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SUPPLEMENTAL INFORMATION 
 

SUPPLEMENTAL FIGURE AND MOVIE LEGENDS 

 

Figure S1. Corrections, Controls, and Models for the DNA Rotation Experiment, 

Related to Figure 2 
(A) Correcting rotor bead motion for hydrodynamic drag to calculate DNA rotation by 

the φ29 packaging motor. The rotation angle for the two sample traces shown in Figure 

2B is plotted as the observed rotor bead motion (blue) and the derived DNA rotation 

(cyan). See Extended Experimental Procedures for the detailed procedure of deriving 

DNA rotation. 

(B) Analysis of the simulated bead-rotation signal. In the simulation, the mock DNA was 

rotated by the packaging motor at a filling-dependent rotation density (red line). The 

resulting motion of the rotor bead, accounting for biological, thermal, and instrumental 

noise and error, was simulated (Extended Experimental Procedures). The simulated 

motion was then analyzed using the same procedure as the experimental data shown in 

Figure 2D, illustrating that the original filling dependence of DNA rotation can be 

recovered (black circles; error bars are SEM), thus validating our approach. 

(C) Sequence independence of the rotation density. The DNA backbone twist across each 

basepair was computed for the sequences used in our experiments, based on previously 

reported values (Wynveen et al., 2008). The results were averaged over every 100-bp 

window. Note that there were two possible DNA substrates of nearly identical length that 

could be packaged in these experiments (see Extended Experimental Procedures for 

details). The local helical twists of the two possible substrates are identical at 34.6 

degrees per basepair along the entire sequences (blue and green). If the observed change 

in rotation density were simply a sequence-dependent effect, the twist per basepair would 

be required to drop substantially toward the end of the sequence (red), contrary to our 

calculations. 

(D) Simultaneous DNA translocation and rotation by packaging motors on trepanated 

proheads. Sample packaging traces (dotted lines – complex 1; solid lines – complex 2) 

show that motors on trepanated proheads rotate DNA (blue) during translocation (red). 

Trepanated proheads were enriched by freeze-thaw cycling of pRNA-free proheads and 

subsequently adding pRNA onto the prohead. 

(E−F) Putative scenarios in which the DNA-contacting subunit precesses around the ring 

in successive cycles. (E) The special subunit that makes specific contacts with DNA 

backbone phosphates precesses around the pentameric ring counter-clockwise by one 

subunit after each packaging cycle, producing a +58° DNA rotation per cycle. (F) The 

DNA-contacting special subunit precesses clockwise by one subunit after each cycle, 

yielding a -86° DNA rotation per cycle. Neither scenario is compatible with the rotation 

density obtained experimentally (see Extended Experimental Procedures for further 

discussion). 

 

Figure S2. Sample Packaging Traces at Various ADP Concentrations, Related to 

Figure 3 
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These experiments were performed at a fixed ATP concentration of 250 μM. The DNA 

packaging velocity at a given capsid filling decreases as the ADP concentration increases 

(Figure 3G). 

  

Figure S3. Using Simulations to Explore the Effect of Each Kinetic Rate in the 

Chemical Cycle of the φ29 ATPase on the Michaelis-Menten Parameters, Related to 

Figure 4 

(A−C) Dependence of the maximum velocity Vmax, the Michaelis constant KM, and their 

ratio Vmax/KM on the ATP-tight-binding rate (A), the ATP-docking rate (B), and the ATP-

undocking rate (C). Vmax is sensitive to changes in kATP_tight_bind, but is not affected by 

changes in kATP_dock or kATP_undock. 

(D) Vmax/KM is insensitive to changes in the rate of ADP release, Pi release, ATP 

hydrolysis, or condensation of ADP and Pi. 

 

Figure S4. Characterizing the Properties of Long-Lived Pauses (LLPs), Related to 

Figure 4 

(A−B) LLPs occur predominantly during the dwell phase. (A) Left: A sample packaging 

trace segment shows regular dwells and bursts (blue) and the beginning of an LLP (red). 

Raw 2500-Hz data are shown in gray. Downsampled 100-Hz data are shown in blue and 

red. Right: Residence time histogram computed from the downsampled data as 

previously described (Chistol et al., 2012). The largest peak (red arrowhead) corresponds 

to the location of the LLP and the smaller peaks correspond to the locations of regular 

dwells. Two regular dwells serve as anchors (blue arrowheads) for inferring the size of 

the burst immediately before the LLP and aligning different LLP-containing segments. 

To remove any filling-dependent variation in the burst size, the segments were scaled 

such that the separation between the two anchors is always 10 bp. (B) Residence time 

histograms (thin gray curves) from 159 LLP-containing segments were aligned using 

their anchor dwells (blue arrowheads at 0-bp and 10-bp) and averaged (thick blue curve). 

The averaged histogram shows that the LLP peak is located around -20 bp (red 

arrowhead), i.e., integer multiples of a full burst size from the anchor dwells, indicating 

that most of the LLPs occur during the dwell phase of the motor’s packaging cycle. Inset: 

Distribution of pre-LLP burst sizes shows a major peak at 10 bp (after the 

aforementioned scaling to remove the filling dependence of the burst size), again 

indicating that most LLPs occur during the dwell. 

(C−D) Distinguishing LLPs from regular dwells. Dwell time distributions (gray) at low 

(C) and high (D) capsid filling were fit by Gamma distributions (blue curves). Insets 

display the tails of the distributions. The long events unaccounted for by the Gamma 

distributions were designated as LLPs. At 15−30% filling, the longest event is ~0.5 s, 

whereas at 95−100% filling, the longest event is ~35 s. See Extended Experimental 

Procedures for further discussion. 

 

Figure S5. Sizes of the Bursts and Burst Fragments at Different Levels of Capsid 

Filling, Related to Figure 6 

(A) Distributions of burst sizes at different levels of capsid filling. Each distribution can 
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be fit by a sum of Gaussian distributions representing integer 10-bp, 9-bp, and 8-bp burst 

sizes (dashed black, blue, and red curves, respectively). Solid green curves represent the 

shapes of the summed distributions. Vertical dashed lines represent the mean burst sizes.  
(B) Two sample packaging traces at high capsid filling (80−100%) and low external 

loads (7−10 pN) exhibiting burst fragmentation (black arrows). Raw 2500-Hz data are 

shown in gray and downsampled 100-Hz data in black. Stepwise fit to the data highlights 

dwells and bursts in red and green, respectively. Under these conditions, bursts are either 

instantaneous or broken up into two resolvable fragments. s denotes the size of the first 

segment and b denotes the size of the entire burst. 
(C) Normalized sizes of the first resolvable burst segments, s/b, at different levels of 

capsid filling. The mean value of s/b is ~0.5 at all filling levels, consistent with four steps 

making up each burst and two steps making up each resolvable burst segment. 

   

Movie S1. Rotation of the DNA Concomitant with Translocation, Related to Figure 

2 

The rotor bead position was tracked using center-of-mass algorithms for transverse 

position and brightness for longitudinal position. In the Mie scattering regime relevant for 

imaging micron-sized beads, the bead center appears brighter when it is further away 

from the camera, and darker when it is closer, as confirmed by manually moving the 

micropipette (not shown).  
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SUPPLEMENTAL EXPERIMENTAL PROCEDURES 

 

Derivation of the Angular Velocity of DNA Rotation 

The packaging motor twists the DNA, and the torque stored in the twisted DNA rotates 

the rotor bead through the viscous fluid. The hydrodynamic drag torque Tdrag acting on 

the rotor bead as it rotates can be calculated from the fluid’s viscosity η, the rotor bead’s 

radius r, and its angular velocity ω: Tdrag = -14πηr
3
ω, where 14πηr

3
 is the drag coefficient 

γ (Bryant et al., 2003; Happel and Brenner, 1965; Landau and Lifshitz, 1976). During 

packaging, hydrodynamic drag causes the angle of the rotor bead θbead to lag by an 

amount Δθlag behind the angular rotation of the DNA. This difference is absorbed as 

unwinding of the DNA, which behaves as a torsional spring and generates an elastic 

torque Telastic = (C/L)Δθlag that drives the bead rotation. Here, L is the length of the DNA 

between the motor and the rotor bead, and C = 460 pN·nm
2
 is the torsional modulus of 

DNA (Bryant et al., 2003). Because at steady state the drag torque must be equal and 

opposite to the elastic torque, it is possible to estimate the angular lag Δθlag from 14πηr
3
ω 

= (C/L)Δθlag. Then the actual DNA rotation θDNA = θbead + Δθlag. Analysis of the DNA 

rotation without correction for the hydrodynamic drag of the rotor bead resulted in a 

biased estimate of the local rotation density, because the rotor bead lagged at the 

beginning of packaging and then caught up toward the end of packaging (Figure S1A). 

Note that the DNA-rotor bead system is an overdamped harmonic oscillator whose time 

resolution is given by the autocorrelation time of the rotor bead τ = γL/C, which is on the 

order of seconds in this experiment. In deriving the angular velocity of DNA rotation 

from the data, we used a boxcar-filter of 15-s width, comparable to the autocorrelation 

time of the system. Thus, the estimate of the DNA angle is averaged over many turnover 

cycles of the motor. Because the elastic torque saturates at -10 pN·nm due to a denaturing 

transition (Bryant et al., 2003), the error cannot be uniquely determined from such a high 

torque. However, such torques were observed for only a few seconds at a time (Figure 

2B), and the correction remains valid once the torque again became less negative than -10 

pN·nm. Any packaging complex that sustained a saturating torque for long stretches was 

excluded from the analysis for this reason. Simulations show that transient spikes of 

apparently saturating torque – of Brownian origin – do not introduce significant error into 

the analysis (see the next section). 

 

Simulation of Bead Rotation Signal 

In order to assess the validity of our analysis of the local rotation density, we performed 

Brownian dynamics Monte Carlo simulations of the motion of the rotor bead given 

assumptions about the characteristics of the packaging motor, mechanical properties of 

the DNA, thermal fluctuation and dissipation, and sources of measurement error. The 

tether length decreased at a velocity that varied with capsid filling (Rickgauer et al., 2008) 

(Figure 4B). Random static and dynamic noise comparable to measurement noise in the 

optical tweezers was added to the tether length. Then we assumed that the packaging 

motor rotated the DNA at a filling-dependent rotation density similar in form to that 

displayed in Figure 2D. Next, the response of the rotor bead to the elastic torques 

generated in the DNA due to motor-induced rotation was added, using the known value 
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of DNA’s torsional rigidity C, and including torque saturation. We also included a 

hydrodynamic drag torque proportional to the bead’s angular velocity following the 

expression Tdrag = -14πηr
3
ω as shown above. For consideration of the effects of 

anomalous drag coefficient, see the next section. Finally, a fluctuating thermal torque Nf 

acting on the rotor bead was added. All of these contributions appear in the overdamped 

Langevin equation of motion for the rotor bead: 

   ̇   
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The timestep was set to 33 ms, matching the rate of video acquisition and much smaller 

than the autocorrelation time of the rotor bead in this geometry τ = γL/C, which is on the 

order of seconds. Twenty-two simulations of packaging while monitoring tether length 

and rotor bead angle were analyzed for local DNA rotation density using the same 

procedure as described in the above section. When the lag of the rotor bead was properly 

accounted for, the original filling dependence of DNA rotation was recovered (Figure 

S1B). 

 

Consideration of Error in Drag Coefficient of a Bead in Close Proximity to Two 

Other Beads 

The above formula for the drag of a bead rotating about an axis tangent to its surface is 

true in an unbounded fluid, where the boundary conditions are specified on the bead 

surface and at infinity. However, in our experimental geometry, there are nearby no-slip 

surfaces that must be considered. The drag coefficient for systems like this has not, to our 

knowledge, been treated before either analytically or numerically. To understand the 

hydrodynamics, we break the system into two smaller problems: the hydrodynamics of a 

bead close to another bead, and the hydrodynamics of a bead between two surfaces. 

The first problem – orbital motion of a bead near another bead – can be simplified 

into a linear combination of two cases – pure rotations and pure translations – and the 

results superposed. Because of the linearity of the equations, this result should be exact 

(Happel and Brenner, 1965). The relevant form of motion can be decomposed into: (I) 

translation of a bead perpendicular to the line connecting it to another bead, (II) rotation 

of a bead about the axis connecting it to another bead, and (III) rotation of a bead about 

an axis perpendicular to the line connecting it to the other bead. Cases I and III were 

solved in the form of an infinite series by Davis (Davis, 1969). By weighting the values 

in Davis's work by the component of the orbit in each of those directions, we calculated 

their contributions to the drag torque. For example, let us consider a ratio R = 0.1 (the 

inter-bead surface-to-surface distance divided by the rotor bead radius), which is a lower 

bound for our experiment. The additional rotational drag torque is 0.5 times the 

unbounded (8πηr
3
) and the additional translational drag is 0.3 times 6πηr. Case II was 

treated by Jeffery (Jeffery, 1915). In this case, the drag torque for pure rotations is seen to 

increase by a factor of 0.1 at the same distance. Combining these three results, 
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That is, the net effect of the proximity of the rotor bead to another bead at this distance 

(equivalent to 44 nm in our experiment) is to increase the drag coefficient to about 1.5 

times the value in an unbounded fluid (14πηr
3
). In analyzing the data presented here, we 

approximated this correction as a function of inter-bead distance by a fit, 

     (  
   

     (
 
   )

) 

Here, L is the distance between the rotor bead and the other bead, measured in nm. This 

fit has no physical basis other than that it reproduces to within ~10% the expected drag 

increase across the range of R = 10 to 0.1 (equivalent to distances of 4.4 µm to 44 nm in 

our experiment). 

Now, consider the second problem – the hydrodynamics of a bead between two 

surfaces. There is no available solution for the drag coefficient at an arbitrary position 

between two walls, let alone at an arbitrary position between two spheres. In analyzing 

our data, we separately calculated the drag correction due to each nearby bead and then 

summed the contributions from each. This assumption of superposition was first invoked 

by Oseen (Happel and Brenner, 1965), although it cannot be justified based on linearity 

because the boundary conditions used to solve for each individual obstacle are different 

from the boundary conditions describing the complete system. A recent computational 

paper, looking at the drag between two plane walls, showed that the error in this 

assumption is about 5% when the bead is close to one wall, but that superposition is a 60% 

overestimate midway between the two walls (Swan and Brady, 2010). Given that the drag 

coefficient of a rotor bead between two other spheres should be less than that of a rotor 

bead between two walls, we expect that superposition will yield an overestimate of the 

drag coefficient.  

Given all the uncertainties in estimating the drag in our experiments, we sought to 

assess how these uncertainties propagate into the data analysis. We performed additional 

Brownian dynamics Monte Carlo simulations of the motion of the rotor bead, including 

the phenomenological alteration of the drag coefficient at close bead proximities. Once 

the rotor bead motion had been simulated, the data were analyzed for local rotation 

density using several different weights for the assumed additional drag, ranging from 0 to 

20 times the weight imposed during the simulation. The results did not change (data not 

shown). Moreover, the range over which the drag coefficient changes significantly (~250 

nm) corresponds to less than 1 kbp of DNA packaged. Thus the effect of bead proximity 

is to bias only the last kbp of data. These simulations indicate that errors in the 

hydrodynamic drag – both overestimates and underestimates – do not introduce 

significant bias in the measurement. 

 

Putative Salt- and Sequence-Dependence of the DNA Rotation Density 

Wang measured an average DNA helical pitch of 10.4 bp/turn in physiological conditions 

(Wang, 1979). The helical pitch is known to vary by as much as 1.5% depending on 

cations present. In the standard packaging buffer containing 25 mM Tris-HCl, 5 mM 

MgCl2, and 50 mM NaCl, the deviation from the conditions of Wang’s experiments is 

expected to be about -0.3%, well within the error of Wang’s measurement. Thus, in this 
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study we used an average helical pitch of 10.4 bp/turn. An error on the order of 0.3% 

would generate a shift of about 0.1 °/bp in the rotation density.  

The helical pitch of DNA also varies within one molecule, locally correlating with 

base steps found in the DNA primary sequence. The helical twist per base step has been 

surveyed for each of the ten distinct base steps using crystallographic, NMR, and 

electrophoretic data (Wynveen et al., 2008). Based on the consensus solution parameters 

described by Wynveen et al., we computed the local helical twist along the DNA 

substrate packaged in these experiments. Note that there were two possible sequences for 

the DNA substrate, due to the fact that the viral DNA was ligated via an SpeI site to a 

pool of molecules generated by nearly-exactly bisecting an 11.6-kbp plasmid with SpeI 

and EcoRI. We computed the local twist for both possible sequences, which differ only in 

the final 5.8 kbp. The local twist of both possible substrates does not differ significantly 

from the canonical 10.4 bp/turn (34.6 °/bp) along the entire sequences (Figure S1C). 

Thus the observed change in local DNA rotation density (Figure 2D) is not a sequence-

dependent effect, otherwise the twist per basepair would be required to drop substantially 

toward the end of the sequence, contrary to our calculations. 

 

DNA Rotation Predicted by Other Scenarios for the DNA-Contacting Subunit 

Consideration of the geometry of the motor and the DNA generates a family of scenarios 

for DNA rotation, and each scenario makes an explicit prediction for the amount of DNA 

rotation given a certain periodicity of the motor-DNA contact. It is known that both the 

mechanical cycle and the chemical cycle of the motor reset once every 10 bp at low 

filling, so we assume that the DNA is contacted in a manner that induces rotation once 

every 10 bp. We consider alternative scenarios for the sequence of subunits that make 

specific electrostatic contacts with the DNA in each cycle – i.e., does the contact take 

place at the same subunit each time, does it precess sequentially around the ring, or does 

it have some other predictable pattern? 

At the beginning of a cycle, the DNA is contacted at angle 0°. If the DNA is 

contacted every 10 bp, the contact point at the beginning of the next cycle is 346° around 

the helix (Figure 2E, Left). The simplest model consistent with the -1.4 °/bp DNA 

rotation is one in which contacts are made every 10 bp by the same subunit located at 0° 

(Figure 2E, Right). The observed rotation is inconsistent with rotary contact scenarios 

(Figures S1E and S1F). If contacts proceeded in the counter-clockwise direction around 

the pentameric motor ring such that the next subunit to make rotation-inducing contacts is 

located at 72°, it would generate a positive (right-handed) rotation – the opposite sign 

from what was observed. If contacts proceeded clockwise around the ring, the DNA 

would be rotated by about -9 °/bp, a much greater magnitude than was observed with any 

of the packaging complexes we studied. 

 

Dwell and Burst Detection 

High-resolution data were selected by evaluating the pairwise distance distribution for 

each packaging segment as previously described (Chistol et al., 2012). Segments with 

clear motor stepping were used for further dwell-burst analysis. Dwells were detected 

using a modified Schwarz Information Criterion (mSIC) algorithm (Chistol et al., 2012). 



8 
 

Briefly, the SIC algorithm is an iterative procedure that fits a series of steps to the data 

and computes a measure of the fit quality for every round of fitting. The algorithm adds 

more steps to the fit until the fit quality no longer improves. In the original algorithm 

(Kalafut and Visscher, 2008), the quality of the fit was assessed via the formula 

   (       )  (   )   ( )      ( ̂       
 ), where n is the number of data points, k 

is the number of steps, and  ̂       
 is the maximum likelihood estimator of variance when 

k steps are fitted to the data. Since the original SIC algorithm over-fits experimental data 

containing colored noise, we introduced an additional penalty factor (PF), 

   (       )    (   )   ( )      ( ̂       
 ) , and optimal stepwise fits were 

achieved using PF values of 3−5. The candidate dwells identified by the mSIC method 

were validated using a kernel density analysis as previously described (Chistol et al., 

2012). Since the dwell duration is always much longer than the burst duration, bursts can 

be treated as instantaneous events when only dwell durations are of interest. To 

accurately assess the burst duration, the SIC algorithm was run in its original form, thus 

over-fitting the data such that mini-dwells were assigned during the burst phase, 

reflecting the finite duration of individual translocation events. The duration of a given 

burst was then computed as the sum of the durations of mini-dwells between two 

validated regular dwells. 

 

Distinguishing Long-Lived Pauses from Regular Dwells 

The duration of a dwell, t, is dictated by the rates of all the events occurring during the 

dwell phase: ADP release, ATP loose docking, ATP tight binding, etc. If each individual 

event is a stochastic process with an exponentially distributed lifetime, then the dwell 

duration distribution is a Gamma distribution, which is a convolution of several single-

exponential distributions. The probability density function for the dwell duration t > 0 in 

a Gamma distribution is given by: 

 (     )  
          

    ( )
 

This expression assumes that the dwell phase contains n exponentially distributed 

processes with the same mean lifetime τ. If processes occurring in the dwell phase do not 

have identical lifetimes, then n represents an apparent number of rate-limiting events. A 

strict lower limit for the number of rate-limiting processes during the dwell phase, nmin, 

can be computed from a set of dwell durations in a model-independent fashion: 

     
〈 〉 

〈  〉  〈 〉 
 

Here brackets denote averages over the entire data set. nmin places a strict lower limit on 

the number of rate-limiting events. An nmin value less than one indicates that there are at 

least two types of dwells, one significantly longer than the other (Moffitt et al., 2010). 

At capsid fillings above 50%, the φ29 packaging traces contain dwells that are 

considerably longer than would be predicted by a Gamma distribution (Figures 4F, S4C, 

and S4D). nmin values computed from the dwell duration distributions are smaller than 

unity at capsid fillings above 70% (data not shown), further indicating that the dwell 

distribution contains a mix of regular dwells and long-lived pauses (LLPs). Because these 
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two populations may overlap, regular dwells cannot be separated from LLPs by simply 

applying a duration threshold. Instead we took a probabilistic approach to identify them. 

The left 90
th

 percentile of the dwell duration distribution was fit by a Gamma distribution 

(Figures S4C and S4D). The shape of the Gamma distribution is largely determined by 

the data around the peak, and the fitting result did not change significantly when the fit 

was performed on the left 70
th
, 80

th
, or 90

th
 percentile of the dwells. The resulting Gamma 

distribution accounts for nearly all the observed dwells at low filling (Figure S4C), but 

cannot account for a significant portion of very long-lived events at high filling (Figure 

S4D). The long events unaccounted for by the Gamma distribution were designated as 

LLPs. As mentioned above, this assignment is probabilistic. For example, at 95−100% 

filling, a 1.8-s event has a 50% chance of being an LLP, whereas a 20-s event has a 99.99% 

chance of being an LLP. Gamma distribution fits also provide the apparent number of 

rate-limiting events in the regular dwell (Figure 4E), in the form of the parameter n. 

 

Estimating the Magnitude of Internal Force Using Burst Duration 

We found that capsid filling affects both the dwell duration and the burst duration 

(Figures 4D and 5C). In contrast, the external force applied with optical tweezers, Fext, 

only affects the burst duration but has little effect on the dwell duration (Figure 5B). 

Therefore, we used the burst duration, τburst, as a reporter of the net force acting on the 

packaging motor through the DNA, which is the sum of the external force applied with 

optical tweezers and the resisting internal force due to DNA confinement inside the 

capsid, Fnet = Fext + Fint. The dependence of τburst on Fext at very low capsid filling (when 

Fint is essentially zero) effectively served as the calibration for the force sensitivity of the 

motor: Fnet ≈ Fext = ζ(τburst) (Figure 5B, dashed curve). The magnitude of Fnet at a given 

capsid filling was then estimated by applying the force sensitivity calibration, ζ, to the 

τburst versus filling data (Figure 5C). Finally, the magnitude of the internal force was 

inferred by subtracting the known external force from the net force, Fint = Fnet - Fext 

(Figure 5D). 

 

Predicting DNA Rotation Density from Measured Burst Size 

The dsDNA backbone winds by a full 360° across a distance of 10.4 bp – the helical 

pitch of DNA. During each burst, the φ29 motor packages slightly less than a full helical 

pitch of DNA. The predicted amount of rotation necessary to bring the same ATPase 

subunit into perfect register with the DNA backbone phosphates after a burst can be 

computed as: α = (dBurstSize/dHelicalPitch - 1)·360°. The predicted DNA rotation density was 

then computed by dividing the rotation angle by the burst size: ρ = α/dBurstSize. At low 

capsid filling (15−30%), we measured an average burst size of 9.8±0.1 bp (Figure 6A). 

Prior to computing the predicted DNA rotation density, the measured average burst sizes 

were scaled by 1.02, thus bringing the low-filling burst size to an integer 10.0 bp. This 

procedure corrected for small systematic errors that had not been accounted for during 

standard calibration procedures. Note that the size of an individual burst has to be an 

integer basepair value, because the motor needs to make specific contacts with phosphate 

groups on one of the DNA strands after each cycle (Aathavan et al., 2009). A non-integer 

average burst size likely results from a mixture of multiple integer burst sizes. For 
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example, an average burst size of 9.5 bp at a given filling level suggests that the motor is 

equally likely to make 10.0-bp and 9.0-bp bursts at this particular filling. 
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