
Supplementary Appendix

A1. 2D Shape Example with Varying Size and Strength

We report here the snapshots of estimates with varying signal strength at sample size

n = 500 (Figure S.1), and the line plot of the average root mean squared error (RMSE)

for estimation of B with both varying sample size and signal strength (Figure S.2). The

findings were summarized in Section 6.1.

A2. 2D Shape Example with Regularization

We have run a numerical experiment to illustrate regularized tensor regression estima-

tion. The setup is the same as that in Figure 1 except that the sample size is reduced to

500, which is only barely larger than the number of parameters 380 = 5+3×(64+64)−9

of a rank-3 tensor model. Figure S.3 shows the outcome of applying the lasso penalty

to Bd in the rank-3 tensor regression model. Recovered signals at three different values

of λ = 0, 100, 1000 are displayed. Without regularization (λ = 0), the rank-3 tensor

regression is difficult to recover some signals such as triangle, disk and butterfly, mainly

due to a very small sample size. On the other hand, excessive penalization compromises

the quality of recovered signals too, as evidently in those shapes at λ = 1000. Regular-

ized estimation with an appropriate amount of shrinkage improves estimation quality, as

seen in triangle and disk at λ = 100 and in butterfly at λ = 1000. In practice the tuning

parameter is chosen by certain model selection criterion such as BIC or cross validation.

Moreover, we have experimented with the bridge and SCAD penalties for the same data

and obtained similar results. The desirable unbiased (or nearly unbiased) estimates from

these concave penalties are reflected by the improved contrast in the recovered signal.

For the sake of space, we do not show those figures here.

A3. Comparison with Classical Lasso

We compare our regularized fixed rank tensor estimate with a classical regularized model,

the lasso applied to vectorized image covariates. Our purpose is to investigate which

method could provide a better estimate to the complicated true array signal with a
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Figure S.1: Snapshots of tensor estimation with varying noise level. The matrix variate
has size 64 by 64 with entries generated as independent standard normals. The regression
coefficient for each entry is either 0 (white) or 1 (black).
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Figure S.2: Line plot of the average root mean squared error (RMSE, y-axis) for estima-
tion of B with varying sample size (x-axis). Five lines denote the average RMSE when
the noise level is 50% (blue dash-dot), 20% (blue solid), 10% (red solid), 5% (blue dash)
and 1% (red dash) of the signal.

limited sample size. We reproduce the regularized tensor estimates of the “disk”, “tri-

angle”, and “butterfly” signals in Figure S.3 with a rank 3 model. In addition, we also

display the regular lasso estimates (i.e., lasso penalty applied to the vectorized matrix

covariates) at the same sample size n = 500. The tuning parameter is chosen according

to BIC. The results are shown in Figure S.4. It is clearly seen that the vector version of

lasso estimates are far off from the truth whereas our tensor version estimates are much

better.

A4. Algorithm Stability and Computing Time

We have carried out a numerical experiment to study the algorithm stability and the

computing time. We report the results in Figure S.5. We adopt the setting of the

illustrative example, using a “triangle” signal. Only one data instance was simulated

with a fixed sample. Then the algorithm was initialized from 100 random starting points

for tensor regression models at rank r = 1, 2, 3, 4. Box-plots of the final model deviances

and wall clock run times are displayed in Figure S.5. All run times were recorded on a

standard laptop computer with a 2.6 GHz Intel i7 CPU. As expected, higher rank models

fit the data better, yielding smaller deviance, since the true signal is of a high rank. On

the other hand, higher rank models are more vulnerable to local modes, as indicated
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Figure S.3: Demonstration of lasso regularization. The matrix variate has size 64 by 64
with entries generated as independent standard normals. The regression coefficient for
each entry is either 0 (white) or 1 (black). The sample size is 500.
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Figure S.4: Tensor lasso estimate (top) vs classical lasso estimate (bottom; applied
on the vectorized matrix covariates) for T-shape, triangle and butterfly at sample size
n = 500.

by larger variations, and takes longer to converge. The overall run time, however, is

remarkably fast. For instance, the median run time of fitting a rank 3 model in this

example is about 5 seconds. Fitting a rank-3 logistic model to the 3D ADHD data

in Section 6.2.3 took about 285 seconds for 10 runs from 10 random starting points,

averaging < 30 seconds per run.

A5. Proofs

Proof of Lemma 1

For the first identity it is enough to check that the mode-d matricization of b1 ◦ · · · ◦ bD
is bd(bD ⊗ · · · ⊗ bd+1 ⊗ bd−1 ⊗ · · · ⊗ b1)T, which is easily seen to hold elementwise. The

scalar product
∏

d′ 6=d bd′id′ appears as the j-th element of the row vector (bD ⊗ · · · ⊗

bd+1 ⊗ bd−1 ⊗ · · · ⊗ b1)T where j = 1 +
∑

d′ 6=d(id′ − 1)
∏

d′′<d′,d′′ 6=d pd′′ . The matricization

of a sum of arrays equals sum of their matricizations. Therefore the first identity holds.
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Figure S.5: Algorithm stability and run time. The same algorithm is initialized from 100
random starting points to fit tensor regression models at rank r = 1, 2, 3, 4 respectively.
The final model deviances and wall clock timings are reported.

For the second identity,

vecB = vec(
R∑
r=1

b
(r)
1 ◦ · · · ◦ b

(r)
D ) =

R∑
r=1

vec(b
(r)
1 ◦ · · · ◦ b

(r)
D )

=
R∑
r=1

b
(r)
D ⊗ · · · ⊗ b

(r)
1 = (BD � · · · �B1)1R.

Proof of Proposition 1

Proof of global convergence follows from standard arguments for algorithms that mono-

tonically increase objective function (de Leeuw, 1994; Lange, 2004, 2010). Under the

blockwise strict concavity condition (2), the block update is well-defined and differen-

tiable. Then algorithmic map M is a composition of D + 1 differentiable maps and, by

implicit function theorem, continuous. Let θ(t) be the sequence generated by M and θ

be any accumulation point of θ(t). Since the algorithm always increase objective value,

`(M(θ(t))) ≥ `(θ(t)). Taking limit gives `(M(θ)) = `(θ) by continuity of M and `. Thus

any accumulation point of algorithmic sequence is a stationary point of `. The set of

accumulation points is contained in {θ : `(θ) ≥ `(θ(0))} and thus compact by condition

(1). Compactness implies that this set of accumulation points is also connected (Lange,

2010, Propitions 8.2.1 and 15.4.2). Discreteness of the stationary points of ` implies that
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the number of stationary points is finite. Otherwise there is a sequence of stationary

points whose limit is not isolated. Finally the set of accumulation points is a connected

subset of these finite number of stationary points, thus is a single point. In other words

the algorithmic sequence θ(t) converges to a stationary point of `.

Proof of local convergence relies on the Ostrowski’s theorem (Ostrowski, 1960), which

states that the sequence θt+1 = M(θt) is locally attracted to θ∞ if the spectral radius of

the differential of the algorithmic map ρ[dM(θ∞)] is strictly less than 1. We partition

the Hessian of the objective function ` at θ∞ as

d2`(α,γ,B1, . . . ,BD) =


d2

00` 0
d2

11` · · · d2
1D`

0
...

. . .
...

d2
D1` · · · d2

DD`

 = L+D +LT,

where L is the strictly block lower triangular part and D is the block diagonal part.

Then it can be shown that the differential of map M is

dM(θ∞) = −(L+D)−1LT.

Note θ∞ being a strict local maximum implies that d2`(θ∞) is strictly negative defi-

nite and thus the diagonal blocks d2
dd`, d = 0, . . . , D are strictly negative definite too.

Therefore the block lower triangular matrix (L+D) is invertible as it shares the same

eigenvalues as its diagonal blocks. The spectral radius of −(L+D)−1LT is strictly less

than one. Therefore the iterates are locally attracted to θ∞.

Proof of Lemma 2

By Lemma 1,

B(d) = Bd(BD � · · · �Bd+1 �Bd−1 � · · · �B1)T.

Using the well-known fact that vec(XY Z) = (ZT ⊗X)vec(Y ),

vecB(d) = [(BD � · · · �Bd+1 �Bd−1 � · · · �B1)⊗ Ipd ]vec(Bd).
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Thus we have

Jd = DB(Bd)

= DB(B(d)) ·DB(d)(Bd)

= Πd

∂vecB(d)

∂(vecBd)T

= Πd[(BD � · · · �Bd+1 �Bd−1 � · · · �B1)⊗ Ipn ].

Combining gives

Dη(B1, . . . ,BD)

= Dη(B) ·DB(B1, . . . ,BD)

= (vecX)T[J1 J2 · · · JD].

For the Hessian,

h(id,r),(id′ ,r
′) =

∑
j1,...,jD

xj1,...,jD
∂2bj1,...,jD

∂β
(r)
id
∂β

(r′)
id′

.

The second derivative in the summand is nonzero only if jd = id, jd′ = id′ , r = r′, and

d 6= d′. Therefore

h(id,r),(id′ ,r
′) = 1{r=r′,d 6=d′}

∑
jd=id,jd′=id′

xj1,...,jD
∏

d′′ 6=d,d′
β

(r)
jd′′
,

where the sum is over
∏

d′′ 6=d,d′ pd′′ terms. It is easy to see that h(id,r),(id′ ,r
′) are the entries

of the matrix

X(dd′)(BD � · · · �Bd+1 �Bd−1 � · · · �Bd′+1 �Bd′−1 � · · · �B1).

Proof of Proposition 2

Since µ = b′(θ), dµ/dθ = b′′(θ) = σ2/a(φ) and

∇`(B1, . . . ,BD) =
y − b′(θ)
a(φ)

dθ

dµ

dµ

dη
∇η(B1, . . . ,BD)

=
(y − µ)µ′(η)

σ2
[J1 . . .JD]T(vecX)

40



by Lemma 2. Further differentiating shows

d2`(B1, . . . ,BD)

= − 1

σ2
∇µ(B1, . . . ,BD)dµi(B1, . . . ,BD) +

y − µ
σ2

d2µ(B1, . . . ,BD)

= − [µ′(η)]2

σ2
([J1 . . .JD]TvecX)([J1 . . .JD]TvecX)T

+
(y − µ)θ′′(η)

σ2
([J1 . . .JD]TvecX)([J1 . . .JD]TvecX)T

+
(y − µ)θ′(η)

σ2
d2η(B).

It is easy to see that E[∇`(B1, . . . ,BD)] = 0 and E[−d2`(B1, . . . ,BD)] = I(B1, . . . ,BD),

thus (9) follows.

Proof of Proposition 4

The following useful result relates local identifiability of parametric models to their

Fisher information matrix.

Lemma 4. (Rothenberg, 1971, Theorem 1) Let θ0 be a regular point of the information

matrix I(θ). Then θ0 is locally identifiable if and only if I(θ0) is nonsingular.

The regularity assumptions for Lemma 4 are satisfied by tensor model: (1) the parameter

space B is open, (2) the density p(y,x|B) is proper for all B ∈ B, (3) the support of

the density p(y,x|B) is same for all B ∈ B, (4) the log density `(B|y,x) = ln p(y,x|B)

is continuously differentiable, and (5) the information matrix

I(B) = [J1 . . .JD]T

[
n∑
i=1

µ′(ηi)
2

σ2
i

(vecxi)(vecxi)
T

]
[J1 . . .JD]

is continuous in B by Proposition 2. Then, by Lemma 4, B is locally identifiable if and

only if I(B) is nonsingular.

Proof of Theorem 1

It suffices to show the consistency of the estimated factor matrix B̂nd, d = 1, . . . , D,

which implies the consistency of the tensor estimate B̂n = JB̂n1, . . . , B̂nDK by continuous

mapping theorem. The following well-known theorem is our major tool for establishing

consistency.
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Lemma 5. (van der Vaart, 1998, Theorem 5.7) Let Mn be random functions and let M

be a fixed function of θ such that ∑
θ:d(θ,θ0)≥ε

M(θ) < M(θ0)

for every ε > 0 and

sup
θ∈Θ
|Mn(θ)−M(θ)| → 0 in probability.

Then any sequence of estimators θ̂n with Mn(θ̂) ≥Mn(θ0)−oP (1) converges in probability

to θ0.

To apply Lemma 5 in our setting, we take the nonrandom function M to be B 7→

PB0 [`(Y ,X|B)] (or its modifications) and the sequence of random functions to be

Mn : B 7→ 1
n

∑n
i=1 `(yi,xi|B) = PnM , where Pn denotes the empirical measure under

B0. Then Mn converges to M a.s. by strong law of large number. The first condition

requires that B0 is a well-separated maximum of M . This is guaranteed by the (global)

identifiability of B0 and information inequality. The second uniform convergence con-

dition is most convenient to be verified by the Glivenko-Cantelli theory (Pollard, 1984;

van der Vaart, 1998; van der Vaart and Wellner, 2000).

For binary regression, the following proof is an expansion of (van der Vaart, 1998,

Example 5.40) to tensor binary regression. The density is pB(y|x) = yπ(B,x) + (1 −

y)(1 − π(B,x)), where π(B,x) = g−1(〈B,x〉), where g is the link function. For in-

stance, π(B,x) = 1/(1+e−〈B,x〉) corresponds to the logit link and π(B,x) = Φ(〈B,x〉)

the probit link. Take mB = ln[(pB + pB0)/2]. First we show that B0 is a well-separated

maximum of the function M(B) := PB0mB. The global identifiability of B0 and infor-

mation inequality guarantee that B0 is the unique maximum of M . To show that it is

a well-separated maximum, we need to verify that M(Bk)→M(B0) implies Bk → B0.

Suppose M(Bk)→M(B0), then 〈Bk,X〉 → 〈B0,X〉 in probability. IfBk are bounded,

then E[〈Bk −B0,X〉2]→ 0 and Bk → B0 by nonsingularity of E[(vecX)(vecX)T]. On

the other hand, Bk cannot escape to infinity. If they do, then 〈Bk,X〉/‖Bk‖ → 0 in

probability which in turn implies that Bk/‖Bk‖ → 0. For the uniform convergence, we

42



see that the class of functions {〈B,X〉, B ∈ B} form a Vapnik-C̆ervonenkis (VC) class.

This is true because it is a collection of finite number of polynomials of degree D and

then apply the VC vector space argument (van der Vaart and Wellner, 2000, 2.6.15).

This implies that {π(〈B,X〉),B ∈ B} is a VC class since π is a monotone function

(van der Vaart and Wellner, 2000, 2.16.18). Now mB is Lipschitz in π and π0 since

∂mB

∂π
=
∂mB

∂π0

=
2y − 1

yπ + (1− y)(1− π) + yπ0 + (1− y)(1− π0)
≤ 1

π0

+
1

1− π0

.

A Lipschitz composition of a Donsker class is still a Donsker class (van der Vaart, 1998,

19.20). Therefore {B 7→ mB} is a bounded Donsker class with the trivial envelope

function 1. A Donsker class is certainly a Glivenko-Cantelli class. Finally the Glivenko-

Cantelli theorem establishes the uniform convergence condition required by Lemma 5.

When the parameter is restricted to a compact set, µ = g−1(〈B,x〉) is confined in

a bounded interval and the log-likelihood ` is Lipschitz on the finite interval. If follows

that {`(B) = ` ◦ g−1 ◦ 〈B,X〉,B ∈ B} is a Donsker class as composition with a mono-

tone or Lipschitz function preserves the Donsker class. Therefore the Glivenko-Cantelli

theorem establish the uniform convergence. Compactness of parameter space implies

that B0 is a well-separated maximum if it is the unique maximizer of M(B) = PB0mB

(van der Vaart, 1998, Exercise 5.27). Uniqueness is guaranteed by the information in-

equality wheneverB0 is identifiable. This verifies the consistency for normal and Poisson

regressions.

Proof of Lemma 3

By a well-known result (Lehmann and Romano, 2005, Theorem 12.2.2) or (van der Vaart,

1998, Lemma 7.6), it suffices to verify that the density is continuously differentiable

in parameter for µ-almost all x and that the Fisher information matrix exists and is

continuous. The derivative of density is

∇p(B1, . . . ,BD) = ∇e`(B1,...,BD) = p(B1, . . . ,BD)∇`(B1, . . . ,BD),

which is well-defined and continuous by Proposition 2. The same proposition shows that

the information matrix exists and is continuous. Therefore the tensor regression model

is q.m.d.
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Proof of Theorem 2

The following result relates asymptotic normality to the densities that satisfy q.m.d.

Lemma 6. (van der Vaart, 1998, Theorem 5.39) Suppose that the model (Pθ : θ ∈ Θ)

is q.m.d. at an inner point θ0 of Θ ⊂ IRk . Furthermore, suppose that there exists a

measurable function ˙̀ with Pθ0
˙̀2 <∞ such that, for every θ1 and θ2 in a neighborhood

of θ0,

| ln pθ1(x)− ln pθ2(x)| ≤ ˙̀(x)‖θ1 − θ2‖.

If the Fisher information matrix Iθ0 is nonsingular and θ̂n is consistent, then

√
n(θ̂n − θ0) = I−1

θ0

1√
n

n∑
i=1

˙̀
θ0(Xi) + oPθ0 (1). (10)

In particular, the sequence
√
n(θ̂n − θ0) is asymptotically normal with mean zero and

covariance matrix I−1
θ0

.

Lemma 3 shows that tensor regression model is q.m.d. By Proposition 2 and chain rule,

the score function

˙̀
B(y,x) = d`(B) =

(y − µ)µ′(η)

σ2
(vecx)T[J1 . . .JD]

is uniformly bounded in y, x, and B ranging over compacta and continuous in B

for every y and x. For sufficiently small neighborhood U of B0, supU ‖ ˙̀
B‖ is square-

integrable. Thus the local Lipschitz condition is satisfied and Lemma 6 applies.

44


