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Materials and Methods: 
 
 Peptides 1–5 were prepared and studied as the trifluoroacetate (TFA) salts. 
 
Synthesis of macrocyclic β-sheet peptides 1–4. 
 
 Macrocyclic peptide 1 was synthesized as described previously, by automated solid-

phase peptide synthesis of the corresponding linear peptide on chlorotrityl resin, followed by 

solution-phase cyclization, deprotection, and purification.1 Macrocyclic peptides 2a-2c, 3, and 4 

were synthesized in a similar fashion, using procedures previously reported for the synthesis of 1 

and of other macrocyclic β-sheet peptides.1,2,3 Boc-Orn(Fmoc)-OH was used to introduce the δ-

linked ornithine turn units. Fmoc-Hao-OH2 was used to introduce the unnatural amino acid Hao.4 

Standard Fmoc-protected amino acids were used to introduce the other residues: Fmoc-Ala-OH, 

Fmoc-Asp(OtBu)-OH, Fmoc-Gln(Trt)-OH, Fmoc-Glu(OtBu)-OH, Fmoc-Leu-OH, Fmoc-

Lys(Boc)-OH, Fmoc-Phe-OH, Fmoc-N(Me)-Phe-OH, Fmoc-Ser(OtBu)-OH, Fmoc-Thr(OtBu)-

OH, Fmoc-Tyr(OtBu)-OH, Fmoc-Val-OH. In the synthesis of macrocyclic peptide 4, Fmoc-

N(Me)-Phe-OH was introduced using normal coupling times and conditions (20 min coupling 

with HCTU) and the subsequent amino acid, Fmoc-Phe-OH, was introduced by double coupling 

with HOAT (4 equiv.), HATU (4 equiv.), and 1 hour coupling times using automated solid phase 

peptide synthesis.  

Synthesis of linear peptide 5. 

A 10 mL Bio-Rad Poly-Prep chromatography column was charged with Rink amide resin 

(300 mg, 0.73 mmol/g loading, 0.22 mmol) and ca. 6 mL of CH2Cl2. After 30 min, the solvent 

was drained and the resin was washed with ca. 3 mL of DMF. The resin was then submitted to 

cycles of standard Fmoc-based solid phase peptide synthesis on a PS3 automated peptide 

synthesizer (Protein Technologies, Inc.) using Fmoc-protected amino acid building blocks (4 
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equiv, with HCTU as coupling agent and 2,4,6-collidine as base). The final step of the synthesis 

of the protected peptide involved acetylating the amino-terminus by treating the resin with 2 mL 

of acetic anhydride on the PS3 synthesizer using 2,4,6-collidine as base. The resin was stirred 

with 10 mL of trifluoroacetic acid/triisopropylsilane/water (38:1:1 v/v) for 4 hours under 

nitrogen. The solution was concentrated under vacuum. The residue was dissolved in ca. 5 mL of 

water/acetonitrile (1:1), and centrifuged for 5 min at 14,000 rpm. The liquid portion was 

decanted from the supernatant, then filtered through a 0.45 micron filter, and purified by RP-

HPLC on a C18 column (elution with acetonitrile and water containing 0.1% TFA, linear 

gradient from 20-35% acetonitrile over 38 min). The pure fractions were lyophilized to yield 3.1 

mg of acyclic control peptide 5 (1% yield based on resin loading): ESI-MS m/z for 

C64H102N16O17 [M + 2H]2+ calcd 683.37, found 683.34. 

  

NMR sample preparation, data collection, and data processing of peptides 1–5. 

1H NMR experiments of macrocyclic β-sheet peptides 1–5 were performed in D2O at 500 

MHz and 600 MHz at varying temperatures. Solutions of the peptides were prepared 

gravimetrically by dissolving an appropriate weight of each peptide in an appropriate volume of 

solvent. In calculating molecular weights, all amino groups were assumed to be protonated as the 

TFA salts. The HOD peak was used as a reference after the HOD peak was calibrated based on 

temperature.5 All macrocyclic β-sheet peptides were allowed to stand for 6 hours to 36 hours to 

allow full hydrogen-deuterium exchange of the amide and ammonium hydrogens. 2D TOCSY, 

2D COSY, 2D ROESY and 2D NOESY spectra were collected with 2048 data points in the f2 

domain and 512 data points in the f1 domain. 2D TOCSY, 2D COSY and 2D ROESY data were 

processed to a 1024 x 1024 real matrix with a Qsine weighting function and with forward linear 
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prediction in the f1 domain. 2D NOESY data were processed to a 1024 x 1024 real matrix with a 

Qsinc weighting function, a forward linear prediction in the f1 domain, and with the parameter 

GB set at 0.05 in the f2 and f1 domain. The data were processed with the Bruker XwinNMR 

software. 

In order to observe amide resonances for further resonance assignments, 1H NMR studies 

of macrocyclic β-sheet peptide 2a were also performed in a H2O/D2O mixture (9:1) at 800 MHz 

and 298 K using WATERGATE. 2D TOCSY and 2D NOESY data for 2a in the H2O/D2O 

mixture (9:1) were collected with 4096 data points in the f2 domain and 512 data points in the f1 

domain. The collected data were processed with zero filling to a final matrix of 4096 x 1024 real 

points with a Qsine weighting function and with a forward linear prediction in the f1 domain. The 

data were processed with the Bruker XwinNMR software. 

 

Modeling of the solution-state tetramer of macrocyclic β-sheet peptide 2a. 
 

We used the X-ray crystallographic structure of the tetramer of macrocyclic β-sheet 1 to 

create a model of the solution-state tetramer of macrocyclic β-sheet 2a. We generated the initial 

coordinates for the model in PyMOL by (1) changing the p-bromophenylalanine of 1 to tyrosine, 

(2) shifting the crystallographic dimers out of alignment by two residues toward the C-termini, 

and (3) moving the dimers so that they packed through the LFA faces, instead of the VF faces. 

The rotamer of F20 with χ1=180° was then selected to avoid inter-chain steric clashes, and the 

shifted dimer layers were oriented to approximately match the observed interlayer NOEs 

between the methoxy group of Hao2 and the methyl group of threonine.  

The resulting initial structure was then imported into Maestro and a minimum-energy 

structure was generated by applying distance constraints to match observed NOEs as follows: 
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Using MacroModel with the Maestro user interface, NOE constraints to match the observed 

intra- and intermolecular NOEs illustrated in Figures 3, 4, 6, and 7 were applied. Distance 

constraints of 2.2 to 2.8 Å were applied for the following intramolecular NOEs: K16α–Yα, F20α–

Kα, V18α–Hao1H6, and E22α–Hao2H6 (16 constraints total within the tetramer). Distance 

constraints of 2.2 to 3.6 Å were applied for the following intermolecular intralayer NOEs: L17α–

D23α and F19α–A21α (8 constraints total within the tetramer). Distance constraints of 2.2 to 5.0 Å 

were applied for the following intermolecular interlayer NOEs: Hao2OMe–ThrCH3, Hao1H4–

Hao2H4, Hao1H4–Hao2H3, and Hao1H3–Hao2-H4 (16 constraints total between the layers of the 

tetramer). The structure was minimized with these constraints using the MMFFs force field with 

GB/SA water solvation. The NOE constraints were removed, and minimization was repeated 

using the MMFFs force field with GB/SA water solvation to generate a minimum-energy 

structure (local minimum).  

This minimum-energy was then imported into PyMOL, and PyMOL was used to generate 

the images in Figures 10, 11B, and 12B.6 A β-strand of nine glycine residues (G9) was used to 

generate a cartoon of the template strand Hao-K-Hao-Y-T. Specifically, the pdb coordinates 

from each unnatural amino acid Hao were used to generate tri-glycine segments, and the pdb 

coordinates of the threonine, tyrosine, and lysine residues were also used to generate three 

glycine residues of the G9 β-strand. 

 

Diffusion-ordered spectroscopy (DOSY) experiments of macrocyclic β-sheet peptides 1–4. 
 

The diffusion coefficients of macrocyclic β-sheet peptides 1-4 were determined by 

DOSY experiments on a Bruker Avance 600 MHz spectrometer in D2O at 298 K. The 

experiments comprised a series of 16 pulsed field gradient spin-echo experiments in which the 
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gradient strength was incremented to allow ca. 5–95% signal attenuation with a linear ramp. A 

75-ms diffusion delay was used. Diffusion gradient lengths of 1.75 – 3.0 ms were selected to 

achieve appropriate attenuation of each macrocyclic β-sheet peptide. Data were processed to 

give a pseudo-2D spectrum. The residual HOD peak in D2O was set as a reference (19.0 x 10-10 

m2/s at 298 K).7  

 

Analytical ultracentrifugation studies of macrocyclic β-sheet peptide 2b.  

 Analytical ultracentrifugation (AUC) sedimentation velocity (SV) studies were 

performed on macrocyclic β-sheet 2b to further elucidate its self-association behavior. Solutions 

of 2b were prepared gravimetrically as 0.10, 0.30, and 0.60 mM and determined 

spectrophotometrically to be 98.7, 304.0, and 657.6 μM based on a molar extinction coefficient 

of 2897 M-1cm-1-at 344 nm and a molar extinction coefficient of 22,260 M-1cm-1 at 280 nm,a,8 

Sedimentation experiments were performed with a Beckman Optima XL-I at the Center for 

Analytical Ultracentrifugation of Macromolecular Assemblies at the University of Texas Health 

Science Center at San Antonio. All measurements were made in intensity mode, measuring at 

344 nm in 25 mM aqueous NaCl. The experimental data were collected at 20°C, and at 60,000 

rpm, using 1.2 cm titanium 2-channel centerpieces for the 98.7 μM and 304.0 μM samples, and a 

3 mm titanium 2-channel centerpiece for the 657.6 μM sample. Hydrodynamic corrections for 

buffer density, viscosity and partial specific volume (0.7179 ml/g for 2b)b were made according 

to methods outlined in Laue et al.9 and as implemented in UltraScan.10 

 The experimental data from SV experiments were analyzed with UltraScan v. 9.9 10,11 

                                                
a The extinction coefficient of 2b was calculated to be 22,260 M-1cm-1 from the extinction 
coefficient of Hao (9850 M-1cm-1) and Tyr (1280 M-1cm-1) at 280 nm. 
b The partial specific volume of the Hao subunit was determined to be 0.65 cm3/g as described 
previously.8 The molar mass of the Hao subunit is 235.12 g. 
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and modeled with solutions of the Lamm equation.12,13 Optimization was performed by 2-

dimensional spectrum analysis (2DSA)14 with simultaneous removal of time- and radially-

invariant noise contributions.15 2DSA solutions are subjected to parsimonious regularization by 

genetic algorithm analysis,16 and are further refined using Monte Carlo analysis to determine 

confidence limits for the determined parameters.17 The calculations are computationally 

intensive and are carried out on high-performance computing platforms.18 All calculations were 

performed on the Lonestar and Ranger clusters at the Texas Advanced Computing Center at the 

University of Texas at Austin, and on the Jacinto cluster at the Bioinformatics Core Facility at 

the University of Texas Health Science Center at San Antonio. 

 A comparison of sedimentation profiles measured at 344 nm from multiple loading 

concentrations (98.7 μM, 304.0 μM, and 657.6 μM) indicated a mass-action driven shift in the 

sedimentation profile, suggesting the presence of a reversible reaction (Figure S8). Genetic 

algorithm – Monte Carlo fitting of the individual concentrations suggested the presence of 

monomer and tetramer species at different ratios, depending on concentration. From these ratios, 

we estimated Kassoc = 1.93 x 1014, 5.66 x 1015, and 8.89 x 1014 M-3 for the respective 

experiments.c Detailed hydrodynamic fitting results for these fits are shown in Table S4. Based 

on these results, we fitted the lowest concentration — which displayed the largest signal for the 

monomer — to a reversible self-associating model for a monomer-tetramer equilibrium using a 

200-iteration genetic algorithm-Monte Carlo analysis.13,19 This treatment resulted in a very good 

fit to the monomer-tetramer model — with random residuals (Figure S9) — and gave Kassoc = 

1.93 x 1014 M-3.  

                                                
c A Kassoc of 1.93 x 1014 M-3 corresponds to a 1:1 molar ratio of monomer and tetramer at 0.086 
mM total concentration of 2b and a 4:1 molar ratio of monomer and tetramer at 0.022 mM total 
concentration of 2b.  
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Figure S1a. Key NOEs associated with folding and dimerization of macrocyclic β-sheet peptide 
2a. Interstrand main chain-main chain NOEs were observed for 2a in the NOESY 800 MHz 
spectrum with WATERGATE (8.0 mM in H2O-D2O (9:1) and 298 K).  
 
 

 
 

Figure S1b. Key NOEs associated with folding and dimerization of macrocyclic β-sheet peptide 
2a. Interstrand main chain-main chain NOEs were observed for 2a in the NOESY 800 MHz 
spectrum with WATERGATE (8.0 mM in H2O-D2O (9:1) and 298 K). Dashed lines represent 
weak or ambiguous NOEs. 
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Figure S2a. Cartoon and chemical structure illustrating the hydrogen-bonded dimer formed by 
macrocyclic sheet β-peptide 1 in solution. Key NOEs associated with solution-state dimerization 
and folding of 1 are shown with red and blue arrows. 
 

 

Figure S2b. Selected expansions of the NOESY spectrum of macrocyclic β-sheet peptide 1 at 
2.0 mM in D2O at 500 MHz and 298 K. Key intermolecular interstrand NOEs associated with 
dimerization are highlighted in red; key intramolecular interstrand NOEs associated with folding 
are highlighted in blue.  
 
 
 



 S13 

 

Figure S3. 1H NMR spectra of macrocyclic β-sheet peptide 2a at various concentrations in D2O 
at 500 MHz and 298 K. Noteworthy characteristic resonances of the monomer and the oligomer 
are labeled and highlighted with dashed lines. 



 S14 

 
Figure S4. Selected expansions of the NOESY spectrum of macrocyclic β-sheet peptide 2a at 
8.0 mM in D2O at 500 MHz and 300.5 K. Key interlayer NOEs associated with tetramerization 
are highlighted in green.  
 
Table S1. Key NOEs associated with interlayer contacts in tetramer formation of 2a.a 

 Hao2H3 Hao2H4 Hao2H6 Hao2OMe 
F19Ar weak strong - - 
L17δ medium medium strong - 
T γ weak - - medium 

Hao1H3 weak medium - - 
Hao1H4 strong strong - strong 

Hao1OMe weak strong - - 
aInterlayer contacts are observed in Figure 6 and Figure S4. 
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Figure S5. Expansions of the 1H NMR spectra of macrocyclic β-sheet peptide 2a at 0.3 mM in 
D2O at 500 MHz and 298 K with 0 mM and 25 mM NaCl. (DSA = 4,4-dimethyl-4-silapentane-
1-ammonium trifluoroacetate.)                                                                                                   
 

Table S2. Percentage of monomer and tetramer of 2a at 0.3 mM with 0 and 25 mM NaCl 
(based on the relative integrals for selected 1H NMR resonances). 
[NaCl] (mM)  L17CH3, V18CH3 (as 

monomer) 
L17CH3 (pro-R), 
A21CH3 (as oligomer) 

% Monomer % Tetramer 

0 0.90/H 1.13/H 44.2 55.8 
25 0.26/H 1.20/H 18.1 81.9 
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Figure S6. Expansions of the 1H NMR spectra of macrocyclic β-sheet peptide 3 at 4.0 mM in 
D2O at 500 MHz and 298 K with 0 mM, 25 mM NaCl, and 150 mM NaCl. 
 

Table S3. Percentage of monomer and tetramer of 3 at 4.0 mM with 0, 25, and 150 mM 
NaCl (based on the relative integrals for selected 1H NMR resonances). 
[NaCl] (mM)  L17CH3, V18CH3 (as 

monomer) 
L17CH3 (pro-R), 
A21CH3 (as oligomer) 

% Monomer % Tetramer 

0 1.19/H 1.00/H 54.3 45.7 
25 0.43/H 1.00/H 29.9 70.1 
150 0.25/H 1.00/H 19.7 80.3 
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Figure S7. 1H NMR spectra of macrocyclic β-sheet peptides at 2.0 mM at 298 K in D2O at 500 
MHz: 2a (tetramer predominates), 2b (tetramer predominates), 2c (monomer predominates), and 
4 (monomer predominates). The spectrum of 4 shows multiple sets of resonances, which are 
associated with amide-bond rotamers. 
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Figure S8. 1H NMR spectra of macrocyclic β-sheet peptide 2a at 8.0 mM at 300.5 K in D2O at 
500 MHz (tetramer predominates), macrocyclic β-sheet peptide 3 at 2.0 mM at 298 K in D2O at 
500 MHz (monomer predominates), and linear peptide 5 at 1.2 mM at 298 K in D2O at 500 MHz 
(monomer).  
 
Table S4. 1H NMR chemical shifts of the α-protons of the 2a tetramer, the 3 monomer, and 

linear peptide 5. 
 

Residue 
Peptide 2a  
δ (ppm) 

Peptide 3 
δ (ppm) 

Peptide 5 
δ (ppm) 

Δδ (ppm) 
2a - 5 

Δδ (ppm) 
3 - 5 

Q15 4.67 4.49 4.24 0.43 0.25 
K16 4.29 4.31 4.25 0.04 0.06 
L17 5.22 4.51 4.31 0.91 0.20 
V18 5.03 4.35 3.99 1.04 0.36 
F19 5.38 4.67 4.55a 0.85a 0.14a 

F20 4.88 4.57 4.51a 0.35a 0.04a 

A21 4.86 4.32 4.17 0.69 0.15 
E22 5.10 4.32 4.35 0.75 -0.03 
D23 5.45 4.59 4.59 0.86 0.00 

 a assignment of F19 and F20 of peptide 5 arbitrary. The average δ for F19 and F20 of peptide 5 was 
used in calculating Δδ. 
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Figure S9. Sedimentation coefficient distributions of macrocyclic β-sheet peptide 2b for loading 
concentrations at 98.7 μM  (triangles), 304.0 μM (squares) and 657.6 μM (circles) obtained from 
sedimentation velocity experiments performed at 344 nm. The increase in sedimentation 
coefficient as a function of increase in loading concentration suggests the presence of a mass-
action driven self-association reaction. 
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Figure S10. Sedimentation velocity data (black lines, lower plot) for macrocyclic β-sheet peptide 2b 
(98.7 μM) when fitted with a reversible model for a monomer-tetramer equilibrium13,19 using genetic 
algorithm-Monte Carlo analysis (red lines). Residuals are random, and shown in the upper portion of 
this plot. For clarity, only every fifth scan in this experiment is shown. 
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Table S5. Hydrodynamic measurements for macrocyclic β-sheet peptide 2b.a 

 Monomer 
(98.7 μM) 

Tetramer 
(98.7 μM) 

Monomer 
(304.0 μM) 

Tetramer 
(304.0 μM) 

Monomer 
(657.6 μM) 

Tetramer 
(657.6 μM) 

Partial concentration (% of total OD) 31.06% 68.94% 12.02% 87.98% 2.73% 97.27% 

Molecular weight (Da) 2752.8 8946.4 3316.4 8947.7 2548.6 8507.2 

Sedimentation Coefficient (x 1013 s) 0.60 1.30 0.59 1.27 0.65 1.25 

Diffusion Coefficient (x 107 cm2/s) 18.75 12.50 15.22 14.33 21.94 15.60 

Anisotropy  (f/f0) 1.24 1.26 1.44 1.24 1.09 1.21 

Kassoc (M
-3) 1.93 x 1014 5.66 x 1015 8.89 x 1014 

aHydrodynamic measurements for macrocyclic β-sheet 2b from a genetic algorithm-Monte Carlo 
fit to a non-interacting model with 50 iterations, fitting each loading concentration individually.12 
Only two species were detected in each sample, corresponding in molecular weight to the 
monomer and tetramer of 2b. The shift in partial concentration is consistent with a reversible 
self-association model for a monomer-tetramer equilibrium. Kassoc is estimated based on the 
relative amounts of monomer and tetramer determined in the genetic algorithm-Monte Carlo 
analysis, but due to the low amount of monomer in the two higher concentrations, the Kassoc  
from the lowest concentration is considered to be the most reliable. 

 
 
Table S6. Hydrodynamic measurements for macrocyclic β-sheet peptide 2b at 98.7 μM from a 
genetic algorithm-Monte Carlo fit to a reversible monomer-tetramer model.a 
 Monomer Tetramer 

Molecular weight (Da) 2137.0 (2116.5, 2157.6) 8548.0 (8466.0, 8630.4) 

Sedimentation Coefficient (x 1013 s) 0.514 (0.511, 0.518) 1.223 (1.220, 1.225) 

Diffusion Coefficient (x 107 cm2/s) 21.27 (21.17, 21.36)  12.64 (12.54, 12.74) 

Anisotropy  (f/f0) 1.18 (1.17, 1.19) 1.25 (1.24, 1.26) 

Kassoc (M
-3) 1.93 (1.80, 2.05) x 1014 

aHydrodynamic measurements for macrocyclic β-sheet 2b from a genetic algorithm-Monte Carlo 
fit to a reversible self-association model for a monomer-tetramer with 200 iterations.19 The Kassoc 
observed in this fit matched well the Kassoc observed with the non-interacting fit. Values in 
parenthesis reflect the 95% confidence intervals for each parameter. 
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