the assumption 
that the cell division times can be modeled through a unimodal PDF is rejected at 0.05 statistical significance test. 
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Note 2.Goodness-of-fit analysis for uni-modal distributions for Rat Muscle Stem Cell division times. 

To investigate whether the cell division times can be well characterized by uni-modal distribution, we performed 
the following steps: 

• First, investigate the parameters of the postulated distribution (e.g., Gaussian, Gamma, Generalized 
extreme value, Log-normal, Rayleigh, Weibull, Alpha-stable) via maximum likelihood estimation method. 

• Generate 100,000 samples from the postulated distribution. 
• Perform the Kolmogorov-Smirnov (K-S) test to determine if cell division times and the newly generated 

samples are drawn from the same underlying distribution for a desired significance level (we used 
throughout the experiments 0.05 statistical significance value). More precisely, we performed a binary 
hypothesis testing problem characterized by two parameters: h and p-value. When h = 1 we reject the null 
hypothesis testing at predefined statistical significance level. When h = 0 we cannot reject the null 
hypothesis testing for the considered statistical significance level. The decision to reject the null hypothesis 
occurs when the considered significance level equals or exceeds the p-value.  

The results concerning the appropriateness of modeling cell division times are summarized in Table 1. Note that 
because the data exhibited several peaks, we considered only uni-modal “bell-shaped” distribution (i.e., Gaussian, 
Gamma, Generalized extreme value, Log-normal,Weibull, Alpha-stable). Nevertheless, the analysis can be 
replicated for other types of distributions. 
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Table 2: Goodness-of-fit results for uni-model distributions for Rat Muscle Stem Cell division times. 

Uni-modal 
Distribution 

Parameters Goodness-of-fit 
h p-value Test statistic 

Gaussian distribution µ =  17.57 ± 0.17 
σ = 5.81 ± 0.12 

1 8.6207 × 10-16 0.13560805 

Gamma distribution a = 10.80± 0.46 
b = 1.62 ± 0.07 

1 3.2798 × 10-8 0.09652654 

Generalized extreme 
value distribution 

k = 0.01± 0.01 
σ = 4.21 ±0.09 

µ = 15.12 ± 0.13 

1 1.1136 × 10-3 0.06240805 

Log-normal 
distribution 

µ = 2.81 ±0.01 
 σ =  0.30 ± 0.006 

1 5.5998 × 10-4 0.06520805 

Weibull distribution a = 19.58 ± 0.21 
b = 2.96 ± 0.06 

1 1.1036 × 10-13 0.12596635 

α-stable distribution α =  1.48± 0.02 
β = 1.00 ± 0.00 
γ = 2.71±0.05 
δ = 18.70±0.18 

1 4.452 × 10-3 

 
0.05387772 

Student-t distribution µ = 16.31 ± 0.14 
σ = 3.54 ±0.15 
 ν = 2.79 ± 0.28 

1 1.3095 × 10-5 0.07876635 

 

As we can observe from third column, for all considered probability distributions, the assumption that the cell 
division times can be modeled through a uni-modal PDF is rejected at 0.05 statistical significance test except for 
the Alpha-stable distribution which shows a small p-value, but above the 0.05 significance level. 
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Note 3.Goodness-of-fit Analysis for Unimodal Distributions for Human Mesenchymal Stem Cell division 
times. 

To investigate whether the cell division times can be well characterized by unimodal distribution, we performed 
the following steps: 

• First, investigate the parameters of the postulated distribution (e.g., Gaussian, Gamma, Generalized 
extreme value, Log-normal, Rayleigh, Weibull, Alpha-stable) via maximum likelihood estimation method. 

• Generate 100,000 samples from the postulated distribution. 
• Perform the Kolmogorov-Smirnov (K-S) test to determine if cell division times and the newly generated 

samples are drawn from the same underlying distribution for a desired significance level (we used 
throughout the experiments 0.05 statistical significance value). More precisely, we performed a binary 
hypothesis testing problem characterized by two parameters: h and p-value. When h = 1 we reject the null 
hypothesis testing at predefined statistical significance level. When h = 0 we cannot reject the null 
hypothesis testing for the considered statistical significance level. The decision to reject the null hypothesis 
occurs when the considered significance level equals or exceeds the p-value.  

The results concerning the appropriateness of modeling cell division times are summarized in Table 1. Note that 
because the data exhibited several peaks, we considered only uni-modal “bell-shaped” distribution (i.e., Gaussian, 
Gamma, Generalized extreme value, Log-normal, Weibull, Alpha-stable). Nevertheless, the analysis can be 
replicated for other types of distributions. 
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Table 3: Goodness-of-fit Results for Uni-model Distributions for Human Mesenchymal Stem Cell division times. 

Uni-modal 
Distribution 

Parameters Goodness-of-fit 
h p-value Test statistic 

Gaussian distribution µ = 15.54 ± 0.14 
σ = 2.63 ± 0.10 

1 2. 9540 × 10-2 0.07928304093 

Gamma distribution a = 37.40 ± 2.84 
b = 0.41 ±0.03 

0 1. 9537 × 10-1 0.05888304093 

Generalized extreme 
value distribution 

k = -0.06 ±0.02 
σ = 2.23 ±0.09 
µ = 14.41 ±0.13 

0 3. 7814 × 10-1 0.04973450292 

Log-normal 
distribution 

µ =  2.73 ±0.01 
σ =  0.16 ±0.006 

0 5. 6247 × 10-1 0.04307777777 

Weibull distribution a = 16.66±0.18 
b = 5.26 ±0.17 

1 1.7593 × 10-4 0.11800877192 

α-stable distribution α =  1.85± 0.03 
β = 0.99 ± 0.002 
γ = 1.63±0.03 
δ = 15.60±0.05 

0 5.2391 × 10-1 

 
0.04371304093 

Student-t distribution µ = 15.36 ±0.13 
σ = 2.14 ±0.12 
ν = 6.37 ± 1.90 

0 5.3407 × 10-1 0.04402865497 

As we can observe from third column, for all “bell-shaped” considered probability distributions, the assumption 
that the cell division times can be modeled through a uni-modal PDF is rejected at 0.05 statistical significance test 
except for the Student-t, Generalized extreme value, Log-normal, Alpha-stable distributions which show a p-value 
larger than the 0.05 significance level. 
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Figure 6. Mean of mouse stem cell division times computed as a function of time series and over a moving 
window of 20 (a), 40 (b) and 80 (c) samples. Variance of mouse cell division times over a moving window of 20 
(d), 40 (e) and 80 (f) samples. Skewness of mouse cell division times over a moving window of 20 (g), 40 (h) and 
80 (i) samples. Kurtosis of mouse cell division times over a moving window of 20 (j), 40 (k) and 80 (l) samples. 
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Figure 7. Mean of rat muscle stem cell division times computed as a function of time series and over a moving 
window of 20 (a), 40 (b) and 80 (c) samples. Variance of rat cell division times over a moving window of 20 (d), 
40 (e) and 80 (f) samples. Skewness of rat celldivision times over a moving window of 20 (g), 40 (h) and 80 (i) 
samples. Kurtosis of rat cell division times over a moving window of 20 (j), 40 (k) and 80 (l) samples. 
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Figure 8.Detrended fluctuation analysis for the mouse (a) and rat (b) stem cell division time series shows that the 
cell division process or population growth is not a random process, but rather a positively correlated one. For the 
description of the detrended fluctuation analysis method the reader is referred to reference [5]. 
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Figure 9.a)Multifractal spectrum as a function of the Lipschitz-Holder mass exponent for the mouse, rat and 
human stem cell division times.b)Fluctuation function Fq(s) as a function of scale s and for various q-th order 
moments for the mouse stem cells.c)Fluctuation function Fq(s) as a function of scale s and for various q-th order 
moments for the rat stem cells.d)Fluctuation function Fq(s) as a function of scale s and for various q-th order 
moments for thehuman MSCs. The fluctuations Fq(s) are estimated using the multifractaldetrended fluctuation 
analysis algorithm proposed in [1].  
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Figure 10.a) Generalized Hurst exponent as a function of the q-th order moment for the mouse stem cell division 
times.b) Generalized Hurst exponent as a function of the q-th order moment for the rat stem cells. c) Generalized 
Hurst exponent as a function of the q-th order moment for the human stem cell division times. d) Generalized 
Hurst exponent as a function of the q-th order moment for the mouse, rat, and human stem cell division times. The 
generalized Hurst exponent was computed using the algorithm in [1]. 
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Figure 11.Empirical average number of cells as a function of time (blue stars) and three investigated growth 
models-  (a,b) exponential  (c,d) power law and (d,e) stretched exponential. Model fitting residuals are shown in 
a,c,e and fitted curves with standard errors are shown in b,d,e.The experimental setup is as follows: we collected 
data samples over a 10 day period, from 8 independent experimental setups, and acquired images at 10-minute 
intervals. Every 3 hours, we quantified the number of cells to generate growth curves.  Once we have obtained 
distinct “trajectories” of the number of stem cells as a function of time, we have considered the first 75% of the 
data points (~150 hours) for fitting a model (i.e., an exponential, a power law, and a stretched exponential growth) 
and use the remaining 25% of the data (~50 hours) to test the validity of the predictions for each of the above-
mentioned models. As one can notice from the above plot, the experimental measurements are better fitted by 
power law and stretched exponential rather than the exponential model. This is in agreement with our multi-fractal 
analysis which predicts that the intrinsic growth of stem cell population is characterized by non-exponential 
features.  
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Table 4: Approximate mean cell division time and fraction of each subpopulation of stem cells from mouse, 

rat and human data sets. 

 

Adult, Mouse muscle derived 
stem cell(MDSC) 

cell cycle time 

 (fraction in subpopulation) 

Adult, Rat muscle derived 
stem sell (MDSC) 

cell cycle time 

(fraction in subpopulation) 

Newborn, Human mesenchymal 
stem cell (MSC) 

cell cycle time 

 (fraction in subpopulation) 

Subpopulation #1 
13.14 hrs 

0.626 

11.7 hrs 

0.168 

12.8 hrs 

0.27 

Subpopulation #2 
19.14 hrs 

0.374 

21.2 hrs 

0.832 

16.8 hrs 

 0.73 
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Note 4.Uni-modalgoodness-of-fit analysis via Hartigan’s Dip Test. 

We have also computed the Hartigan’s Dip test[1]. The main idea of the Hartigan’s Dip test is to measure the 
deviation of an empirical probability density function from the best fitting of a uni-modal model. If the empirical 
probability density function has a single peak and is uni-modal, then the Hartigan’s Dip test is zero. Positive values 
of the Hartigan’s Dip coefficient provide reasons to reject the null hypothesis that the empirical dataset is fitted by 
a uni-modal distribution. In essence, the Hartigan’s Dip test performs a null-hypothesis that the samples come from 
anuni-modal. In addition to the Hartigan’s Dip coefficient one could also compute the p-value for the null-
hypothesis. If the p-value is smaller than 0.05 then the data has strong bimodality or multimodality features. If the 
p-value is greater than 0.05 but smaller than 0.10 then the data come from a bimodal distribution with a marginal 
significance. If the p-value is close to 1 then the data clearly comes from anuni-modal distribution. The Hartigan’s 
DIP coefficient is obtained via bootstrapping selecting 90% of the samples for each iteration, computing the DIP 
coefficient and repeating this process for 400,000 times. The p-value is also computed via a bootstrapping method 
over 1,000,000 iterations. The Hartigan’s Dip coefficient and p-values are summarized below. 

Table 5: Hartigan’s Dip test results for uni-modal distribution goodness-of-fit analysis. 

 

Figure 12.  The probability density function of the Hartigan DIP coefficient estimated via a bootstrapping 
approach for the mouse (a) and rat (b) stem cell data sets. The minimum, maximum, mean and standard 
deviation of the Hartigan DIP coefficients are summarized in the legends of the two plots. 

 

 

 

  

Dataset Hartigan’s Dip coefficient Hartigan’s p-value 

Mouse muscle stem cells (808 samples) 1.68×10-2 ±0.05× 10-2 0.07 

Rat muscle stem cells 
(975 samples) 

1.44×10-2 ±0.08× 10-2 0.08 

Human mesenchymal stem cells 
(342 samples) 

2.14×10-2 ±0.01× 10-2 0.36 
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Note 5.Goodness-of-fit analysis for bi-modal Gaussian distribution. 

To investigate whether the mouse, rat, human and stem cellsdivision times can be well characterized by uni- or bi-
modal distributions, we performed the following steps: 

• Estimate the parameters of an uni-Gaussian distribution via maximum likelihood estimation method and 
computed the  Kolmogorov-Smirnov (K-S) test and the Akaike Information Criterion (AIC) to determine 
the goodness of fit.   

• Estimate the parameters of a bi-modal Gaussian distribution via maximum likelihood estimation method 
with random initial conditions. We repeated the MLE estimation process for 109 times and record only the 
parameters for which the p-value of the Kolmogorov-Smirnov (K-S) exceeded the significance level (we 
used throughout the experiments 0.05 statistical significance value). More precisely, we performed a binary 
hypothesis testing problem characterized by two parameters: h and p-value. When h = 1 we reject the null 
hypothesis testing at predefined statistical significance level. When h = 0 we cannot reject the null 
hypothesis testing for the considered statistical significance level. The decision to reject the null hypothesis 
occurs when the considered significance level equals or exceeds the p-value. From the recorded values for 
each parameter of the bi-modal Gaussian distribution we computed the mean and standard deviation values.    

The results concerning the appropriateness of modeling mouse, rat and human stem celldivision times are 
summarized below: 

Table 6: Goodness-of-fit results for uni- and bi-model Gaussian distributions 

Dataset Mouse muscle stem cells Rat musclestem cells Human mesenchymal 
stem cells 

Parameters of Uni-modal Gaussian 
distribution 

N(µ1, σ1) 

µ =15.60 ± 0.14 
σ = 4.39 ± 0.10 

µ =  17.57 ± 0.17 
σ = 5.81 ± 0.12 

µ = 15.54 ± 0.14 
σ = 2.63 ± 0.10 

Kolmogorov-
Smirnov (KS) 

Goodness-of-fit 

h 1 1 1 

p-value 0.29 × 10-15 0.86 × 10-17 0.29 × 10-3 

Akaike Information Criterion (AIC) 5157.10 6709.80 1635.31 

Parameters of bi-modal Gaussian 
distribution 

a*N(µ1, σ1) + (1-a)*N(µ2, σ2) 

a = 0.66 ± 0.04 
µ1 = 13.77±0.15 
σ1 = 1.85 ±0.15 

µ2 = 19.14±0.51 

σ2 = 5.14 ±0.46 

a = 0.72 ± 0.01 
µ1 = 15.39  ± 0.10 
σ1 =  2.85 ± 0.08 

µ2 = 23.32  ± 0.40 

σ2 = 7.46  ± 0.26 

a = 0.87± 0.10 
µ1 =  15.08 ±0.21 
σ1 = 2.07  ±0.13 

µ2 = 19.34  ± 1.23 

σ2 =  3.94 ±0.94 

Kolmogorov-
Smirnov (KS) 

Goodness-of-fit 

h 0 0 0 

p-value 0.09 0.27 0.69 

Akaike Information Criterion (AIC) 4790.37 6327.40 1603.45 
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Note 6.Goodness-of-fit analysis for uni- and bi-modal alpha-stable distributions. 

To investigate whether the mouse, rat and human stem cell division times can be well characterized by uni- or bi-
modal distributions, we performed the following steps: 

• Estimate the parameters of anuni-modal α-stable distribution via maximum likelihood estimation method 
and computed the K-S test and the Akaike Information Criterion (AIC) to determine the goodness of fit.   

• Estimate the parameters of a bi-modal α-stable distribution via a greedy Monte-Carlo approachwhich 
records the parameters for which the p-value of the KS test is the highest. The greedy Monte-Carlo 
approachperformsapproximately 107iterations in order to find the parameters for which the p-value of the 
Kolmogorov-Smirnov (K-S) exceeded the significance level (we used throughout the experiments 0.05 
statistical significance value). More precisely, we performed a binary hypothesis testing problem 
characterized by two parameters: h and p-value. When h = 1 we reject the null hypothesis testing at 
predefined statistical significance level. When h = 0 we cannot reject the null hypothesis testing for the 
considered statistical significance level. The decision to reject the null hypothesis occurs when the 
considered significance level equals or exceeds the p-value. From the recorded values for each parameter of 
the bi-modal alpha-stable distribution we computed the mean and standard deviation values. The results 
concerning the appropriateness of bi-modal alpha stable distribution modeling are summarized below: 

Table 7: Goodness-of-fit results for uni- and bi-modal alpha stable distributions 

Dataset Mouse muscle stem cells Rat muscle stem cells Human mesenchymal stem 
cells 

Parameters of Uni-modal α-stable 
distribution 
Φ(α, β,γ,δ) 

α =  1.49 
β = 1 
γ = 1.93 
δ = 16.37 

α =  1.48 
β = 1 
γ = 2.71 
δ = 18.70 

α =  1.85 
β = 0.99 
γ = 1.63 
δ = 15.60 

Kolmogorov-Smirnov (KS) 
Goodness-of-fit 

h 1 1 0 

p-value 2.10 × 10-4 44.52 × 10-4 5239.1 × 10-4 

Akaike Information Criterion (AIC) 1831.43   1586.63 2120.46 

Parameters of bi-modal α-stable 
distribution 

a* Φ(α1, β1,γ1,δ1) + (1-a)* Φ(α2, β2,γ2,δ2) 

a = 0.626 
α1 =  1.89 
β1 =  -1.0 
γ1 = 1.03 
δ1 = 13.14 
 α2 = 1.21 
β2 = 1.0 

 γ2 = 1.45 

δ2 = 21.83 

a = 0.1678                      
α1 = 1.67 
β1 = -1.0 
γ1 = 0.62 
δ1 = 11.69 
α2 = 1.24 
β2 = 1.0 

γ2 = 2.02 

δ2 = 21.19 

a = 0.269 
α1 =  1.99 
β1 =   -1.0 
γ1 =  0.65 
δ1 = 12.80 
α2 = 1.55 
β2 = 1.0 

γ2 = 1.15 

δ2 = 16.80 

Kolmogorov-Smirnov (KS) 
Goodness-of-fit 

h 0 0 0 

p-value 0.78 0.11 0.81 

Akaike Information Criterion (AIC) 1626.37 1466.89 1886.37 
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Note 7 
Mouse and rat muscle stem cells were isolated by way of differential adhesion rates using a modification of 
methods as previously described [6,7]. Skeletal muscle was enzymatically digested using collagenase and dispase 
and serial pre-plating was performed to separate cell fractions preplate 1 (PP1), preplate 2 (PP2), preplate 3 (PP3), 
throough to preplate 6 (PP6).  Cells which adhere to non-collegenated tissue culture plastic flasks within the first 
30 minutes were PP1 cells. Medium and non-adhered cells from the PP1 flasks were then transferred to a fresh 
flask, and cells which adhered during 30 to 60 minutes were termed PP2 flasks. Again, media and non-adhered 
cells were transferred to fresh flasks and allowed to adhere such that PP3 cells were those that adhered 1 to 2 hours 
post plating. PP4 cells adhered after 2 to 24 hours, PP5 cells adhered between 24 to 48 hours. PP6 cels adhered 
between 48 to 120 hours. During the isolation process, cells were grown in Dulbecco’s Modified Eagle Medium 
DMEM (Gibco) with 20% fetal bovine serum and 0.5% Chick Embryo Extract. In this study, we used mouse (PP2-
PP3) and rat (PP6) cells, both of which have reported stem cell characteristics. Human mesenchymal stem cells 
were isolated from the human newborn umbilical cord. Full-term umbilical cords were received from Magee 
Women's Hospital (Pittsburgh, PA) under IRB No. 0606126. Whole UCs were first manually dissected into 
smaller sections then placed into collagenase (Sigma, 1mg/mL in PBS) enzyme and digested at 37 C for 6-18 hours 
with occasional shaking. Following digestion, the isolates were separated from the remaining tissue and washed to 
prevent further maceration by enzyme. A portion of freshly isolated cells was removed for flow cytometry analysis 
and the remainder was placed in culture; these methods are described in detail in [8].  
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