Supplemental Figures and Tables

Somatic mutations of the Parkinson's Disease gene *PARK2* in glioblastoma and other human malignancies

Selvaraju Veeriah^{1*}, Barry S. Taylor^{2*}, Shasha Meng^{1*}, Fang Fang¹, Emrullah Yilmaz¹, Igor Vivanco¹, Manickam Janakiraman¹, Nikolaus Schultz², Aphrothiti J. Hanrahan¹, William Pao^{1,3}, Marc Ladanyi^{1,4}, Chris Sander², Adriana Heguy¹, Eric C. Holland⁵, Philip B. Paty⁶, Paul S. Mischel⁸, Linda Liau⁸, Timothy F. Cloughesy⁸, Ingo K. Mellinghoff^{1,9}, David B. Solit^{1,3}, and Timothy A. Chan^{1, 10}

¹Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, New York, 10065, USA.

²Computational Biology Center, Memorial Sloan-Kettering Cancer Center, New York, New York, 10065, USA.

Departments of ³Medicine, ⁴Pathology, ⁵Neurosurgery, ⁶Surgery, ⁹Neurology, ¹⁰Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA.

⁸David Geffen School of Medicine, University of California, Los Angeles, CA 90095.

Veeriah Supplemental Fig. 1

Amplifications (red) and deletions (blue) are indicated across the 22 autosomes in genomic coordinates (center; green line, FDR<10% left axis). Analysis and scores were calculated by RAE as described in Methods. Supplemental Figure 1. Statistically significant genome-wide copy number aberrations in colon cancer. The green arrow indicates the discrete region of significance that spans PARK2.

AN AN

N254S (AAC→AGC)

R42C (CGT→TGT)

لملفأ مأهاداه لماهاما فالقاد

S

Normal

analysis of human cancer cell lines using anti-PARK2 antibody. Actin is used as a loading control. Supplemental Figure 3. PARK2 protein expression in human cancer cell lines. Western blot Equal amounts of protein (5ug) were loaded in all lanes.

PARK2 (-) expression cell lines

Nature Genetics: doi:10.1038/ng.491

cDNA (PARK2). (b) Colony formation assays demonstrating that wild-type PARK2 does not significantly suppress (pcDNA3.1) and vector + PARK2 cDNA (PARK2). (c) Colony formation assays demonstrating that cancer-specific growth in cell lines with normal PARK2 protein expression. Representative flasks are shown for vector-only control lacking PARK2 protein. Representative flasks are shown for vector-only control (pcDNA3.1) and vector + PARK2 Supplemental Figure 4. Growth suppressive effects of wild-type and mutant PARK2. Quantitation of results in mutations in PARK2 compromise its growth suppressive ability. Representative flasks are shown for vector-only Fig. 3. (a) Colony formation assays demonstrating that wild-type PARK2 suppresses cell growth in cells control (pcDNA3.1) and vector + PARK2 cDNA (PARK2).

All proteins were expressed (see main text). Western blot detection was performed using antibody specific T98G cells were stably transfected with the vector alone (pcDNA3.1) or the indicated PARK2 cDNAs. Supplemental Figure 5. Expression of wt or mutant PARK2 does not alter c-Jun phosphorylation. for phospho-c-Jun or total c-Jun.

Familial Parkinson's Disease

Supplemental Figure 6. Model of differential effects of PARK2 mutation in Parkinson's Disease and cancer.

Cancer type	Total samples with alterations	Total samples analyzed	Frequency
Mutations			
Glioblastoma	7	75	9.3%
Lung	4	61	6.5%
Squamous, H/N	0	24	0%
Colon	-	82	1.2%
Total		242	

Supplemental Table 1. Frequencies of Mutations

Supplementary note for clinical samples

Glioma aCGH samples analyzed were from the tumors procured by The Cancer Genome Atlas (TCGA) as described above. Informed consent was obtained by the member institutions of the TCGA. The glioma, lung, and colon samples analyzed were from the Memorial Sloan Kettering Cancer Center and the University of California, Los Angeles. All samples were obtained following informed consent and in full accordance with the Institutional Review Board of each institution.