

Supplemental Figure 1. Gene coexpression networks for SNX1 and SNX2a

(A) Gene coexpression network for *SNX1* gene. The list of genes can be seen in Supplemental Table 1.

(B) Gene coexpression network for *SNX2a* gene. The list of genes can be seen in Supplemental Table 2.

Supplemental Figure 2. Expression pattern of SNX in the root

(A) to (R) Analysis of reporter gene activity in *SNX1pro:SNX1-GFP/snx1-1* (A-C and J-L), *SNX2apro:SNX2a-GUS/snx2a-1* (D-F and M-O) and *SNX2bpro:SNX2b-GUS/snx2b-1* (G-I and P-R). Plants were grown for eight days under iron-sufficient (50μM Fe) or iron-deficient (0μM Fe) conditions and reporter gene activity was visualized either under fluorescence microscope (GFP), or using a brightfield microscopy after a chemical reaction (GUS). Bars: 2mm. Three independent experiments were made, showing similar results.

(S), (T), (V) and (W), *SNX1pro:SNX1-GFP/snx1-2* roots were investigated under confocal microscope. GFP signals can be seen in the root hair cells under both iron supply regimes. (S) and (V) GFP fluorescence, (T) and (W), merge of fluorescence and brightfield image. Bars: 50μm.

(U) and (X), higher magnification of *SNX2bpro:SNX2b-GUS/snx2b-1* roots. Blue reporter staining can be seen in the root hair cells under both iron supply regimes. Bars: 50µm.

Supplemental Figure 3. SNX1 expression and protein abundance under iron deficiency

(A) Analysis of *SNX1* gene expression in the roots of Col-0, *fit-3* and *FITox* plants grown under iron-sufficient (50μ M Fe) or iron-deficient (0μ M Fe) conditions by quantitative RT-PCR. The result of three biological repetitions is presented. Error bars represent standard deviation. No statistically significant differences were observed.

(B) Analysis of SNX1-GFP protein abundance in roots of *SNX1pro:SNX1-GFP/snx1-1* plants (labeled as *SNX1-GFP*) grown under iron-sufficient (50μ M Fe) or iron-deficient (0μ M Fe) conditions. A representative result is shown. Asterisk labels the position of the band corresponding to SNX1-GFP.

(C) Quantification of (B) based on three independent experiments. Error bars represent standard deviation. Asterisk indicates statistical significance (p<0.005).

Supplemental Figure 4. Verification of the *IRT1pro:GUS/snx1-2* line

(A) Principal scheme for the verification of the presence of a T-DNA insertion in the *SNX1* gene. A positive PCR reaction with the Nex14 and Nex15 primer pair shows a wild type allele. A positive PCR reaction with the LB2SALK and Nex15 primer pair shows the presence of the T-DNA within the *SNX1* gene.

(B) Principal scheme for the verification of the presence of the *GUS* gene, revealed by the positive PCR reaction using the 5'GUS and 3'GUS primer pair.

(C) Examples of *IRT1pro:GUS/snx1-2* line verification by PCR. The line is homozygous for the T-DNA insertion within the *SNX1* gene (*snx1-2* allele) and contains the *GUS* gene, which was further verified to be homozygous by segregation analysis.

Supplemental Figure 5. IRT1 colocalization analysis

(A-C) Coexpression of IRT1-GFP (A) and IRT1-mCherry (C). Filled arrowheads show examples of colocalization. Bars: 20µm.

(D-F) Coexpression of IRT1-GFP (D) and SKD1-mCherry (F). Empty arrowheads show examples of signals in the green channel, which do not correspond to signals in the red channel. Bars: 20µm.

(continues on the next page)

(G-I) Coexpression of TLG2a-GFP (G) and RFP-ARA7 (I). Empty arrowheads show examples of signals in the green channel, which do not correspond to signals in the red channel. Bars: 20µm.

(J) Analysis of the integrity of the IRT1-GFP fusion expressed in tobacco. Tobacco leaf samples, either untransformed, or transformed with a *35Spro:IRT1-GFP*-containing expression construct, were tested. Arrowhead indicates the position of the full-length IRT1-GFP with an expected molecular weight of 62 kDa and the asterisk shows the position of free GFP at 27 kDa.

(K) Quantification of fluorescence signal colocalization in endosomal compartments. Results are given as percentage of signals detected in one channel colocalizing with signals in the second channel and vice versa. Error values represent standard deviations. For each couple, a minimum of 10 images were used for the analysis.

Supplemental Data. Ivanov et al. Plant Cell. (2014). 10.1105/tpc.113.116244

Supplemental Figure 6. Quantification of IRT1 localization in root epidermis cells Original photos were converted to 8-bit greyscale (A, B). Outer boundaries (C, D), cell periphery (E, F) and cytoplasmic compartments (G, H) were sequentially selected and total signal intensity within the borders of the selected shapes were measured. An example is given with a cell from the *snx1-2* mutant (A, C, E, G) and Col-0 (B, D, F, H). Bars: 20µM

AGI code	Name	Comment
At5g06140	SNX1	Sorting nexin
At2g02160	CCCH-type	Zn finger
At1g09770	CDC5	MYB, essential for innate immunity
At1g17210	ILP1	Zn binding
At5g19330	ARIA	ARM REPEAT PROTEIN INTERACTING WITH ABF2
At3g54540	GCN4	Transporter, ATP binding
At4g05420	DDB1A	DAMAGED DNA BINDING PROTEIN 1A

Supplemental Table 1. Genes coexpressed together with SNX1

Supplemental Table 2. Genes coexpressed together with SNX2a

AGI code	Name	Comment
At5g58440	SNX2a	Sorting nexin
At1g06230	GTE4	GLOBAL TRANSCRIPTION FACTOR GROUP E4
At5g38840	FHA	Unknown FHA domain-containing protein
At2g40650	PRP38	RNA processing and binding
At5g11530	EMF1	Involved in regulating reproductive development
At2g02470	AL6	Alfin1-like family plant homeodomain-containing protein
At2g29210	PWI	Splicing factor PWI domain-containing protein

Supplemental Table 3. Primers used in this study

Primer	Primer sequence	Purpose	Origin
name			
LB2SALK	ACCGAGCTCGAATTTCCCCG	snx1 alleles genotyping	Jaillais et al., 2006
Nex14	GCATCCGTATCTGTCAGTCTCCGTC	snx1 alleles genotyping	Jaillais et al., 2006
Nex15	AGTGCCTCGTTCTGCTATTGTTGCC	snx1 alleles genotyping	Jaillais et al., 2006
5'GUS	CAGGAAGTGATGGAGCATCAG	GUS gene genotyping	Becker et al., 1994
3'GUS	TCGTGCACCATCAGCACGTTA	GUS gene genotyping	Becker et al., 1994
FITrt1	GGAGAAGGTGTTGCTCCATC	FIT RT-PCR	Wang et al., 2007
FITrt2	TCCGGAGAAGGAGAGCTTAG	FIT RT-PCR	Wang et al., 2007
BHLH38rt1	AGCAGCAACCAAAGGCG	BHLH038 RT-PCR	Wang et al., 2007
BHLH38rt2	CCACTTGAAGATGCAAAGTGTAG	BHLH038 RT-PCR	Wang et al., 2007
BHLH39rt1	GACGGTTTCTCGAAGCTTG	BHLH039 RT-PCR	Wang et al., 2007
BHLH39rt2	GGTGGCTGCTTAACGTAACAT	BHLH039 RT-PCR	Wang et al., 2007
BHLH100rt1	AAGTCAGAGGAAGGGGTTACA	BHLH100 RT-PCR	Wang et al., 2007
BHLH100rt2	GATGCATAGAGTAAAAGAGTCGCT	BHLH100 RT-PCR	Wang et al., 2007
BHLH101rt1	CAGCTGAGAAACAAAGCAATG	BHLH101 RT-PCR	Wang et al., 2007
BHLH101rt2	CAGTCTCACTTTGCAATCTCC	BHLH101 RT-PCR	Wang et al., 2007
IRT1rt1	AAGCTTTGATCACGGTTGG	IRT1 RT-PCR	Wang et al., 2007
IRT1rt2	TTAGGTCCCATGAACTCCG	IRT1 RT-PCR	Wang et al., 2007
FRO2rt1	CTTGGTCATCTCCGTGAGC	FR02 RT-PCR	Wang et al., 2007
FRO2rt2	AAGATGTTGGAGATGGACGG	FR02 RT-PCR	Wang et al., 2007
EFc1	ACTTGTACCAGTTGGTTATGGG	EF1Balpha RT-PCR	Wang et al., 2007
EFc2	CTGGATGTACTCGTTGTTAGGC	EF1Balpha RT-PCR	Wang et al., 2007
EFg1	TCCGAACAATACCAGAACTACG	EF1Balpha (genomic) RT-PCR	Wang et al., 2007
EFg2	CCGGGACATATGGAGGTAAG	EF1Balpha (genomic) RT-PCR	Wang et al., 2007
SNX1F-RT	AAGTGAGGAAGCCACGAG	SNX1 RT-PCR	this study
SNX1R-RT	GAGCTTGTCCTTTCGCAA	SNX1 RT-PCR	this study
SNX1B1	GGGGACAAGTTTGTACAAAAAAGCAGGCT	amplification of full-length SNX1	this study
	ATGGAGAGCACGGAGCAGC		
SNX1nsB2	GGGGACCACTTTGTACAAGAAAGCTGGGT	amplification of full-length SNX1	this study
	TTAGACAGAATAAGAAGCTT		
I1B1	GGGGACAAGTTTGTACAAAAAAGCAGGCT	amplification of full-length IRT1	this study
	TTATGGCTTCAAATTCAGCACTT		
FLI1B2	GGGGACCACTTTGTACAAGAAAGCTGGGT	amplification of full-length IRT1	this study
	TAGCCCATTTGGCGATAATCG		
AtVPS4B1	GGGGACAAGTTTGTACAAAAAAGCAGGCT	amplification of full-length SKD1	this study
	ATGTACAGCAATTTCAAGGA		
AtVPS4B2	GGGGACCACTTTGTACAAGAAAGCTGGGT	amplification of full-length SKD1	this study
AtVPS4B1 AtVPS4B2	TAGCCCATTTGGCGATAATCG GGGGACAAGTTTGTACAAAAAAGCAGGCT ATGTACAGCAATTTCAAGGA GGGGACCACTTTGTACAAGAAAGCTGGGT TACCTTCTTCTCCAAACTCCT	amplification of full-length SKD1 amplification of full-length SKD1	this study this study

SUPPLEMENTAL REFERENCES

- **Becker D, Brettschneider R, Lörtz H.** (1994). Fertile transgenic wheat from miroprojectile bombardment of scutellar tissue. Plant J **5**, 299-307.
- Jaillais, Y., Fobis-Loisy, I., Miege, C., Rollin, C., and Gaude, T. (2006). AtSNX1 defines an endosome for auxin-carrier trafficking in Arabidopsis. Nature **443**, 106-109.
- Wang, H.Y., Klatte, M., Jakoby, M., Baumlein, H., Weisshaar, B., and Bauer, P. (2007). Iron deficiency-mediated stress regulation of four subgroup Ib BHLH genes in *Arabidopsis thaliana*. Planta 226, 897-908.