Supporting Information

For

Probing the Influence of Protecting Groups on the Anomeric Equilibrium in Sialic Acid Glycosides with the Persistent Radical Effect

Pavan K. Kancharla, Takayuki Kato, and David Crich*

Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI

48202

Compound	Data	Spectra
General Experimental	S-3	-
General protocol 1 : Synthesis of O-sialyl hydroxylamines	S-3	-
Synthesis of TEMPO sialosides 14	S-3	_
Synthesis of TMIO sialoside	S-4	-
Methyl [2-((1,1,3,3-tetramethylisoindolin-2-yl)oxy) 5-acetamido-4,7,8,9-	S-4	S-14, S-15
tetra-O-acetyl-3,5-dideoxy-2-D-glycero-β-D-galacto-non-2-ulopyran		
osid]onate 15β		
Methyl [2-((1,1,3,3-tetramethylisoindolin-2-yl)oxy) 5-acetamido-4,7,8,9-	S-5	S-16, S-17
tetra-O-acetyl-3,5-dideoxy-2-D-glycero-α-D-galacto-non-2-ulopyranosid]		
onate 15a		
Methyl [2-(N-tert-butyl-1-diethylphosphono-2,2-dimethylpropylamin-)oxy]	S-5	S-18, S-19
5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-2- D-glycero-α/β-D-galacto		
-non-2-ulopyranosid)onate 16		
Methyl [2-((1,1,3,3-tetramethylisoindolin-2-yl)oxy) 5-acetamido-5-N-(1,1-	S-6	S-20, S-21
dimethylethoxycarbonyl)-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-2-D-glycero-		
β-D-galacto-non-2-ulopyranosid]onate 27		
Methyl [2-((1,1,3,3-tetramethylisoindolin-2-yl)oxy) 7,8,9-tri-O-acetyl-5-	S-7	S-22, S-23
<i>N</i> ,4- <i>O</i> -carbonyl-3,5-dideoxy-2-D-glycero-β-D-galacto-non-2-ulopyran		
osid]onate 31β		
Methyl [2-((1,1,3,3-tetramethylisoindolin-2-yl)oxy) 5-acetamido-7,8,9-tri-	S-9	S-24, S-25
O-acetyl-5-N,4-O-carbonyl-3,5-dideoxy-2-D-glycero-β-D-galacto-non-2-		
ulopyranosid]onate 33β		
General protocol 2: Equilibration of sialosides	S-10	-
Methyl [2-((1,1,3,3-tetramethylisoindolin-2-yl)oxy) 7,8,9-tri-O-acetyl-5-	S-10	S-26, S-27
<i>N</i> ,4- <i>O</i> -carbonyl-3,5-dideoxy-2-D-glycero-α-D-galacto-non-2-ulopyran		
osid]onate 31a		
Methyl [2-((1,1,3,3-tetramethylisoindolin-2-yl)oxy) 5-acetamido-7,8,9-tri-	S-11	S-28, S-29
O-acetyl-5-N,4-O-carbonyl-3,5-dideoxy-2-D-glycero-α-D-galacto-non-2-		
ulopyranosid]onate 33 α		
4-Acetamido-6,7,8-tri- <i>O</i> -acetyl-4- <i>N</i> ,3- <i>O</i> -carbonyl-2,4-dideoxy-D-	S-11	S-30, S-31
glycero-D-galacto-octono-1,5-lactone 34		
Crossover of 15 with TEMPO to give 14	S-12	-
References	S-13	-

General Experimental. ¹H and ¹³C NMR spectra were recorded in CDCl₃ solution unless otherwise stated at 500 or 600 MHz. ESI mass spectra were recorded using a Waters LCT Premiere Xe TOF mass spectrometer. All reagents were purchased from commercial suppliers and were used without further purification and all the reaction solvents were dried over activated molecular sieves prior to use. Chromatographic purifications were carried over silica gel unless otherwise stated. Specific rotations were recorded in CH₂Cl₂ solution at room temperature. The anomeric stereochemistry of the sialosides was assigned based on the ³*J*_{C1-H3ax} values¹ unless otherwise stated. All deuterated solvents used for the equilibration experiments were purchased from Cambridge Isotope Laboratories.

General protocol 1 : Synthesis of *O***-sialyl hydroxylamines.** A solution of sialyl xanthate² **8** and nitroxyl radical in anhydrous 1,2-dichloroethane was degassed, purged with argon and photolyzed (254 nm, Rayonnet[®] photoreactor, Pyrex[®]). After completion of the reaction, the solution was concentrated under reduced pressure and the residue was purified by column chromatography using the eluents indicated to obtain the *O*-sialyl hydroxylamines as mixtures of anomers.

Synthesis of TEMPO sialoside (14).

The mixture of anomers 14 were synthesized following the procedure reported earlier,³ and purified by neutral alumina column chromatography (eluting with ethylacetae/hexane 1:1) to obtain a separable mixture of anomers the data of which are identical with the earlier report.³

Synthesis of TMIO sialoside (15): This mixture of compounds 15 was synthesized following the general protocol 1 from sialyl xanthate² 8 (500 mg, 0.84 mmol), TMIO⁴ 11 (1.59 g, 8.4 mmol) and 1,2-dichloroethane (5 mL). The reaction was complete in 2 days, after which the reaction mixture was concentrated and purified by silica gel column chromatography eluting with ethylacetate/hexane (1:3) to obtain the product (402 mg, 72 %) as a separable mixture (α : β , 1:2.2) of diastereomers.

Methyl [2-((1,1,3,3-tetramethylisoindolin-2-yl)oxy) 5-acetamido-4,7,8,9-tetra-*O*-acetyl-3,5dideoxy-2-D-glycero-β-D-galacto-non-2-ulopyranosid]onate (15β).

 $[\alpha]^{24}{}_{D} = -0.3 \ (c = 0.5, CH_2Cl_2), \ ^{1}H \ NMR \ (600 \ MHz, CDCl_3) \ \delta = 7.27 - 7.18 \ (m, 2 \ H), \ 7.06 \ (dd, J = 3.7, 5.1 \ Hz, 2 \ H), \ 5.44 \ (s, 1 \ H), \ 5.35 - 5.20 \ (m, 3 \ H), \ 5.00 \ (dd, J = 1.5, 12.5 \ Hz, 1 \ H), \ 4.43 \ (dd, J = 2.6, 10.6 \ Hz, 1 \ H), \ 4.22 - 4.10 \ (m, 2 \ H), \ 3.65 \ (s, 3 \ H), \ 2.83 \ (dd, J = 4.4, 13.2 \ Hz, 1 \ H), \ 2.14 \ (s, 3 \ H), \ 2.10 \ (s, 3 \ H), \ 2.05 \ (s, 3 \ H), \ 2.03 \ (s, 3 \ H), \ 1.95 \ (t, J = 12.4 \ Hz, 1 \ H), \ 1.88 \ (s, 3 \ H), \ 1.47(s, 3 \ H), \ 1.46(s, 3$

Methyl [2-((1,1,3,3-tetramethylisoindolin-2-yl)oxy) 5-acetamido-4,7,8,9-tetra-*O*-acetyl-3,5dideoxy-2-D-glycero-α-D-galacto-non-2-ulopyranosid]onate (15α).

 $[\alpha]^{24}_{D} = +3.2 \ (c = 0.5, CH_2Cl_2), {}^{1}H NMR \ (600 MHz, CDCl_3) \delta = 7.27 - 7.18 \ (m, 2 H), 7.12 - 7.03 \ (m, 2 H), 5.46 - 5.39 \ (m, 1 H), 5.32 \ (d, J = 7.7 Hz, 1 H), 5.18 - 5.08 \ (m, 1 H), 4.94 \ (ddd, J = 4.6, 9.7, 12.1 Hz, 1 H), 4.42 \ (dd, J = 2.4, 12.3 Hz, 1 H), 4.20 \ (dd, J = 5.9, 12.5 Hz, 1 H), 4.04 - 3.95 \ (m, 2 H), 3.86 - 3.76 \ (m, 3 H), 2.73 \ (t, J = 12.7 Hz, 1 H), 2.52 \ (dd, J = 4.6, 13.0 Hz, 1 H), 2.14 \ (s, 3 H), 2.09 \ (s, 3 H), 2.05 \ (s, 3 H), 2.02 \ (s, 3 H), 1.89 \ (s, 3 H), 1.58 \ (s, 3 H), 1.45 \ (s, 3 H), 1.38 \ (s, 3 H), 1.29 \ (m, 3 H); {}^{13}C NMR \ (150 MHz, CDCl_3) \delta 171.0, 170.6, 170.19, 170.13, 169.9, 167.6, 144.8, 143.8, 127.5, 127.3, 121.8, 103.1, 76.5, 72.9, 70.5, 69.9, 69.7, 68.7, 67.7, 67.6, 62.1, 52.7, 52.5, 49.5, 34.9, 29.3, 29.1, 26.0. C_{32}H_{44}N_2NaO_{13} \ [M + Na]^+, 687.2741; found, 687.2753.$

Methyl ([2-(*N*-tert-butyl-1-diethylphosphono-2,2-dimethylpropylamin-)oxy] 5-acetamido-4,7,8,9-tetra-*O*-acetyl-3,5-dideoxy-2-D-glycero-α/β-D-galacto-non-2-ulopyranosid)onate (16).

This mixture of compounds 16 was synthesized following the general protocol 1 from sialyl xanthate² 8 (100 mg, 0.16 mmol) and 12^5 (564 mg, 1.92 mmol). The reaction was complete in 2 days, after which the reaction mixture was concentrated and purified by silica gel column chromatography eluting with ethylacetate/hexane (3:2) to obtain the product (52 mg, 45 %) as a inseparable mixture (α : β , 1.5:1) of diastereomers. The anomeric stereochemistry of the diastereomers was determined by comparing the ¹H nmr data with 14. ¹H NMR (600 MHz, $CDCl_3$) $\delta = 5.41$ (dd, J = 2.4, 5.0 Hz, 1 H), 5.30 - 5.18 (m, 3 H), 5.15 (brs, 1 H), 5.08 (dt, J =6.8, 10.2 Hz, 1 H), 5.05 - 5.00 (m, 1 H), 4.55 (dd, J = 2.2, 12.8 Hz, 1 H), 4.41 (dd, J = 2.6, 12.5 Hz, 1 H), 4.30 (dd, J = 4.8, 12.8 Hz, 1 H), 4.24 (td, J = 7.2, 10.6 Hz, 1 H), 4.15 – 3.75 (m, 10 H), 3.81 (s, 3H), 3.79 (s, 3H), 3.62 - 3.59 (m, 2 H), 3.35 (brd, J = 4.0 Hz, 1 H), 3.30 (brd, J = 3.3 Hz, 1 H), 2.84 (dd, J = 4.8, 12.8 Hz, 1 H), 2.76 - 2.68 (m, 2 H), 2.58 (t, J = 12.3 Hz, 1 H), 2.07 - 2.04 (m, 18 H), 2.02 (s. 3H), 1.99 (s, 3H), 1.86 (s, 3H), 1.30 - 1.20 (m, 30 H), 1.14 - 1.10 (m, 18 H); ¹³C NMR (150 MHz, CDCl₃) δ 171.08, 171.02, 170.56, 170.53, 170.18, 170.11, 170.0, 169.9, 169.8, 169.7, 167.1, 166.7, 104.9, 103.6, 73.1, 72.5, 70.8, 70.45, 70.41, 70.2, 69.8, 69.3, 67.6, 67.5, 63.5, 63.3, 62.9, 62.8, 62.1, 62.08, 62.02, 61.5, 60.0, 59.0, 58.98, 58.93, 58.8, 52.8, 52.5, 49.0, 48.7, 36.45, 36.41, 35.6, 35.5, 34.3, 34.2, 30.14, 30.10, 30.07, 30.03, 28.4, 28.3, 27.14, 27.11, 23.2, 23.1, 21.09, 21.03, 20.97, 20.94, 20.8, 20.7, 20.6, 20.5, 16.6, 16.58, 16.51, 16.4, 16.2, 16.19, 16.17, 16.14. ESIHRMS Calcd for $C_{33}H_{57}N_2NaO_{16}P [M + Na]^+$, 791.3343; found, 791.3328.

Methyl [2-((1,1,3,3-tetramethylisoindolin-2-yl)oxy)5-acetamido-5-*N*-(1,1-dimethylethoxy) carbonyl-4,7,8,9-tetra-*O*-acetyl-3,5-dideoxy-2-D-glycero-β-D-galacto-non-2-ulopyranosid]on ate (27).

To a solution of **15**β (200 mg, 0.30 mmol) in 2 mL of anhydrous THF was added di-*tert*-butyl dicarbonate (90 mg, 0.41 mmol) followed by DMAP (10 mg, 0.08 mmol) at room temperature. After stirring for 10 h at 60 °C under argon, the reaction mixture was concentrated under reduced pressure and the residue was purified by silica gel column chromatography eluting with ethylacetate/hexane (1:4) to obtain the desired product **27**β (191 mg) in 83 % yield. $[\alpha]^{24}_{D} = -22.3 (c = 1, CH_2Cl_2)$, ¹H NMR (600 MHz, CDCl₃, 22.0 °C) $\delta = 7.26 - 7.16 (m, 2 H)$, 7.10 - 6.92 (m, 2 H), 5.73 (dt, *J* = 4.6, 11.1 Hz, 1 H), 5.35 - 5.23 (m, 2 H), 5.12 (dd, *J* = 2.0, 10.1 Hz, 1 H), 5.06 - 4.96 (m, 1 H), 4.89 (t, *J* = 10.5 Hz, 1 H), 4.38 (s, 1 H), 4.20 (dd, *J* = 8.8, 12.5 Hz, 1 H), 4.15 - 3.99 (m, 1 H), 3.79 (s, 1 H), 3.71 (s, 1 H), 3.65 (s, 2 H), 2.95 (dd, *J* = 4.6, 13.0 Hz, 1 H), 2.46 - 2.29 (m, 3 H), 2.22 - 2.10 (m, 1 H), 2.09 - 1.94 (m, 11 H), 1.60 - 1.42 (m, 16 H), 1.41 - 1.32 (m, 1 H); ¹³C NMR (150 MHz, CDCl₃) δ 173.6, 170.8, 170.49, 170.40, 170.0, 166.1, 152.0, 144.1, 143.8, 127.57, 127.55, 121.5, 121.4, 104.9, 85.0, 74.0, 72.8, 69.62, 69.61, 68.6, 66.6, 63.1, 60.3, 52.3, 51.7, 40.3, 29.5, 28.7, 27.9, 27.8, 27.1, 26.5, 25.8, 21.04, 21.02, 20.9, 20.87, 20.81, 20.7, 14.1. ESIHRMS Calcd for C₃₇H₃₂N₂NaO₁₅ [M + Na]⁺, 787.3265; found, 787.3263.

Methyl [2-((1,1,3,3-tetramethylisoindolin-2-yl)oxy)7,8,9-tri-*O*-acetyl-5-*N*,4-*O*-carbonyl-3,5dideoxy-2-D-glycero-β-D-galacto-non-2-ulopyran osid]onate (31β).

To a solution of the compound 27β (200 mg, 0.26 mmol) in methanol was added a catalytic amount of NaOMe under argon. After stirring for 3 h at room temperature, the reaction mixture was quenched by the addition of Amberlyst 15 ion-exchange resin, filtered and concentrated. The residue was then treated with 2 mL of trifluoroacetic acid for 1 h at room temperature and concentrated under reduced pressure. To a vigorously stirred solution of the concentrate, NaHCO₃ (216 mg, 2.6 mmol) in a mixture of acetonitrile (1 mL) and water (2 mL) at 15 °C, was added drop-wise, a solution of 4-nitrophenyl chloroformate (104 mg, 0.52 mmol) in acetonitrile (1 mL). After stirring the reaction mixture for 3 h at the same temperature, it was extracted with ethylacetate and the combined extracts were washed with water, brine, dried over Na₂SO₄ and concentrated. The crude residue was immediately dissolved in a 1:1 mixture of acetic anhydride/pyridine (2 mL) and was stirred overnight at room temperature. The solvents were evaporated and the resulting residue was purified by silica gel column chromatography eluting with ethyl acetate/hexane (2:3) to obtain the desired compound 31β (96 mg) in 61 % yield over 4 steps. $[\alpha]^{24}_{D}$ = -20.5 (*c* = 1, CH₂Cl₂), ¹H NMR (600 MHz, CDCl₃) δ = 7.29 - 7.18 (m, 2 H), 7.10 -7.00 (m, 2 H), 5.44 - 5.34 (m, 2 H), 5.26 - 5.20 (m, 1 H), 4.81 - 4.73 (m, 1 H), 4.64 - 4.52 (m, 1 H), 4.41 (dd, J = 2.9, 9.9 Hz, 1 H), 4.30 (dd, J = 6.6, 12.8 Hz, 1 H), 3.67 (s, 3 H), 3.11 (t, J =10.5 Hz, 1 H), 3.08 - 3.01 (m, 1 H), 2.18 (s, 3 H), 2.10 (s, 3 H), 2.04 (s, 3 H), 1.47 (s, 3 H), 1.40 (s, 3 H), 1.36 (s, 3 H), 1.35 (s, 3 H); ¹³C NMR (150 MHz, CDCl₃) δ 170.9, 170.4, 170.3, 165.6 $({}^{3}J_{C1-H3ax} = 1.6 \text{ Hz}), 159.3, 143.9, 143.4, 127.69, 127.62, 121.5, 121.4, 105.3, 77.2, 76.9, 76.7,$

76.4, 73.8, 71.3, 71.0, 69.6, 68.4, 62.1, 60.0, 58.4, 51.9, 39.0, 29.3, 28.9, 26.3, 25.8, 21.1, 20.7,
20.6. ESIHRMS Calcd for C₂₉H₃₈N₂NaO₁₂ [M + Na]⁺, 629.2322; found, 629.2330.

Methyl [2-((1,1,3,3-tetramethylisoindolin-2-yl)oxy) 5-acetamido-7,8,9-tri-*O*-acetyl-5-*N*,4-*O*carbonyl-3,5-dideoxy-2-D-glycero-β-D-galacto-non-2-ulopyranosid]onate (33β).

To a solution of the compound **31** β (40 mg, 0.06 mmol) in 1 mL of anhydrous CH₂Cl₂, was added diisopropylethylamine (114 µL, 0.66 mmol) at 0 °C, followed by acetyl chloride (21 µL, 0.33 mmol). After the completion of reaction (observed by thin layer chromatography), the reaction mixture was diluted with CH₂Cl₂ (5 mL), poured into cold saturated NaHCO₃ solution (5 mL). The organic layer was separated and the aqueous layer was extracted with CH₂Cl₂ (2 x 3 mL). The combined organic extracts were washed with water, brine, dried over Na₂SO₄, concentrated under reduced pressure. The residue was purified by silica gel column chromatography eluting with EtOAc/hexane (1:1) to obtain pure **33** β as foam. [α]²⁴_D = -6.4 (*c* = 0.7, CH₂Cl₂), ¹H NMR (600 MHz, CDCl₃) δ = 7.28 - 7.18 (m, 2 H), 7.11 - 7.00 (m, 2 H), 5.62 (s, 1 H), 5.41 (d, *J* = 8.1 Hz, 1 H), 4.81 - 4.68 (m, 2 H), 4.68 - 4.58 (m, 1 H), 4.08 (dd, *J* = 8.4, 12.1 Hz, 1 H), 3.76 - 3.69 (m, 1 H), 3.68 (s, 3 H), 3.08 (dd, *J* = 3.3, 12.1 Hz, 1 H), 2.49 (s, 3 H), 2.23 (t, *J* = 12.7 Hz, 1 H), 2.15 (s, 3 H), 2.13 (s, 2 H), 2.03 (s, 3 H), 1.48 (s, 3 H), 1.43 (s, 3 H), 1.42 (s, 3 H), 1.35 (s, 3 H); ¹³C NMR (150 MHz, CDCl₃) δ 172.4, 171.2, 170.5, 169.6, 165.7, 153.8, 144.0, 143.3, 127.7, 127.6, 121.55, 121.51, 104.3, 76.3, 74.4, 73.9, 72.8, 69.6, 68.8, 63.1, 59.3,

52.0, 37.9, 29.4, 28.9, 26.3, 26.0, 24.7, 21.1, 20.7, 20.6. ESIHRMS Calcd for C₃₁H₄₀N₂NaO₁₃ [M + Na]⁺, 671.2428; found, 671.2400.

General protocol 2: Equilibration of sialosides. A solution of sialyl hydroxylamine (0.05-0.1 M) in deuteriobenzene/deuterio-1,2-dichloroethane/deuterioacetonitrile, in an NMR tube was degassed, sealed under argon and was heated at 90 °C. With periodic monitoring, the reaction mixture was heated at the same temperature until it reached equilibrium. The reaction mixture was concentrated under reduced pressure and purified by silica gel column chromatography using ethylacetate/hexane as eluents. Compounds 31 α , 33 α were synthesized using this protocol from corresponding 31 β and 33 β respectively. Compounds 25 α , 30 β and 32 β were also synthesized using this protocol from corresponding 25 β , 30 α and 32 α as reported earlier.¹

Methyl [2-((1,1,3,3-tetramethylisoindolin-2-yl)oxy)7,8,9-tri-*O*-acetyl-5-*N*,4-*O*-carbonyl-3,5dideoxy-2-D-glycero-α-D-galacto-non-2-ulopyranosid]onate (31α).

[α]²⁴_D = -18.3(c = 1, CH₂Cl₂), ¹H NMR (600 MHz, CDCl₃) δ = 7.28 - 7.18 (m, 2 H), 7.11 - 7.02 (m, 2 H), 5.49 (td, J = 2.3, 9.7 Hz, 1 H), 5.34 (s, 1 H), 5.15 (d, J = 9.9 Hz, 1 H), 4.39 (d, J = 2.6 Hz, 2 H), 4.18 (d, J = 9.9 Hz, 1 H), 4.06 - 3.96 (m, 1 H), 3.80 (s, 3 H), 3.03 (t, J = 10.5 Hz, 1 H), 2.89 - 2.79 (m, 2 H), 2.18 (s, 3 H), 2.13 (s, 3 H), 2.06 (s, 3 H), 1.51 (s, 3 H), 1.46 (s, 3 H), 1.37 (s, 3 H), 1.30 (s, 3 H); ¹³C NMR (150 MHz, CDCl₃) δ 171.1, 170.5, 169.7, 167.3 (³J_{Cl-H3ax} = 7.0 Hz), 159.4, 144.3, 143.8, 127.5, 127.4, 121.7, 121.5, 104.4, 77.6, 76.7, 73.5, 68.9, 68.8, 68.7, 67.8, 61.4, 60.0, 57.8,

52.9, 34.5, 29.3, 29.2, 26.0, 25.6, 20.9, 20.67, 20.61. ESIHRMS Calcd for C₂₉H₃₈N₂NaO₁₂ [M + Na]⁺, 629.2322; found, 629.2338.

Methyl [2-((1,1,3,3-tetramethylisoindolin-2-yl)oxy) 5-acetamido-7,8,9-tri-*O*-acetyl-5-*N*,4-*O*carbonyl-3,5-dideoxy-2-D-glycero-α-D-galacto-non-2-ulopyranosid]onate (33α).

[α]²⁴_D = -2.1 (c = 0.6, CH₂Cl₂), ¹H NMR (600 MHz, CDCl₃) δ = 7.29 - 7.19 (m, 2 H), 7.14 - 7.03 (m, 2 H), 5.61 (d, J = 7.0 Hz, 1 H), 5.48 (dt, J = 2.9, 6.8 Hz, 1 H), 4.51 (d, J = 9.2 Hz, 1 H), 4.47 (dd, J = 2.8, 12.3 Hz, 1 H), 4.17 (dd, J = 6.6, 12.1 Hz, 1 H), 4.10 - 4.03 (m, 1 H), 3.84 (s, 3 H), 3.72 - 3.66 (m, 1 H), 2.96 (t, J = 12.8 Hz, 1 H), 2.83 (dd, J = 3.3, 12.1 Hz, 1 H), 2.48 (s, 3 H), 2.14 (s, 3 H), 2.11 (s, 3 H), 2.05 (s, 3 H), 1.55 (s, 3 H), 1.47 (s, 3 H), 1.40 (s, 3 H), 1.31 (s, 3 H); ¹³C NMR (150 MHz, CDCl₃) δ 172.0, 170.6, 170.2, 169.7, 167.6, 153.8, 144.5, 143.6, 127.6, 127.4, 121.7, 121.4, 103.7, 76.1, 75.8, 72.2, 70.3, 68.8, 68.6, 62.7, 60.0, 59.0, 53.0, 33.0, 29.2, 29.1, 25.8, 25.3, 24.6, 21.0, 20.7. ESIHRMS Calcd for C₃₁H₄₀N₂NaO₁₃ [M + Na]⁺, 671.2428; found, 671.2411.

4-Acetamido-6,7,8-tri-*O*-acetyl-4-*N*,3-*O*-carbonyl-2,4-dideoxy-D-glycero-D-galacto-octono-1,5-lactone (34).

A 0.1 M solution of compound **32** α was subjected to equilibration in CD₃CN following the general protocol. After heating for 10 h, the reaction mixture was concentrated and purified to obtain the δ -lactone **34** (1 mg) in 45 % yield. ¹H NMR (600 MHz, CDCl₃) δ = 6.03 (d, *J* = 7.0 Hz, 1 H), 5.39 (dt, *J* = 2.9, 6.2 Hz, 1 H), 5.02 (d, *J* = 9.2 Hz, 1 H), 4.45 - 4.30 (m, 2 H), 4.17 (dd, *J* = 5.7, 12.7 Hz, 1 H), 3.79 (dd, *J* = 9.0, 11.6 Hz, 1 H), 3.31 (dd, *J* = 4.6, 17.1 Hz, 1 H), 2.68 (dd, *J* = 13.0, 17.1 Hz, 1 H), 2.56 - 2.51 (m, 3 H), 2.12 (s, 2 H), 2.11 (s, 2 H), 2.06 (s, 2 H); ¹³C NMR (150 MHz, CDCl₃) δ 171.3, 170.6, 169.6, 164.2, 152.6, 71.8, 71.2, 69.7, 61.7, 60.0, 58.1, 35.1, 29.6, 24.2, 20.9, 20.7, 20.6. ESIHRMS Calcd for C₁₇H₂₁NNaO₁₁ [M + Na]⁺, 438.1012; found, 438.1016.

Crossover of 15 with TEMPO to give 14.

Compound **15** (38.3 mg, 0.06 mmol) and TEMPO (9.4 mg, 0.06 mmol) were dissolved in d_4 -1,2dichloroethan (600 µl) and the mixture was purged with argon, then sealed and heated to 90 °C. The reaction was monitored by ¹H and ¹³C NMR spectroscopy and mass spectrometry. After 9 days, no further change was observed. The reaction mixture was concentrated and TEMPO and TMIO were removed by silica gel column chromatography (eluting with chloroform/methanol, 10 : 1) and the residue (31.3 mg) mixture was used to determine the ratio of compounds by ¹H and ¹³C (with inverse gated ¹H-decoupling) NMR spectroscopy.

References.

- 1. Kancharla, P. K.; Crich, D. J. Am. Chem. Soc. 2013, 135, 18999-19007.
- 2. Martichonok, V; Whitesides, G. M. J. Org. Chem. 1996, 61, 1702-1706.
- 3. Kancharla, P. K.; Navuluri, C.; Crich, D. Angew. Chem. Int. Ed. 2012, 51, 11105-11109.
- Griffiths, P. G.; Moad, G.; Rizzardo, E.; Solomon, D. H. Aust. J. Chem. 1983, 36, 397-401.
- Guerret, O.; Couturier, J.-L.; Le Mercier, C. Method for Preparing \$G-B Phosphorous Nitroxide Radicals. U.S. Patent 0,077, 873, Apr. 22, 2004.

Methyl [2-((1,1,3,3-tetramethylisoindolin-2-yl)oxy) 5-acetamido-4,7,8,9-tetra-*O*-acetyl-3,5-dideoxy-2-D-glycero-β-D-galactonon-2-ulopyranosid]onate ¹H NMR (600 MHz, CDCl₃) (15β)

Methyl [2-((1,1,3,3-tetramethylisoindolin-2-yl)oxy) 5-acetamido-4,7,8,9-tetra-*O*-acetyl-3,5-dideoxy-2-D-glycero-β-D-galactonon-2-ulopyranosid]onate ¹³C NMR (600 MHz, CDCl₃) (15β)

Methyl [2-((1,1,3,3-tetramethylisoindolin-2-yl)oxy) 5-acetamido-4,7,8,9-tetra-*O*-acetyl-3,5-dideoxy-2-D-glycero-α-D-galactonon-2-ulopyranosid]onate ¹H NMR (600 MHz, CDCl₃) (15α)

Methyl [2-((1,1,3,3-tetramethylisoindolin-2-yl)oxy) 5-acetamido-4,7,8,9-tetra-*O*-acetyl-3,5-dideoxy-2-D-glycero-α-D-galactonon-2-ulopyranosid]onate ¹³C NMR (150 MHz, CDCl₃) (15α)

Methyl [2-(*N*-tert-butyl-1-diethylphosphono-2,2-dimethylpropylamin-)oxy] 5-acetamido-4,7,8,9-tetra-*O*-acetyl-3,5-dideoxy-2-D-glycero-α/β-D-galacto-non-2-ulopyranosid)onate ¹H NMR (600 MHz, CDCl₃) (16)

Methyl [2-(*N*-tert-butyl-1-diethylphosphono-2,2-dimethylpropylamin-)oxy] 5-acetamido-4,7,8,9-tetra-*O*-acetyl-3,5-dideoxy-2-D-glycero-α/β-D-galacto-non-2-ulopyranosid)onate ¹³C NMR (150 MHz, CDCl₃) (16)

Methyl [2-((1,1,3,3-tetramethylisoindolin-2-yl)oxy) 5-acetamido-5-*N*-(1,1-dimethylethoxy) carbonyl-4,7,8,9-tetra-*O*-acetyl-3,5-dideoxy-2-D-glycero-β-D-galacto-non-2-ulopyranosid]onate ¹H NMR (600 MHz, CDCl₃) (27)

Methyl [2-((1,1,3,3-tetramethylisoindolin-2-yl)oxy) 5-acetamido-5-*N*-(1,1-dimethylethoxycarbony)l-4,7,8,9-tetra-*O*-acetyl-3,5-dideoxy-2-D-glycero-β-D-galacto-non-2-ulopyranosid]onate ¹³C NMR (150 MHz, CDCl₃) (27)

Methyl [2-((1,1,3,3-tetramethylisoindolin-2-yl)oxy) 7,8,9-tri-*O*-acetyl-5-*N*,4-*O*-carbonyl-3,5-dideoxy-2-D-glycero-β-D-galactonon-2-ulopyranosid]onate ¹H NMR (600 MHz, CDCl₃) (31β)

Methyl [2-((1,1,3,3-tetramethylisoindolin-2-yl)oxy) 7,8,9-tri-*O*-acetyl-5-*N*,4-*O*-carbonyl-3,5-dideoxy-2-D-glycero-β-D-galactonon-2-ulopyranosid]onate ¹³C NMR (150 MHz, CDCl₃) (31β)

Methyl [2-((1,1,3,3-tetramethylisoindolin-2-yl)oxy) 5-acetamido-7,8,9-tri-*O*-acetyl-5-*N*,4-*O*-carbonyl-3,5-dideoxy-2-D-glyceroβ-D-galacto-non-2-ulopyranosid]onate ¹H NMR (600 MHz, CDCl₃) (33β)

Methyl [2-((1,1,3,3-tetramethylisoindolin-2-yl)oxy) 5-acetamido-7,8,9-tri-*O*-acetyl-5-*N*,4-*O*-carbonyl-3,5-dideoxy-2-D-glyceroβ-D-galacto-non-2-ulopyranosid]onate ¹³C NMR (150 MHz, CDCl₃) (33β)

Methyl [2-((1,1,3,3-tetramethylisoindolin-2-yl)oxy) 7,8,9-tri-*O*-acetyl-5-*N*,4-*O*-carbonyl-3,5-dideoxy-2-D-glycero-α-D-galactonon-2-ulopyranosid]onate ¹H NMR (600 MHz, CDCl₃) (31α)

S-26

Methyl [2-((1,1,3,3-tetramethylisoindolin-2-yl)oxy)7,8,9-tri-*O*-acetyl-5-*N*,4-*O*-carbonyl-3,5-dideoxy-2-D-glycero-α-D-galactonon-2-ulopyranosid]onate ¹³C NMR (150 MHz, CDCl₃) (31α)

Methyl [2-((1,1,3,3-tetramethylisoindolin-2-yl)oxy) 5-acetamido-7,8,9-tri-*O*-acetyl-5-*N*,4-*O*-carbonyl-3,5-dideoxy-2-D-glyceroα-D-galacto-non-2-ulopyranosid]onate ¹H NMR (600 MHz, CDCl₃) (33α)

Methyl [2-((1,1,3,3-tetramethylisoindolin-2-yl)oxy) 5-acetamido-7,8,9-tri-*O*-acetyl-5-*N*,4-*O*-carbonyl-3,5-dideoxy-2-D-glyceroα-D-galacto-non-2-ulopyranosid]onate ¹³C NMR (150 MHz, CDCl₃) (33α)

CDCl₃) (34)

4-Acetamido-6,7,8-tri-O-acetyl-4-N,3-O-carbonyl-2,4-dideoxy-D-glycero-D-galacto-octono-1,5-lactone ¹³C NMR (150 MHz,

CDCl₃) (34)

