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Supplemental Text 1.1: 1D, small deformation approximation. 

Blastopore closure is a complex, large-deformation problem (hence geometrically non-linear), 

involving materials that are likely to display non-linear material properties at sufficiently large 

deformations [1,2]. Furthermore material properties and force generation vary spatially [2]. A full model 

would require a very large number of parameters, many of which are unknown, and most of which are 

poorly characterized. Those parameters that have been measured are highly variable [1,2,3,4]. We seek a 

simplified model, with as few parameters as possible, to explore the effects of variation in viscoelasticity 

and timing of force generation on the temperature dependence of morphogenesis. 

Here we argue that a simple linear, scalar (1D) model is a reasonable first approximation given the 

number of unknown parameters, and high levels of mechanical variation. This model captures expected 

behaviors such as: 1) increased forces lead to increased deformation; 2) usually (though not always) the 

rate of deformation declines with time after application of a load; and 3) compliance measured in the 

microaspirator should correlate with tissue responses to stresses driving blastopore closure (i.e. tissues 

that appear softer in microaspiration should behave as though they are softer during blastopore closure). 

We also expect that if the tissue behaves like a solid in the microaspirator, it will behave like a solid 

during blastopore closure. Similarly if it behaves like a fluid in the microaspirator, it should also behave 

like a fluid during blastopore closure. 

Consider the full 3D, non-linear, large-deformation model. The strain tensor (μij) at time t and 

position X={x, y, z} is a function of the stress tensor σ and compliance tensor C:  

(eqn. S1)     [   ]    [     [   ]    [   ]  ]  

We assume zero strain at the beginning of gastrulation. C and σ are functions of both time and position in 

the embryo, and f is a function of C and σ over all points in time prior to t (represented by γ). Let us take  

σkl=skl*ϴ, where ϴ is a scalar, with f going to zero as ϴ goes to zero (i.e. when stress is zero at all times). 

Then approximating with a Taylor series around ϴ=0,  

(eqn. S2)     [   ]   
  

  
   [ ] 

Here ω[θ] are higher order terms in the series. The term (df/dθ)θ is the linear, small deformation 

viscoelastic model. So we can write: 

(eqn. S3)     [   ]    (∫      [     ]
    [   ]

  

 

 
  )   [ ]  

Furthermore, we can split skl into two terms:  

(eqn. S4)     [   ]     [ ] [ ]     [   ]  
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Here zkl[X] is the time averaged value of skl at position X, v[t] is a scalar function of time, and ykl[X, t] are 

the deviations from zkl[X]v[t]. We can choose v[t] in a way that minimizes the contribution of y[X, t]kl to 

the strain (it is not important how to do this, only that there exists a choice of y and v that would 

maximize the contribution of z). Hence,  

(eqn. S5) 

    [   ]   (   [ ] ∫      [     ]
  [ ]

  

 

 
   ∫      [     ]

    [   ]

  

 

 
  )   [ ]  

Both ω and y are unknown even to sign, and y is chosen so that its contribution is as small as 

possible. Therefore, it is reasonable to take as a first approximation, the linear model: 

(eqn. S5)      [   ]      [ ]∫      [     ]
  [ ]

  

 

 
   

The compliance and strain are still 2nd and 4th order tensors. If we assume that Cijkl can be 

approximated as the product of a scalar valued term (J) depending on time, and a tensor (cijkl), we get: 

(eqn. S6)     [   ]       [ ]    [ ] ∫  [    ]
  [ ]

  

 

 
    

(Alternatively one could use a similar division into the sum of two tensors as used for sij.) This means that 

µij[X, t] must also be approximately separable into products of a spatially varying term (gij[X]) and a 

temporally varying term (ε[t]) in the same way. All the spatial variation can be separated into one set of 

terms, and we can simplify to a scalar equation equivalent to our linear model. The unknown 

proportionality term (K) cancels out of the final model:  

(eqn. S5)   [ ]   ∫  [    ]
  [   ]

  

 

 
   

The scalar ε is now the only parameter that characterizes the progression of gastrulation, so we can map 

morphogenetic events (deformation states) to ε[t]. Hence, blastopore closure begins and ends at a 

particular values of ε (0 and εc respectively). 

Clearly, we have cut out a lot of important processes and parameters to get to this point. Furthermore, 

we have not accounted for changes in compliance over development [2,3]. However, given the unknowns, 

and the variation in the known parameters, this linear, scalar-valued model is a reasonable first 

approximation. It is also minimal: all parameters other than those that whose importance we wish to 

determine (v[t]), can be tied to measurements (J[t]), or cancel out (K).   
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Supplemental Text 1.2: An example of tolerance to variation in gastrulation. 

A remarkable illustration of embryos' capacity to tolerate morphogenetic variation occurred in 

one clutch (a batch of embryos collected from the same female at the same time). In this clutch (Figure 

S1) gastrulation took a very different path than in others (7 of 8 embryos). Bottle cell formation began 

normally. However, at the point when superficial involution would normally begin at the dorsal 

blastopore edge, a tongue of material (most likely presumptive notochord) extended out across the 

blastopore from the dorsal side. Superficial involution then began at a point further up the dorsal side, and 

blastopore closure occurred over the tongue of material. Despite its abnormal trajectory, blastopore 

closure completed successfully and the resulting embryos looked essentially normal at later stages 

(neurula and early tadpole). Because blastopore closure was so unusual in this clutch, these results were 

not analyzed for shifts in developmental timing, yet they provide a clear example of how robust 

morphogenesis can be.  

Fig. S1. Variation in the trajectory of morphogenesis. (A) Time lapse images of the vegetal side of 

an embryo in a clutch with an unusual trajectory of morphogenesis. A tongue of material extended over 

the blastopore from the dorsal side at the time when normal embryos (B) would be undergoing dorsal 

superficial involution. Images in A and B are at hourly intervals from bottle cell contraction (left) to 

blastopore closure (right) at 26°C. (C) The same time point midway through blastopore closure in all 8 

embryos from this unusual clutch. (D) Posterior ends of the same eight embryos at neurula stages had 

completed blastopore closure. (D) The same eight embryos at tadpole stages showed only minor defects. 

Contrast and brightness were adjusted to optimize images; images in A - C were rotated dorsal side up. 

B shows embryo from Figure 2A. 
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