Supporting Information

OGICNAcylation and Phosphorylation Have Opposing Structural Effects in tau: Phosphothreonine Induces Particular Conformational Order

Michael A. Brister[‡], Anil K. Pandey[‡], Agata A. Bielska, and Neal J. Zondlo^{*} Department of Chemistry and Biochemistry University of Delaware Newark, DE 19716

[‡] These authors contributed equally to this work.

Contents

- S3. Materials
- S3. Peptide synthesis
- S4. Serine/threonine phosphorylation and diethylphosphorylation
- S5. Synthesis of Fmoc-Thr(O-GlcNAc)-OH and Fmoc-Ser(O-GlcNAc)-OH
- S6. Glycopeptide synthesis
- S7. Characterization data for tau peptides
- S8. Characterization data for model peptides
- S12. Circular dichroism (CD) spectroscopy
- S12. NMR spectroscopy
- S13. ³¹P NMR spectroscopy

S14. CD spectra of tau₁₇₄₋₁₈₃(T175E, T181E) and tau₁₇₄₋₁₈₃(T175Tle, T181Tle)

S15. CD spectra of $tau_{211-238}$ and $tau_{211-238}(OPO_3^{2-})$

S16-S19. CD spectra of tau₂₃₄₋₂₅₁, tau₂₃₄₋₂₅₁(pS235), and tau₂₃₄₋₂₅₁(pS235/pS237)

S20-S21. Summary of CD data for tau peptides

- S22-S23. CD spectra of model peptides Ac-KTxPP-NH₂
- S24-S25. CD spectra of model peptides Ac-KSxPP-NH₂
- S27-S28. Summary of CD data for model peptides Ac-KTxPP-NH₂ and Ac-KSxPP-NH₂
- S29-S32. CD spectra of model peptides Ac-GPKTxPPGY-NH₂
- S33. CD spectra of model peptides Ac-GPPTxPPGY-NH₂
- S35. Summary of CD data for model peptides Ac-GPKTxPPGY-NH₂ and Ac-GPPTxPPGY-NH₂
- S36-S148. ¹H NMR spectra of all peptides (amide region and full spectra)
- S40. Summary of ¹H NMR data for peptides derived from tau₁₇₄₋₁₈₃
- S41-S45. ¹H-¹⁵N HSQC spectra of peptides derived from tau₁₇₄₋₁₈₃
- S45. Summary of ${}^{1}\text{H}{}^{15}\text{N}$ HSQC data for peptides derived from tau_{174–183}
- S46-S48. ¹H-¹³C HSQC spectra of peptides $tau_{174-183}$ and $tau_{174-183}$ (OPO₃²⁻)
- S49. NOESY spectrum of peptide $tau_{174-183}(OPO_3^{2-})$ at pH 8.0 (298 K)

S50. ¹H-¹³C HMBC spectra of peptides $tau_{174-183}$ at pH 4.0 and $tau_{174-183}$ (OPO₃²⁻) at pH 8.0 in D₂O (298 K)

S52. Summary of ${}^{1}\text{H}{}^{-13}\text{C}$ HSQC data for peptides tau_{174–183} and tau_{174–183}(OPO₃^{2–})

- S56-S57. Summary of ¹H NMR data for peptides derived from $tau_{196-209}$
- S61. Summary of ¹H NMR data for peptides derived from $tau_{211-219}$ S62-S65. ¹H-¹⁵N HSQC spectra of peptides derived from $tau_{211-219}$

- S66. Summary of ¹H-¹⁵N HSQC data for tau₂₁₁₋₂₁₉ and ptau₂₁₁₋₂₁₉
- S67-S69. ${}^{1}H^{-13}C$ HSQC spectra of peptides tau₂₁₁₋₂₁₉ and tau₂₁₁₋₂₁₉(OPO₃²⁻)
- S70. Summary of ¹H-¹³C HSQC data for tau₂₁₁₋₂₁₉ and ptau₂₁₁₋₂₁₉
- S74. Summary of ¹H NMR data for peptides derived from tau₂₂₉₋₂₃₈
- S75-S78.¹H-¹⁵N HSQC spectra of peptides derived from tau₂₂₉₋₂₃₈
- S79. Summary of ¹H-¹⁵N HSQC data for tau₂₂₉₋₂₃₈ and ptau₂₂₉₋₂₃₈
- S80-S82. $^{1}H^{-13}C$ HSQC spectra of peptides tau₂₂₉₋₂₃₈ and tau₂₂₉₋₂₃₈(OPO₃²⁻)
- S83. Summary of ¹H-¹³C HSQC data for tau₂₂₉₋₂₃₈ and ptau₂₂₉₋₂₃₈
- S86. TOCSY spectrum (amide region) of peptides derived from tau₂₁₁₋₂₃₈ at 298 K
- S87. Summary of ¹H NMR data for peptides derived from tau₂₁₁₋₂₃₈
- S90. Summary of ¹H NMR data for peptides derived from tau₂₃₄₋₂₅₁
- S91-S94. ¹H-¹³C HSQC spectra of peptides $tau_{234-251}$, $tau_{234-251}$ (pS235), and $tau_{234-251}$ (pS235/pS237)
- \$95-\$96. Summary of ¹H-¹³C HSQC data for tau₂₃₄₋₂₅₁, tau₂₃₄₋₂₅₁(pS235), and tau₂₃₄₋₂₅₁(pS235/pS237)
- S98. pH-dependent ¹H NMR spectra of peptide Ac-KpTPP-NH₂
- S102. ¹H NMR spectra of peptide Ac-KT(OPO₃²⁻)PP-NH₂, salt dependence
- S103. Temperature dependent ¹H NMR spectra of peptide Ac-KT(OPO₃²⁻)PP-NH₂
- S106-S108. Summary of ¹H NMR data for peptides Ac-KTxPP-NH₂
- S108. ROESY spectrum of peptide Ac-KT(OPO₃²⁻)PP-NH₂ at pH 8.0 (298 K)
- S109-S112. ¹H-¹⁵N HSQC spectra of peptides Ac-KTxPP-NH₂
- S112. Summary of ¹H-¹⁵N HSQC data for peptides Ac-KTPP-NH₂ and KpTPP-NH₂at 298 K
- S113. $^{1}\text{H}-^{13}\text{C}$ HSQC spectrum of peptide Ac-KTPP-NH₂ at pH 8.0 in D₂O (298 K)
- S114. $^{1}H^{-13}C$ HSQC spectrum of peptide Ac-KT(OPO₃²⁻)PP-NH₂ at pH 8.0 in D₂O (298 K)
- S115. ¹H-¹³C HSQC spectra of peptides Ac-KT($OPO_3^{2^-}$)PP-NH₂ and Ac-KTPP-NH₂ at pH 8.0 in D₂O (298 K)
- S116. ¹H-¹³C HMBC spectra of peptides Ac-KTPP-NH₂ and Ac-KT(OPO₃²⁻)PP-NH₂ at pH 8.0 in D_2O (298 K)
- S117. Summary of ${}^{1}\text{H}-{}^{13}\text{C}$ HSQC and ${}^{1}\text{H}-{}^{13}\text{C}$ HMBC data for peptides Ac-KTPP-NH₂ and Ac-KT(OPO₃²⁻)PP-NH₂ at 298 K
- S118. Summary of ¹H-¹³C HSQC data for peptides Ac-KTPP-NH₂ and Ac-KT(OPO₃^{2–})PP-NH₂ at 278 K
- S119. ³¹P NMR spectra of peptides Ac-KT(OPO₃H⁻)PP-NH₂ and Ac-KT(OPO₃²⁻)PP-NH₂
- S120. Summary of ³¹P NMR data for peptide Ac-KT(OPO₃^{-/2-})PP-NH₂
- S121. pH-dependent ¹H NMR spectra of peptide Ac-KpSPP-NH₂
- S124. Summary of ¹H NMR data for peptides Ac-KSxPP-NH₂
- S125-S127. ¹H-¹³C HSQC spectra of peptides Ac-KSPP-NH₂ and Ac-KS(OPO₃²⁻)PP-NH₂
- S128. Summary of ¹H-¹³C HSQC data for peptides Ac-KSPP-NH₂ and Ac-KpSPP-NH₂ at 298 K
- S132-S135. ¹H-¹⁵N HSQC spectra of peptides Ac-GPPTxPPGY-NH₂
- S136. Summary of ¹H NMR data for peptides Ac-GPPTxPPGY-NH₂
- S136. Summary of ¹H-¹⁵N HSQC data for peptides Ac-GPP*Tx*PPGY-NH₂ at 298 K
- S141. Summary of ¹H NMR data for peptides Ac-GPKTxPPGY-NH₂
- S142. Analysis of steric versus stereoelectronic effects of ROH, $ROPO_3H^-$, $ROPO_3^{2-}$, and $ROPO_3Et_2$ functional groups in Ac-TAXN-NH₂ and Ac-TYXN-NH₂ peptides (X = 4*R* and 4*S*-substituted hydroxyprolines)
- S143. pH-dependent ¹H NMR spectra (amide region) of peptide Ac-TAP(4R-OPO₃^{-/2-})N-NH₂
- S144. pH-dependent ¹H NMR spectra (aliphatic region) of peptide Ac-TAP(4R-OPO₃^{-/2-})N-NH₂
- S145. pH-dependent ¹H NMR spectra (amide region) of peptide Ac-TAP(4S-OPO₃^{-/2-})N-NH₂
- S146. pH-dependent ¹H NMR spectra (aliphatic region) of peptide Ac-TAP(4S-OPO₃^{-/2-})N-NH₂

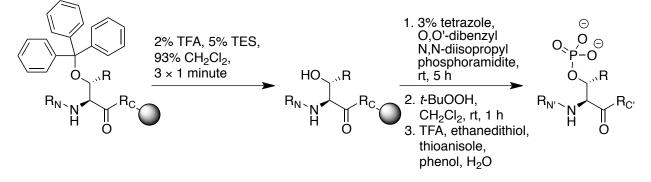
S147. Summary of pH-dependent ¹H NMR data of peptides Ac-TAP(4*S*-OPO₃^{-/2-})N-NH₂ and Ac-TAP(4*R*-OPO₃^{-/2-})N-NH₂ S148-S149. Summary of H^N, H α , H β , ¹⁵N, and ¹³C NMR chemical shift data by side chain modification for serine and threonine residues for all peptides S149. References

Materials

Fmoc-L-amino acids were purchased from Novabiochem (San Diego, CA), Bachem (San Carlos, CA), or Chem-Impex (Wood Dale, IL). O-(1H-benzotriazol-1-yl)-1,1,3,3tetramethyluronium hexafluorophosphate (HBTU) was purchased from Senn Chemicals (San Diego, CA). Rink amide MBHA resin and diisopropylethylamine (DIPEA) were purchased from Chem-Impex. Ethanedithiol (EDT), acetic anhydride (Ac₂O), chloroform-D (CDCl₃), phenol, 3% tetrazole in acetonitrile, thioanisole, triethylsilane (TES), and trifluoroacetic acid (TFA) were *N.N'*from Acros. Boron trifluoride diethyl etherate $(BF_2 \bullet Et_2O).$ purchased diisopropylcarbodiimide (DIC), and piperidine were purchased from Aldrich or Acros. Acetonitrile (MeCN), methylene chloride (CH₂Cl₂), methanol (MeOH), chloroform (CHCl₃), tetrahydrofuran (THF), dimethylformamide (DMF), pyridine, ether, sodium chloride, hydrogen purchased peroxide, and acetic acid were from Fisher. *O*,*O*'-dibenzyl-*N*,*N*diisopropylphosphoramidite, and O,O'-diethyl-N,N-diisopropylphosphoramidite were purchased from Toronto Research Chemicals (North York, Ontario). β-D-glucosamine pentaacetate (Ac₄-GlcNAc) was purchased from Alfa-Aesar. Silica gel was purchased from SiliCycle (Québec City, Québec). Deionized water was purified by a Millipore Synergy 185 water purification system with a Simpak2 cartridge. Solid-phase phosphorylation and diethylphosphorylation reactions were performed in capped disposable fritted tubes (Image Molding) with gentle mixing on a Barnstead-Thermoline Labquake rotary shaker. CH₂Cl₂ and MeCN were dried via a columnbased solvent purification system (Innovative Technologies, Inc.) and stored over activated molecular sieves (4 Å). All other compounds were used as purchased with no additional purification.

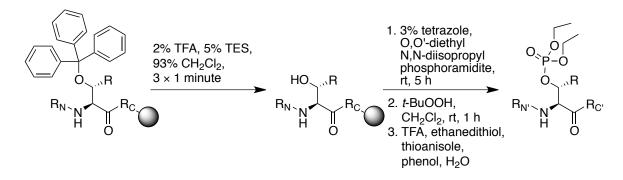
Peptide synthesis

Peptides (0.1 or 0.25 mmol) were synthesized on Rink amide resin via standard Fmoc solid phase peptide synthesis using a Rainin PS3 peptide synthesizer. Prior to the start of peptide synthesis, the resin was swelled in DMF (2 × 15 minutes). Standard amino acid couplings were achieved in 1 h using 4 equivalents of HBTU and 4 equivalents of Fmoc amino acid. Couplings of glycosylated amino acid derivatives were achieved using 1.5 equivalents of glycosylated Fmoc amino acid and 1.5 equivalents HBTU or HATU. Glycosylated amino acid couplings were allowed to react for 3-4 hours. Each cycle of peptide synthesis employed the following four steps: (1) removal of the Fmoc protecting group in 20% piperidine in DMF, 3 × 5 minutes; (2) resin wash in DMF, 5 × 1 minute; (3) amino acid coupling (Fmoc amino acid, HBTU, and 0.05 M DIPEA in DMF; 1 h or 4 h); (4) resin wash with DMF, 3 × 1 minute. After addition of the final residue, the peptide N-terminus was deprotected (20% piperidine in DMF, 3 × 5 minutes) and subsequently acetylated (10% acetic anhydride in pyridine, 5 minutes). To avoid β -elimination of the sugar moiety upon pyridine treatment, glycosylated peptides were acetylated using alternative conditions (0.5 M 1:1 DIC:acetic acid in THF, 1 h). Finally, the resin was washed with DMF (6×) and CH₂Cl₂ (3×).


The synthesis of peptides Ac-TA*Prox*N-NH₂ and Ac-TY*Prox*N-NH₂ were accomplished using the previously described automated solid phase peptide synthesis strategy termed proline editing.¹ These peptides were synthesized and purified as desribed.²

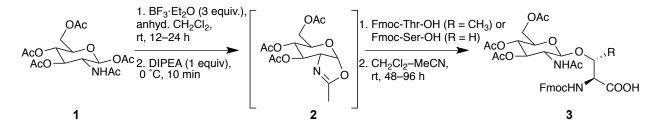
All peptides were subjected to TFA cleavage/deprotection reactions (2-4 hours in 84% TFA/4% each of H₂O/phenol/thioanisole/EDT, 92.5% TFA/5% TES/2.5% H₂O, or 92% TFA/4% TES/4% H₂O for non-glycosylated peptides; OGlcNAcylated peptides are described later), the TFA removed by evaporation, the peptides precipitated with ether, and the precipitates dried. Peptides were dissolved in water or phosphate buffer, filtered, and purified by reverse phase HPLC on a Vydac C18 semi-preparative column (250 x 10 mm, 5-10 μ m particle, 300 Å pore) or on a Varian Microsorb MV C18 analytical column (250 x 4.6 mm, 3-5 μ m particle, 100 Å pore) using linear gradients of buffer B (20% water, 80% MeCN, 0.05% TFA) in buffer A (98% water, 2% MeCN, 0.06% TFA). Peptides were purified to homogeneity and their purity verified by analytical HPLC reinjection. Peptide identity was characterized by ESI-MS (positive ion mode, unless stated otherwise) on an LCQ Advantage (Finnigan) mass spectrometer.

The concentrations of peptides containing tyrosine were determined by UV-vis spectroscopy based on tyrosine absorbance ($\varepsilon_{280} = 1280 \text{ M}^{-1} \text{ cm}^{-1}$ in water). The tau₁₇₄₋₁₈₃ peptides, were quantified using the equation: (μ g/mL) = (A₂₁₅ – A₂₂₅) x 144.³ The peptides Ac-K*Tx*PP-NH₂, Ac-K*Sx*PP-NH₂, tau₂₁₁₋₂₃₈, tau₂₃₄₋₂₅₁, tau₂₃₄₋₂₅₁(OPO₃²⁻)(pS235/pS237) were quantified via ¹H NMR by adding an aqueous solution of maleic acid (500 μ M final concentration) as an internal standard to the sample after the CD experiment was performed.


Serine/Threonine Phosphorylation and Diethylphosphorylation

Trityl-protected serine and threonine residues were incorporated at intended sites of chemical phosphorylation and diethylphosphorylation to allow for selective modification of the peptides on resin. To accomplish phosphorylation and diethylphosphorylation, the trityl groups were first deprotected in 2% TFA, 5% TES, and 93% CH_2Cl_2 (3 × 1 minutes, or until the flow-through solution was colorless). For chemical phosphorylation, phosphitylation was accomplished under nitrogen by the addition of tetrazole (1.35 mmol; 3 mL of 3% tetrazole solution in MeCN) and *O*,*O*'-dibenzyl-*N*,*N*-diisopropylphosphoramidite (500 μ L, 1.52 mmol) and allowed to react for 6 hours with mixing (Scheme S1).

Scheme S1. Scheme for chemical phosphorylation of peptides on resin. $R = CH_3$ (Thr) or R = H (Ser).


The necessary phosphitylation step to achieve chemical diethylphosphorylation was analogous, with the sole difference being the substitution of O,O'-diethyl-N,N-diisopropylphosphoramidite (323 μ L, 1.52 mmol) for O,O'-dibenzyl-N,N-diisopropylphosphoramidite (Scheme S2).

Scheme S2. Scheme for chemical diethylphosphorylation of peptides on resin. $R = CH_3$ (Thr) or R = H (Ser).

After phosphitylation, the reaction solution was removed and the resin washed with DMF $(3\times)$ and CH_2Cl_2 $(3\times)$. Oxidation was achieved in 1 h with mixing with *tert*-butyl hydroperoxide (4 mL of a 3 M solution in CH_2Cl_2). Following oxidation, the solution was removed and the resin washed with DMF $(3\times)$, MeOH $(3\times)$, and CH_2Cl_2 $(3\times)$. Peptides were then subjected to cleavage/deprotection and purification as described above.

Synthesis of Fmoc-Thr(O-GlcNAc)-OH (3) and Fmoc-Ser(O-GlcNAc)-OH (4)

Scheme S3. Synthesis of peracetylated 2-acetamido-2-deoxy- β -D-glycosides of Fmoc-Thr-OH and Fmoc-Ser-OH.

The protected Fmoc-Thr(Ac₃- β -D-GlcNAc)-OH and Fmoc-Ser(Ac₃- β -D-GlcNAc)-OH were synthesized via a modification of the methodology of Arsequell *et al.* (Scheme S3).⁴ After synthesis and purification, Fmoc-Thr(Ac₃- β -D-GlcNAc)-OH and Fmoc-Ser(Ac₃- β -D-GlcNAc)-OH were used as amino acid building blocks in Fmoc solid-phase glycopeptide synthesis. The peracetylated GlcNAc (960 mg, 2.5 mmol) (1) was vacuum dried and placed under argon in a flask containing 4 Å molecular sieves. The compound was dissolved in 16 mL of anhydrous CH₂Cl₂. At 0° C, 800 μ L (7.64 mmol) of BF₃·Et₂O was added dropwise over 1 minute to the suspension and allowed to react for 12–24 h at room temperature. The reaction was monitored by TLC (10% MeOH in CHCl₃) and visualized using Hanessian's stain (cerium molybdate). When the formation of the oxazoline (2) was complete, the mixture was cooled to 0° C and 400 μ L (2.29 mmol) of DIPEA was added. After 10 minutes of stirring at room temperature, Fmoc-Thr-

OH (867 mg, 2.54 mmol) or Fmoc-Ser-OH (831 mg, 2.54 mmol) was dissolved in a 9 mL solution of 2:1 CH₂Cl₂:MeCN and added to the reaction flask. The reaction mixture was gently stirred then left to stand at room temperature and allowed to react for 48–96 hours. Reaction progress was periodically monitored by TLC (10% MeOH in CHCl₃). A second batch of oxazoline (960 mg, 2.46 mmol), prepared as described above, was added after 24 h to increase yield. The crude reaction mixture was diluted with CH_2Cl_2 (40 mL) and filtered through Celite. The crude solution was neutralized by washing with 100 mL saturated bicarbonate solution and further washed with saturated brine solution (100 mL). The combined aqueous washes were kept for extraction of the product (**3** or **4**) with 300 mL ethyl acetate because some product was present in the aqueous fractions. The crude product was concentrated and purified via column chromatography (2–10% MeOH in CHCl₃). Product **3** was obtained as a white solid in 23% yield (753 mg) and product **4** was obtained as a white solid in 25% yield (811 mg). The ¹H NMR spectra of products **3** and **4** corresponded to literature values.⁴

Glycopeptide Synthesis

Glycosylated Fmoc amino acid couplings were performed for 4 hours. Following solidphase peptide synthesis, the N-terminal residue was deprotected (20% piperidine in DMF, 3×5 minutes) and the N-terminus acetylated (0.5 M 1:1 DIC:acetic acid in THF, 60 min). The protected O-GlcNAcylated peptides were subjected to a 90 minute cleavage/deprotection reaction in 92.5% TFA/5% TES/2.5% H₂O; an abridged reaction time was used to suppress β elimination of the sugars. TFA was partially removed by evaporation, peptide precipiated with ether, and peptides dissolved in water and purified by HPLC. After HPLC purification, the Oacetyl-protected O-GlcNAcylated peptides were lyophilized to remove solvent. The acetylprotected OGlcNAc hydroxyls were then subjected to deesterification via NaOMe/MeOH (12 mM, 1.5 mL) for 1 h to generate free hydroxyl groups on the carbohydrate alcohols (Scheme S4). Following 1 h of deprotection, the reaction solution was neutralized with 60 μ L of 1 M acetic acid and lyophilized. Dried and deprotected glycopeptides were dissolved in water, filtered, and purified to homogeneity by reverse phase HPLC as previously described.

Scheme S4. Solution phase O-acetyl deprotection reaction to yield a final O-GlcNAcylated peptide product. $R = CH_3$ (Thr) or R = H (Ser).

Characterization data of tau peptides

	peptide	Sequence	Expected mass	Observed mass
5	tau ₁₇₄₋₁₈₃	Ac-KTPPAPKTPP-NH ₂	1073.6	1096.9 (M+Na)+
6	tau ₁₇₄₋₁₈₃	Ac-KpTPPAPKpTPP-NH ₂	1232.6	1256.5 (M+Na) ⁺
7(7')	tau ₁₇₄₋₁₈₃	Ac-KgTPPAPKgTPP-NH ₂	1481.8	741.0 (M+2H) ²⁺
8	tau ₁₇₄₋₁₈₃	Ac-KeTPPAPKeTPP-NH ₂	1347.6	674.4 (M+2H) ²⁺
9	tau _{174–183(T175E, T181E)}	Ac-KEPPAPKEPP-NH ₂	1129.6	566.0 (M+2H) ²⁺
10	tau _{174–183(T175Tle, T181Tle)}	Ac-KTlePPAPKTlePP-NH ₂	1097.9	1098.7 (M+H) ⁺
11	tau ₁₉₆₋₂₀₉	Ac-GYSSPGSPGTPGSR-NH ₂	1346.6	1346.9 (M+H) ⁺
12	tau ₁₉₆₋₂₀₉	Ac-GYSpSPGpSPGpTPGSR-NH ₂	1746.7	872.5 (M-2H) ²⁻
13(13	') tau ₁₉₆₋₂₀₉	$Ac\text{-}GYSgSPGgSPGgTPGSR\text{-}NH_2$	1956.2	979.0 (M+2H) ²⁺
14	tau ₁₉₆₋₂₀₉	$\label{eq:ac-GYSeSPGeSPGeTPGSR-NH_2} Ac-GYSeSPGeSPGeTPGSR-NH_2$	1754.6	878.5 (M+2H) ²⁺
15	tau ₂₁₁₋₂₁₉	Ac-YRTPSLPTPP-NH ₂	1168.6	1169.8 (M+H) ⁺
16	tau ₂₁₁₋₂₁₉	Ac-YRpTPpSLPpTPP-NH ₂	1408.6	705.6 (M+2H) ²⁺
17(17	') tau ₂₁₁₋₂₁₉	Ac-YRgTPgSLPgTPP-NH ₂	1778.2	890.2 (M+2H) ²⁺
18	tau ₂₁₁₋₂₁₉	Ac-YReTPeSLPeTPP-NH ₂	1576.6	1577.3 (M+H) ⁺
19	tau ₂₂₉₋₂₃₈	Ac-YVRTPPKSPSS-NH ₂	1258.7	1259.7 (M+H)+
20	tau ₂₂₉₋₂₃₈	Ac-YVRpTPPKpSPpSS-NH ₂	1498.7	750.7 (M+2H) ²⁺
21(21	') tau ₂₂₉₋₂₃₈	Ac-YVRgTPPKgSPgSS-NH ₂	1868.3	935.0 (M+2H) ²⁺
22	tau ₂₂₉₋₂₃₈	Ac-YVReTPPKeSPeSS-NH ₂	1666.7	834.7 (M+2H) ²⁺
23	tau ₂₁₁₋₂₃₈	$eq:ac-RTPSLPTPTREPKKVAVVRTPPKSPSS-NH_2$	3052.5	1527.2 (M+2H) ²⁺
24	tau ₂₁₁₋₂₃₈	Ac-RpTPpSLPpTPPTREPKKVAVVRpTPPKpSPpSS-NH ₂	3532.2	1178.2 (M+3H) ³⁺
25	tau ₂₃₄₋₂₅₁	Ac-KSPSSAKSRLQTAPVPMP-NH ₂	1923.2	962.3 (M+2H) ²⁺
26	tau ₂₃₄₋₂₅₁ (pS235)	$\label{eq:Ac-KpSPSSAKSRLQTAPVPMP-NH_2} Ac-KpSPSSAKSRLQTAPVPMP-NH_2$	2002.0	1002.2 (M+H) ²⁺
27	tau _{234–251} (pS235/pS237)	Ac-KpSPpSSAKSRLQTAPVPMP-NH ₂	2082.0	1042.2 (M+H) ²⁺

Table S1. Tau peptides examined in this study. pS or pT indicates a phosphorylated serine or threonine residue. eS or eT indicates a diethylphosphorylated (OPO_3Et_2) serine or threonine residue. gS or gT indicates an OGlcNAcylated serine or threonine residue. Residue numbers are based on the largest isoform of tau (441 amino acids). The peptides **8'**, **13'**, **17'**, and **21'** refer to peptides which are O-acetylated on the sugars prior to deacetylation.

	peptide	Expected mass	Observed mass
28	Ac-KTPP-NH ₂	482.2	505.3 (M+Na) ⁺
29	Ac-KpTPP-NH ₂	562.2	608.2 (M+2Na) ⁺
30	Ac-KgTPP-NH ₂	685.3	708.2 (M+Na) ⁺
31	Ac-KeTPP-NH ₂	618.3	641.3 (M+Na) ⁺
32	Ac-KSPP-NH ₂	468.2	469.3 (M+H) ⁺
33	Ac-KpSPP-NH ₂	548.2	571.2 (M+Na) ⁺
34	Ac-KgSPP-NH ₂	671.3	694.2 (M+Na) ⁺
35	Ac-KeSPP-NH ₂	604.3	627.2 (M+Na) ⁺
36	Ac-GPKTPPGY-NH ₂	856.4	879.2 (M+Na) ⁺
37	Ac-GPKpTPPGY-NH ₂	936.4	959.2 (M+Na) ⁺
38	Ac-GPKgTPPGY-NH ₂	1059.5	551.2 (M+2Na) ²⁺
39	Ac-GPKeTPPGY-NH ₂	992.4	1015.0 (M+Na) ⁺
40	Ac-GPPTPPGY-NH ₂	825.4	848.2 (M+Na) ⁺
41	Ac-GPPpTPPGY-NH ₂	905.3	928.3 (M+Na) ⁺
42	Ac-GPPgTPPGY-NH ₂	1028.4	1051.2 (M+Na) ⁺
43	Ac-GPPeTPPGY-NH ₂	961.2	984.4 (M+Na) ⁺

Characterization data of model peptides

Table S2. Model peptides examined in this study. pS or pT indicates a phosphorylated serine or threonine residue. eS or eT indicates a diethylphosphorylated (OPO_3Et_2) serine or threonine residue. gS or gT indicates an OGlcNAcylated serine or threonine residue.

Unmodified $tau_{174-183}$ (5)

Peptide **5** was purified and characterized as previously described.⁵

Phosphorylated tau₁₇₄₋₁₈₃ (6)

Peptide 6 was purified and characterized as previously described.⁵

O-GlcNAcylated tau₁₇₄₋₁₈₃ (7', 7)

O-Acetyl-protected peptide 7' was purified via semi-preparative HPLC using a linear gradient of 0–45% buffer B in buffer A over 60 minutes: $t_{\rm R} = 33.4$ min, exp. 1733.8, obs. 867.1 (M²⁺). The deacetylated peptide 7 was purified via analytical HPLC using a linear gradient of 0–35% buffer B in buffer A over 60 minutes: $t_{\rm R} = 36.1$ min, exp 1481.8, obs. 741.0 (M+2H)²⁺.

Diethylphosphorylated tau₁₇₄₋₁₈₃ (8)

Peptide **8** was purified via analytical HPLC using a linear gradient of 0–50% buffer B in buffer A over 60 minutes: $t_{\rm R} = 37.7$ min, exp. 1347.6, obs. 674.4 (M+2H)²⁺.

$tau_{174-183}$ (T175E, T181E) (9)

Peptide **9** was purified via analytical HPLC using a linear gradient of 0–35% buffer B in buffer A over 60 minutes: $t_{\rm R} = 29.8$ min, exp. 1129.6, obs. 566.0 (M+2H)²⁺.

tau₁₇₄₋₁₈₃(T175Tle, T181Tle) (10)

Peptide **10** was purified and characterized as previously described.⁵

Unmodified $tau_{196-209}$ (11)

Peptide **11** was purified and characterized as previously described.⁵

Phosphorylated $tau_{196-209}$ (12)

Peptide 12 was purified via analytical HPLC using a linear gradient of 0–20% buffer B in buffer A over 60 minutes: $t_{\rm R} = 30.8$ min, exp. 1746.7, obs. 872.5 (M–2H)^{2–} (negative ion mode).

O-GlcNAcylated tau₁₉₆₋₂₀₉ (13', 13)

O-Acetyl-protected peptide **13'** was purified via analytical HPLC using a linear gradient of 0–40% buffer B in buffer A over 60 minutes: $t_{\rm R} = 56.8$ min, exp. 2336.9, obs. 1168.3 (M)²⁺. The deacetylated peptide **13** was purified via analytical HPLC using a linear gradient of 0–30% buffer B in buffer A over 60 minutes: $t_{\rm R} = 33.6$ min, exp 1956.2, obs. 979.0 (M+2H)²⁺.

Diethylphosphorylated tau₁₉₆₋₂₀₉ (14)

Peptide 14 was purified via semi-preparative HPLC using a linear gradient of 0–35% buffer B in buffer A over 60 minutes: $t_{\rm R} = 51.8$ min, exp. 1754.6, obs. 878.5 (M+2H)²⁺.

Unmodified $tau_{211-219}(15)$

Peptide 15 was purified and characterized as previously described.⁵

Phosphorylated tau₂₁₁₋₂₁₉ (16)

Peptide 16 was purified and characterized as previously described.⁵

O-GlcNAcylated tau₂₁₁₋₂₁₉(17', 17)

O-Acetyl-protected peptide **17'** was purified via analytical HPLC using a linear gradient of 0–50% buffer B in buffer A over 60 minutes: $t_{\rm R} = 53.2$ min, exp. 2156.5, obs. 1079.1 (M+2H)²⁺. The deacetylated peptide **17** was purified via analytical HPLC using a linear gradient of 0–45% buffer B in buffer A over 60 minutes: $t_{\rm R} = 39.6$ min, exp 1778.2, obs. 890.2 (M+2H)²⁺.

Diethylphosphorylated tau₂₁₁₋₂₁₉(18)

Peptide **18** was purified via analytical HPLC using a linear gradient of 0–60% buffer B in buffer A over 60 minutes: $t_{\rm R} = 46.9$ min, exp. 1576.6, obs. 1577.3 (M+H)⁺.

Unmodified $tau_{229-238}$ (19)

Peptide **19** was purified and characterized as previously described.⁵

Phosphorylated $tau_{229-238}(20)$

Peptide **20** was purified and characterized as previously described.⁵

O-GlcNAcylated tau₂₂₉₋₂₃₈(21', 21)

O-Acetyl-protected peptide **21'** was purified via analytical HPLC using a linear gradient of 0–45% buffer B in buffer A over 60 minutes: $t_{\rm R} = 49.3$ min, exp. 2246.6, obs. 1124.2 (M+2H)²⁺. The deacetylated peptide **21** was purified via analytical HPLC using a linear gradient of 0–30% buffer B in buffer A over 60 minutes: $t_{\rm R} = 36.7$ min, exp 1868.3, obs. 935.0 (M+2H)²⁺.

Diethylphosphorylated tau₂₂₉₋₂₃₈(22)

Peptide 22 was purified via semipreparative HPLC using a linear gradient of 0–40% buffer B in buffer A over 60 minutes: $t_{\rm R} = 46.3$ min, exp. 1666.7, obs. 834.7 (M+2H)²⁺.

Unmodified tau₂₁₁₋₂₃₈(23)

Peptide **23** was purified via semipreparative HPLC using a linear gradient of 0–30% buffer B in buffer A over 60 minutes: $t_{\rm R} = 44.6$ min, exp. 3052.5, obs. 1527.2 (M+2H)²⁺.

Phosphorylated tau₂₁₁₋₂₃₈ (24)

Peptide **24** was purified via analytical HPLC using a linear gradient of 0–30% buffer B in buffer A over 60 minutes: $t_{\rm R} = 49.3$ min, exp. 3532.2, obs. 1178.2 (M+3H)³⁺.

Unmodified $tau_{234-251}(25)$

Peptide **25** was purified via semipreparative HPLC using a linear gradient of 0–30% buffer B in buffer A over 60 minutes: $t_{\rm R} = 57.9$ min, exp. 1923.2, obs. 962.3 (M+2H)²⁺.

Monophosphorylated tau₂₃₄₋₂₅₁(pS235) (26)

Phosphorylation of the peptide $tau_{234-251}$ was performed as described in the general procedure on page S3, with a modification to the oxidation step to obtain peptide **26**. In order to suppress methionine sulfoxide formation, oxidation was performed for 30 minutes instead of 60 minutes. Peptide **26** was purified via semipreparative HPLC using a linear gradient of 0–20% buffer B in buffer A over 60 minutes: $t_{\rm R} = 60$ min, exp. 2002.2, obs. 1002.2 (M+2H)²⁺.

Diphosphorylated tau₂₃₄₋₂₅₁(pS235/pS237) (27)

Phosphorylation of the peptide $tau_{234-251}$ was performed as described in the general procedure on page S3, with a modification to the oxidation step to obtain peptide **27**. In order to suppress methionine sulfoxide formation oxidation was performed for 30 minutes instead of 60 minutes. Peptide **27** was purified via semipreparative HPLC using a linear gradient of 0–20% buffer B in buffer A over 60 minutes: $t_{\rm R} = 58.8$ min, exp. 2082.2, obs. 1042.2 (M+2H)²⁺.

Ac-KTPP-NH $_2$ (28)

Peptide **28** was purified via analytical HPLC using a linear gradient of 0–30% buffer B in buffer A over 60 minutes: $t_{\rm R} = 18.6$ min, exp. 482.2, obs. 505.3 (M+Na)⁺.

Ac-KpTPP-NH₂ (29)

Peptide **29** was purified via analytical HPLC using a linear gradient of 0–20% buffer B in buffer A over 60 minutes: $t_{\rm R} = 13.1$ min, exp. 562.2, obs. 608.2 (M+2Na)⁺.

Ac-KT(OGlcNAc)PP-NH₂ (30) (deacetylated)

Peptide **25** was purified via analytical HPLC using a linear gradient of 0–30% buffer B in buffer A over 60 minutes: $t_{\rm R} = 47.3$ min, exp. 685.3, obs. 708.2 (M+Na)⁺.

Ac-KT(OPO₃Et₂)PP-NH₂ (31)

Peptide **31** was purified via analytical HPLC using a linear gradient of 0–50% buffer B in buffer A over 60 minutes: $t_{\rm R} = 47.3$ min, exp. 618.3, obs. 641.3 (M+Na)⁺.

Ac-KSPP-NH₂ (32)

Peptide **32** was purified via analytical HPLC using a linear gradient of 0–20% buffer B in buffer A over 60 minutes: $t_{\rm R} = 14.9$ min, exp. 468.2, obs. 469.3 (M+H)⁺.

Ac-KpSPP-NH₂ (33)

Peptide **33** was purified via analytical HPLC using a linear gradient of 0–20% buffer B in buffer A over 60 minutes: $t_{\rm R} = 17.8$ min, exp. 548.2, obs. 571.2 (M+Na)⁺.

Ac-KS(OGlcNAc)PP-NH₂ (34) (deacetylated)

Peptide **34** was purified via analytical HPLC using a linear gradient of 0–15% buffer B in buffer A over 60 minutes: $t_{\rm R} = 17.7$ min, exp. 671.3, obs. 694.2 (M+Na)⁺.

Ac-KS(OPO₃Et₂)PP-NH₂ (35)

Peptide **35** was purified via analytical HPLC using a linear gradient of 0–20% buffer B in buffer A over 60 minutes: $t_{\rm R} = 36.6$ min, exp. 604.3, obs. 627.2 (M+Na)⁺.

Ac-GPKTPPGY-NH₂ (36)

Peptide **36** was purified via analytical HPLC using a linear gradient of 0–30% buffer B in buffer A over 60 minutes: $t_{\rm R} = 36.0$ min, exp. 856.4, obs. 879.2 (M+Na)⁺.

Ac-GPKpTPPGY-NH₂ (37)

Peptide **37** was purified via analytical HPLC using 20 min isocratic 100% buffer A, followed by a linear gradient of 0–30% buffer B in buffer A over 60 minutes: $t_{\rm R} = 47.1$ min, exp. 936.4, obs. 959.2 (M+Na)⁺.

Ac-GPKT(OGlcNAc)PPGY-NH₂ (38) (deacetylated)

Peptide **38** was purified via analytical HPLC using a linear gradient of 0–30% buffer B in buffer A over 60 minutes: $t_{\rm R} = 35.5$ min, exp. 1059.5, obs. 551.2 (M+2Na)²⁺.

Ac-GPKT(OPO₃Et₂)PPGY-NH₂ (39)

Peptide **39** was purified via analytical HPLC using a linear gradient of 0–30% buffer B in buffer A over 60 minutes: $t_{\rm R} = 50.9$ min, exp. 992.4, obs. 1015.0 (M+Na)⁺.

Ac-GPPTPPGY- NH_2 (40)

Peptide **40** was purified via analytical HPLC using a linear gradient of 0–30% buffer B in buffer A over 60 minutes: $t_{\rm R} = 43.2$ min, exp. 825.4, obs. 848.2 (M+Na)⁺.

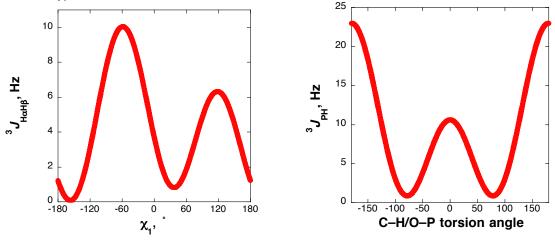
Ac-GPPpTPPGY-NH₂ (41)

Peptide **41** was purified via analytical HPLC using a linear gradient of 0–30% buffer B in buffer A over 60 minutes: $t_{\rm R} = 38.2$ min, exp. 905.3, obs. 928.3 (M+Na)⁺.

Ac-GPPT(OGlcNAc)PPGY-NH₂ (42) (deacetylated)

Peptide **42** was purified via analytical HPLC using a linear gradient of 0–30% buffer B in buffer A over 60 minutes: $t_{\rm R} = 41.1$ min, exp. 1028.4, obs. 1051.2 (M+Na)⁺.

Ac-GPPT(OPO₃Et₂)PPGY-NH₂ (43)


Peptide **43** was purified via analytical HPLC using a linear gradient of 0–30% buffer B in buffer A over 60 minutes: $t_{\rm R} = 56.6$ min, exp. 961.2, obs. 984.4 (M+Na)⁺.

Circular dichroism spectroscopy

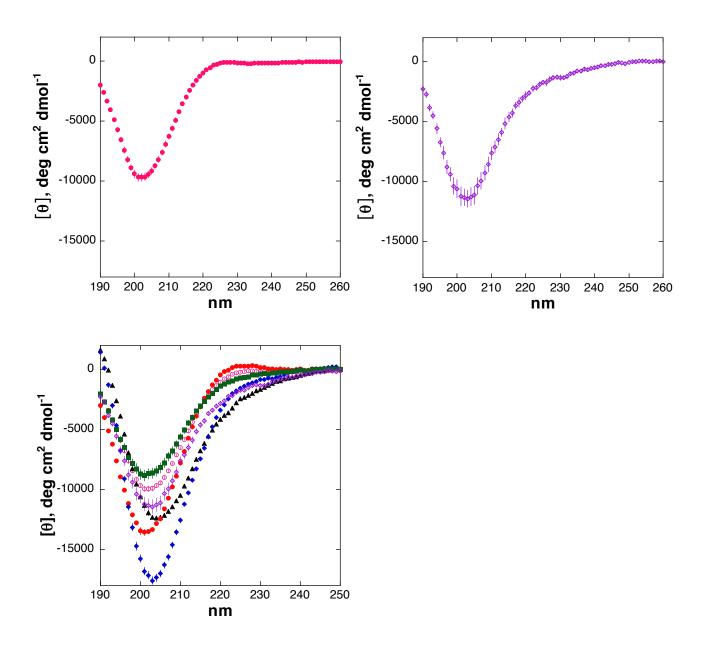
CD spectra were collected on a Jasco J-810 Spectropolarimeter in a 1 mm cell at 25 °C unless otherwise indicated. Peptide concentrations were 15–450 μ M. Solutions contained 25 mM KF in 5 mM phosphate buffer buffer (pH 8.0 or as indicated). Individual scans were made at 1 nm intervals with a 1 nm bandwidth and an averaging time of 4 s. Data represent the average of at least three independent trials. Data were background corrected but were not smoothed. Error bars are shown and indicate standard error.

NMR spectroscopy

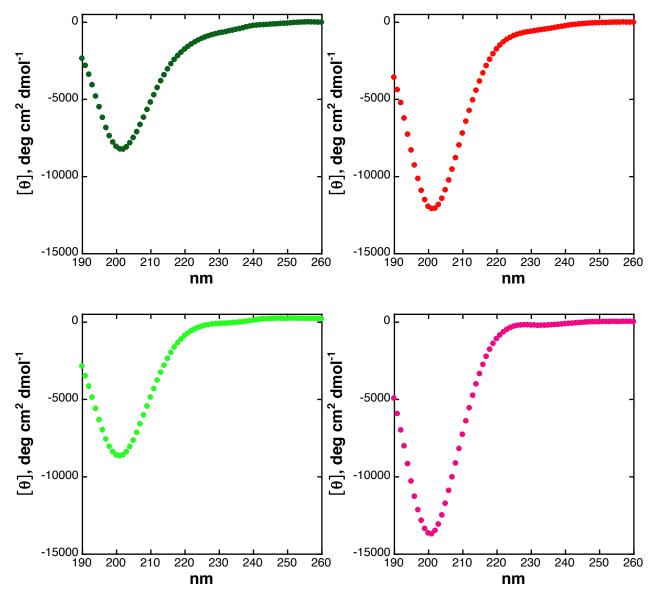
NMR spectra of peptides were collected at 298 K or as indicated on a Brüker AVC 600 MHz NMR spectrometer equipped with a triple resonance cryoprobe or a TXI probe. Peptides were dissolved in buffer containing 5 mM phosphate buffer (pH 4.0, 6.5, 7.2, or 8.0) and were internally referenced with TSP. Solutions contained 25 mM NaCl, 100 μ M TSP, and 90% H₂O/10% D₂O. Peptide NMR solution concentrations were 100 μ M-1.0 mM. 1–D spectra were collected with a watergate pulse sequence and a relaxation delay of 2-3 s. Watergate TOCSY spectra were recorded for all peptides for resonance assignment. ³J_{αN} was determined directly from the 1-D spectra. Errors in ³J_{αN} are estimated to be ≤ 0.2 Hz. The calculation of ϕ was based on the parametrized Karplus equation, ³J_{αN} = 6.51 cos²(ϕ – 60) – 1.76 cos(ϕ – 60) + 1.6.⁶ The calculation of χ_1 for threonine was based on the parametrized Karplus equation, ³J_{αN} = 4.37 – 1.86 cos(χ_1 -120) + 3.81 cos²(χ_1 -120) –0.37 sin(χ_1 -120).⁷ The calculation of χ_2 (χ_2 = C–H/O–P torsion angle + 120°) was based on the parametrized Karplus equation, ³J_{PH} = 15.3 cos²(χ_2 -120)– 6.1 cos(χ_2 -120) + 1.6.⁸

S12

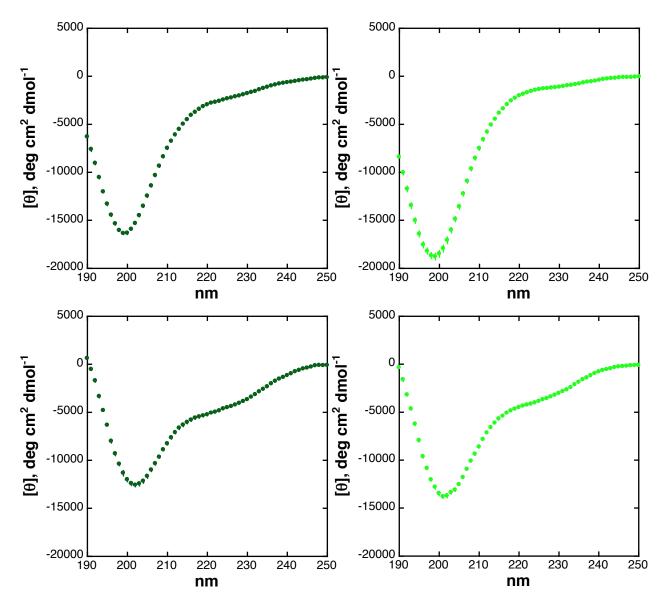
¹H–¹³C HSQC (heteronuclear single quantum coherence) spectra were recorded for both the nonphosphorylated and the phosphorylated variants of the peptides tau₁₇₄₋₁₈₃, tau₂₁₁₋₂₁₉, tau₂₂₉₋ ₂₃₈, Ac-KTPP-NH₂, Ac-KSPP-NH₂, and tau₂₃₄₋₂₅₁. The peptides were dissolved in 100% D₂O containing 5 mM potassium phosphate (pH 8.0), 25 mM NaCl, and 100 µM TSP. Peptide concentrations were 500 µM-5 mM. NMR spectra were acquired on samples with natural abundance ¹³C, using sweep widths of 20833 and 5388 Hz in t_1 and t_2 , respectively, 400 × 2048 complex data points, 24 scans per t_1 increment and a relaxation delay of 2.0 s. Watergate TOCSY spectra were recorded to confirm resonance assignments. Spectra were recorded with ¹Hdecoupling using spectral widths of 9 ppm and 130 ppm for peptide tau₁₇₄₋₁₈₃ and 9 ppm and 80-200 ppm for Ac-KTxPP-NH₂ peptides. Spectral widths of 12 ppm and 80 ppm were used for the ¹H-decoupled spectra of Ac-KSxPP-NH₂ peptides. ¹H-¹³C HMBC spectra were recorded using a modified HSQC experiment with pulse sequence delays based on $J_{C-H} = 20$ Hz instead of standard HSQC delays based on ${}^{1}J_{C-H} = 145$ Hz. ${}^{1}J_{H\alpha C\alpha}$ coupling constants were measured directly from the HSQC spectra recorded without decoupling and were confirmed by comparison with the differences in chemical shift for the resonance recorded with decoupling. Errors in ¹J_{HaCa} are estimated to be \pm 0.5 Hz. The value of ψ was calculated on basis of the measured ${}^{1}J_{H\alpha C\alpha}$, with the values of ϕ determined directly from ${}^{3}J_{\alpha N}$ and the parametrized Karplus equation, ${}^{1}J_{H\alpha C\alpha} = 140.3 + 1.4 \sin(\psi + 138) - 4.1 \cos(2(\psi + 138)) + 2.0 \cos(2(\phi + 30)).^{6}$

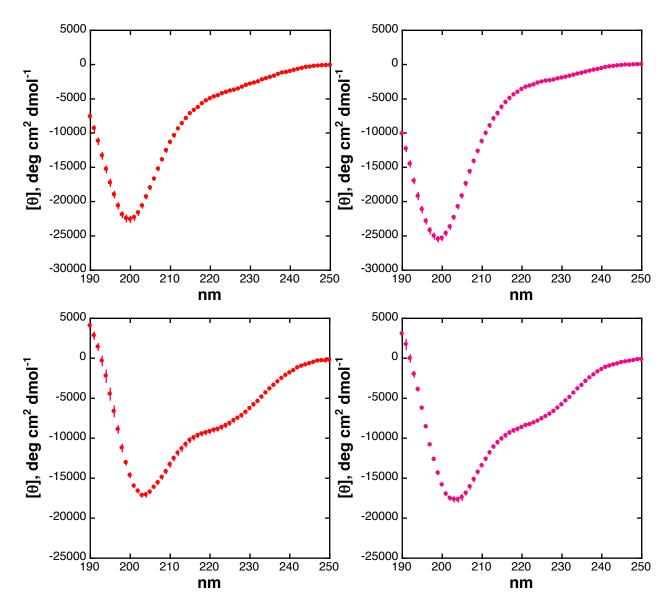

¹H–¹⁵N HSQC (heteronuclear single quantum coherence) spectra were recorded on samples with natural abundance ¹⁵N for both the nonphosphorylated and the phosphorylated variants of the peptides tau_{174–183}, tau_{211–219}, tau_{229–238}, Ac-GPPTPPGY-NH₂ and Ac-KTPP-NH₂. ¹H–¹⁵N HSQC spectra were also recorded for the OGlcNAcylated variants of tau₁₇₄₋₁₈₃ and Ac-KTPP-NH₂. ¹H–¹⁵N HSQC spectra were acquired with sweep widths of 6614 Hz in t_1 and 1825 Hz in t_2 , respectively, 64 × 2048 complex data points, 16 scans per t_1 increment, and a relaxation delay of 2.0 s. A Watergate pulse sequence was used for water suppression. The peptides were dissolved in 90% H₂O/10% D₂O containing 5 mM potassium phosphate (pH 8.0), 25 mM NaCl, and 100 µM TSP. Peptide concentrations were 1–2 mM. NMR spectra were recorded at 298 K.

NOESY spectra were acquired with sweep widths of 7183 Hz in t_1 and t_2 , 600 × 4096 complex data points, respectively, 16 scans per t_1 increment, a relaxation delay of 2.0 s, and a NOESY mixing time of 200 ms.


Fmoc-Thr(Ac₃-β-D-GlcNAc)-OH and Fmoc-Ser(Ac₃-β-D-GlcNAc)-OH were dissolved in CDCl₃ at concentrations of 500 μ M–2.0 mM and ¹H NMR spectra were collected at 296 K on a Brüker DRX 400 MHz NMR spectrometer equipped with a QNP probe.

³¹P NMR spectroscopy


 31 P NMR spectra were recorded on a Brüker DRX 400 MHz NMR spectrometer equipped with a BBO probe. The peptides were dissolved in buffer containing 5 mM potassium phosphate (pH 8.0) and 25 mM NaCl in 100% D₂O. To conduct NMR at pH 3.0, the peptide was dissolved in acetate buffer containing 5 mM sodium acetate (pH 3.0) in 100% D₂O. 31 P spectra were collected with 65536 data points and a relaxation delay of 5 seconds. The proton-coupled NMR spectra were recorded at 277, 298, 310, 323, and 338 K at pH 8.0 and at 298 K at pH 3.0. The NMR spectra were internally referenced with 85% H₃PO₄ (0.00 ppm) using a capillary filled with H₃PO₄ that was placed in the NMR tube containing the sample.


Figure S1. Top left: CD spectrum of $tau_{174-183}$ (T175E, T181E) (Ac-KEPPAPKEPP-NH₂) (9) at pH 8.0, 25 °C; top right: CD spectrum of $tau_{174-183}$ (T175E, T181E) (Ac-KTlePPAPKTlePP-NH₂) (10) at pH 8.0, 25 °C; bottom: CD spectra of $tau_{174-183}$ peptides in 5 mM phosphate buffer, 25 mM KF, pH 7.5. Thr: green squares; phosphothreonine: red circles; ThrOGlcNAc: blue diamonds; Thr diethylphosphate: black triangles; Glu: pink open circles; *tert*-leucine: purple open diamonds. Error bars indicate standard error.

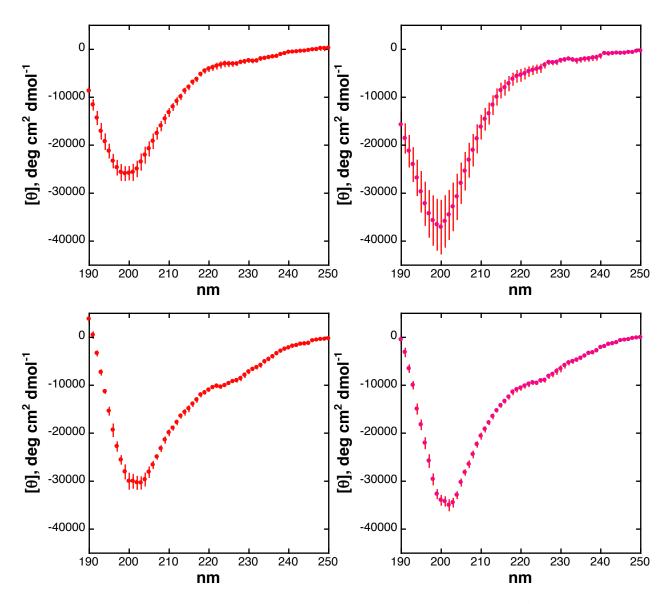

Figure S2. Top left: CD spectrum of $tau_{211-238}$ (Ac-RTPSLPTPPREPKKVAVVRTPPKSPSS-NH₂) (**23**) at pH 8.0, 25 °C; top right: CD spectrum of $tau_{211-238}(OPO_3^{2-})$ (Ac-RpTPpSLPpTPPREPKKVAVVRpTPPKpSPpSS-NH₂) (**24**) at pH 8.0, 25 °C; bottom left: CD spectrum of $tau_{211-238}$ (Ac-RTPSLPTPPREPKKVAVVRTPPKSPSS-NH₂) (**23**) at pH 8.0, 0.5 °C; bottom right: CD spectrum of $tau_{211-238}(OPO_3^{2-})$ (Ac-RpTPpSLPpTPPREPKKVAVVRpTPPKpSPpSS-NH₂) (**24**) at pH 8.0, 0.5 °C. The solutions contained 5 mM phosphate buffer and 25 mM KF. Error bars indicate standard errors.

Figure S3. Top left: CD spectrum of $tau_{234-251}$ (Ac-KSPSSAKSRLQTAPVPMP-NH₂) (**25**) at pH 8.0, 25 °C; top right: CD spectrum of $tau_{234-251}$ (Ac-KSPSSAKSRLQTAPVPMP-NH₂) (**25**) at pH 8.0, 0.5 °C; bottom left: CD spectrum of $tau_{234-251}$ (Ac-KSPSSAKSRLQTAPVPMP-NH₂) (**25**) at pH 8.0, 0.5 °C, in 30% TFE; bottom right: CD spectrum of $tau_{234-251}$ (Ac-KSPSSAKSRLQTAPVPMP-NH₂) (**25**) at pH 8.0, 0.5 °C, in 30% TFE; bottom right: CD spectrum of $tau_{234-251}$ (Ac-KSPSSAKSRLQTAPVPMP-NH₂) (**25**) at pH 8.0, 0.5 °C, in 30% TFE; bottom right: CD spectrum of $tau_{234-251}$ (Ac-KSPSSAKSRLQTAPVPMP-NH₂) (**25**) at pH 8.0, 0.5 °C, in 30% TFE; bottom right: CD spectrum of $tau_{234-251}$ (Ac-KSPSSAKSRLQTAPVPMP-NH₂) (**25**) at pH 8.0, 0.5 °C, in 30% TFE. The solutions contained 5 mM phosphate buffer and 25 mM KF. Error bars indicate standard errors.

Figure S4. Top left: CD spectrum of $tau_{234-251}$ (pS235) (Ac-KpSPSSAKSRLQTAPVPMP-NH₂) (26) at pH 8.0, 25 °C; top right: CD spectrum of $tau_{234-251}$ (pS235) (Ac-KpSPSSAKSRLQTAPVPMP-NH₂) (26) at pH 8.0, 0.5 °C; bottom left: CD spectrum of $tau_{234-251}$ (pS235) (Ac-KpSPSSAKSRLQTAPVPMP-NH₂) (26) at pH 8.0, 0.5 °C, containing 30% TFE; bottom right: CD spectrum of $tau_{234-251}$ (pS235) (Ac-KpSPSSAKSRLQTAPVPMP-NH₂) (26) at pH 8.0, 0.5 °C, containing 30% TFE; bottom right: CD spectrum of $tau_{234-251}$ (pS235) (Ac-KpSPSSAKSRLQTAPVPMP-NH₂) (26) at pH 8.0, 0.5 °C, in 30% TFE. The solutions contained 5 mM phosphate buffer and 25 mM KF. Error bars indicate standard errors.

Figure S5. Top left: CD spectrum of $tau_{234-251}$ (pS235/pS237) (Ac-KpSPpSSAKSRLQTAPVPMP-NH₂) (27) at pH 8.0, 25 °C; top right: CD spectrum of $tau_{234-251}$ (pS235/pS237) (Ac-KpSPpSSAKSRLQTAPVPMP-NH₂) (27) at pH 8.0, 0.5 °C; bottom left: CD spectrum of $tau_{234-251}$ (pS235/pS237) (Ac-KpSPpSSAKSRLQTAPVPMP-NH₂) (27) at pH 8.0, 0.5 °C; containing 30% TFE; bottom right: CD spectrum of $tau_{234-251}$ (pS235/pS237) (Ac-KpSPpSSAKSRLQTAPVPMP-NH₂) (27) at pH 8.0, 0.5 °C, containing 30% TFE; bottom right: CD spectrum of $tau_{234-251}$ (pS235/pS237) (Ac-KpSPpSSAKSRLQTAPVPMP-NH₂) (27) at pH 8.0, 0.5 °C, containing 30% TFE; bottom right: CD spectrum of $tau_{234-251}$ (pS235/pS237) (Ac-KpSPpSSAKSRLQTAPVPMP-NH₂) (27) at pH 8.0, 0.5 °C, containing 30% TFE. The solutions contained 5 mM phosphate buffer and 25 mM KF. Error bars indicate standard errors.

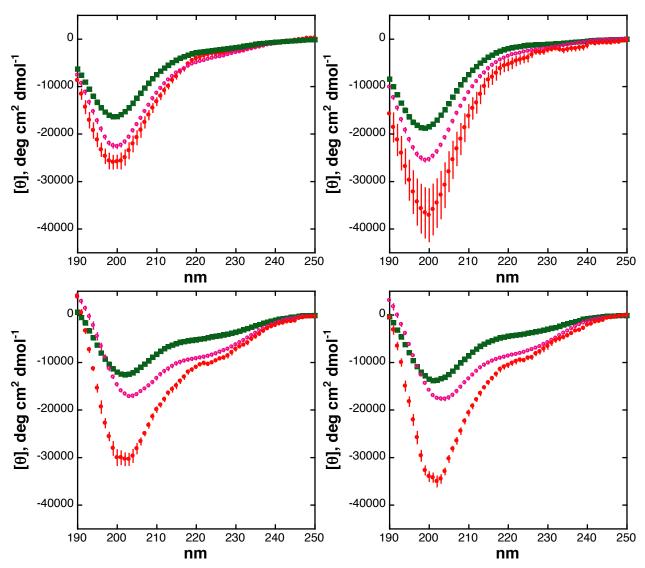
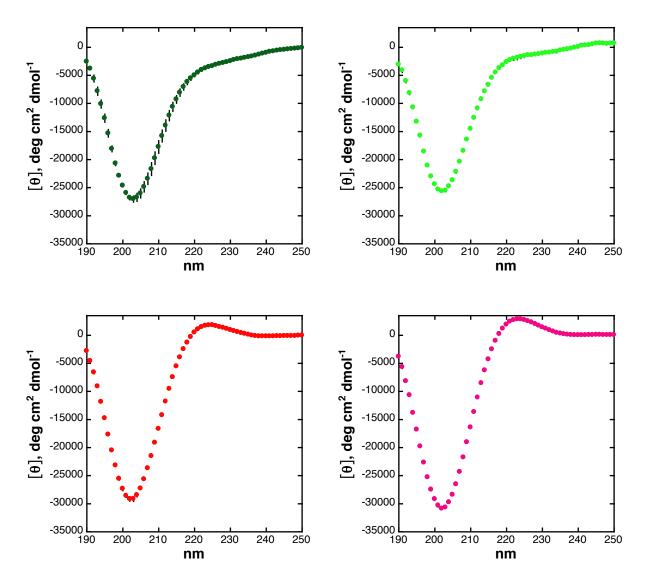


Figure S6. Top left: CD spectra of tau₂₃₄₋₂₅₁ (Ac-KSPSSAKSRLQTAPVPMP-NH₂) (25) (green squares), tau₂₃₄₋₂₅₁(pS235) (Ac-KpSPSSAKSRLQTAPVPMP-NH₂) (26) (magenta open circles), and tau₂₃₄₋₂₅₁(pS235/pS237) (Ac-KpSPpSSAKSRLQTAPVPMP-NH₂) (27) (red circles), at pH 8.0, 25 °C; top right: CD spectra of tau₂₃₄₋₂₅₁ (Ac-KSPSSAKSRLQTAPVPMP-NH₂) (25) (green squares), tau234-251(pS235) (Ac-KpSPSSAKSRLQTAPVPMP-NH2) (26) (magenta open circles), and tau₂₃₄₋₂₅₁(pS235/pS237) (Ac-KpSPpSSAKSRLQTAPVPMP-NH₂) (27) (red circles), at pH 8.0, 0.5 °C; bottom left: CD spectra of tau₂₃₄₋₂₅₁ (Ac-KSPSSAKSRLQTAPVPMP-NH₂) (25) (green squares), tau₂₃₄₋₂₅₁(pS235) (Ac-KpSPSSAKSRLQTAPVPMP-NH₂) (**26**) (magenta open circles), and tau₂₃₄₋₂₅₁(pS235/pS237) (Ac-KpSPpSSAKSRLQTAPVPMP-NH₂) (27) (red circles), at pH 8.0, 25 °C containing 30% TFE; bottom right: CD spectra of tau₂₃₄₋₂₅₁ (Ac-(green KSPSSAKSRLQTAPVPMP-NH₂) (25)squares), $tau_{234-251}$ (pS235) (Ac-KpSPSSAKSRLQTAPVPMP-NH₂) (26) (magenta open circles), and tau₂₃₄₋₂₅₁(pS235/pS237) (Ac-KpSPpSSAKSRLQTAPVPMP-NH₂) (27) (red circles), at pH 8.0, 0.5 °C containing 30% TFE. Error bars indicate standard error.


Summary of CD data for tau peptides

peptide	[θ] ₂₂₈ , deg cm ² dmol ⁻¹	λ at local [θ] _{max} , nm	$\begin{array}{c} \text{local} \\ [\theta]_{\text{max}}, \\ \text{deg cm}^2 \\ \text{dmol}^{-1} \end{array}$	λat [θ] _{min} , nm	[θ] _{min} , deg cm ² dmol ⁻¹	[θ] ₁₉₀ , deg cm ² dmol ⁻¹
Ac-KTPPAPKTPP-NH ₂	-452	n.a. ^a	n.a.	201	-8843	-2040
	339	228	339	201	-13576	-2986
Ac-KgTPPAPKgTPP-NH ₂	-1121	n.a.	n.a.	203	-17583	1426
Ac-KeTPPAPKeTPP-NH ₂	-1991	n.a.	n.a.	204	-12390	1589
Ac-KEPPAPKEPP-NH ₂	2	228	2	202	-9949	-2058
Ac-KTIePPAPKTIePP-NH ₂	-1620	n.a.	n.a.	203	-11300	-2280
Ac-GYSSPGSPGTPGSR-NH ₂	-2468	n.a.	n.a.	194	-10550	-8154
Ac-GYSpSPGpSPGpTPGSR-NH ₂	-2323	n.a.	n.a.	197	-14440	-5508
Ac-GYSgSPGgSPGgTPGSR-NH ₂	-1370	n.a.	n.a.	200	-7462	-1384
Ac-GYSeSPGeSPGeTPGSR-NH ₂	-3075	n.a.	n.a.	206	-6554	87
Ac-YRTPSLPTPP-NH ₂	-732	n.a.	n.a.	201	-17256	-7865
Ac-YRpTPpSLPpTPP-NH ₂	287	227	354	202	-18151	-4368
Ac-YRgTPgSLPgTPP-NH ₂	-1011	n.a.	n.a.	204	-15442	4533
Ac-YReTPeSLPeTPP-NH ₂	-2661	n.a.	n.a.	205	-10877	129
Ac-YVRTPPKSPSS-NH ₂	-1145	n.a.	n.a.	200	-21699	-5949
Ac-YVRpTPPKpSPpSS-NH ₂	904	228	904	199	-28500	-9694
Ac-YVRgTPPKgSPgSS-NH ₂	-1036	n.a.	n.a.	204	-15882	1446
Ac-YVReTPPKeSPSeS-NH ₂	-2556	n.a.	n.a.	203	-15532	2081
Ac-RTPSLPTPPREPKKVAVVRTPPKSPSS-NH ₂	-837	n.a.	n.a.	202	-8247	-2370
Ac-RpTPpSLPpTPPREPKKVAVVRpTPPKpSPpSS-NH ₂	-694	n.a.	n.a.	201	-12097	-3596

Table S3. Summary of CD data for tau peptides. CD data were collected at 0.5 or 25 °C with 15–200 μ M peptide in 5 mM phosphate buffer (pH 8.0) with 25 mM KF. ^{*a*} No local maximum was observed. pS or pT indicates a phosphorylated serine or threonine residue. eS or eT indicates a diethylphosphorylated (OPO₃Et₂) serine or threonine residue. gS or gT indicates an OGlcNAcylated serine or threonine residue. Tle indicates *tert*-leucine.

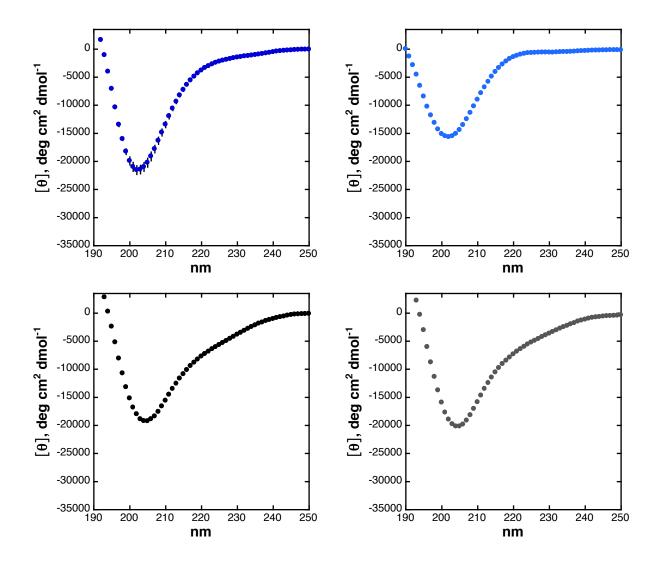
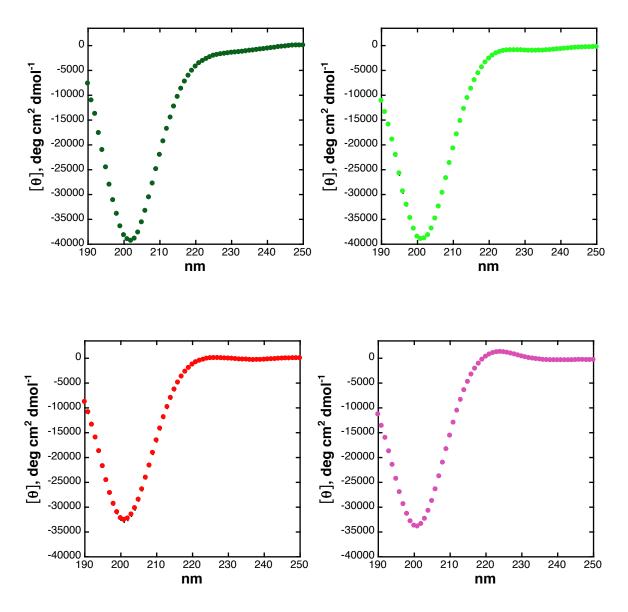

peptide	[θ] ₂₂₂ , deg cm ² dmol ⁻¹	$[\theta]_{208}, \\ deg cm^2 \\ dmol^{-1}$	λ at [θ] _{min} , nm	$[\theta]_{min},$ deg cm ² dmol ⁻¹	temp, °C	% TFE
Ac-KSPSSAKSRLQTAPVPMP-NH ₂	-2710	-9352	199	-16370	25	0
Ac-KpSPSSAKSRLQTAPVPMP-NH ₂	-4539	-13907	200	-22614	25	0
Ac-KpSPpSSAKSRLQTAPVPMP-NH ₂	-3544	-16015	199	-25921	25	0
Ac-KSPSSAKSRLQTAPVPMP-NH ₂	-1709	-9640	199	-18781	0.5	0
Ac-KpSPSSAKSRLQTAPVPMP-NH ₂	-2251	-14134	199	-25495	0.5	0
Ac-KpSPpSSAKSRLQTAPVPMP-NH ₂	-2818	-21062	200	-37108	0.5	0
Ac-KSPSSAKSRLQTAPVPMP-NH ₂	-4987	-9668	202	-12585	25	30
Ac-KpSPSSAKSRLQTAPVPMP-NH ₂	-8894	-14901	203	-17163	25	30
Ac-KpSPpSSAKSRLQTAPVPMP-NH ₂	-10182	-23219	203	-30371	25	30
Ac-KSPSSAKSRLQTAPVPMP-NH ₂	-4259	-10103	201	-13820	0.5	30
Ac-KpSPSSAKSRLQTAPVPMP-NH ₂	-8292	-15166	204	-17710	0.5	30
Ac-KpSPpSSAKSRLQTAPVPMP-NH ₂	-9786	-24430	202	-35030	0.5	30

Table S4. Summary of CD data for $tau_{234-251}$ peptides. CD data were collected at 0.5 or 25 °C with 15–45 μ M peptide in 5 mM phosphate buffer (pH 8.0) with 25 mM KF. pS indicates a phosphorylated serine residue.



CD spectra of model peptides Ac-KTxPP-NH₂

Figure S7. Top left: CD spectrum of Ac-KTPP-NH₂ (**28**) at pH 8.0, 25 °C; top right: CD spectrum of Ac-KTPP-NH₂ (**28**) at pH 8.0, 2 °C; bottom left: CD spectrum of Ac-KT(OPO₃²⁻)PP-NH₂ (**29**) at pH 8.0, 25 °C; and bottom right: CD spectrum of Ac-KT(OPO₃²⁻)PP-NH₂ (**29**) at pH 8.0, 2 °C. Error bars indicate standard errors.

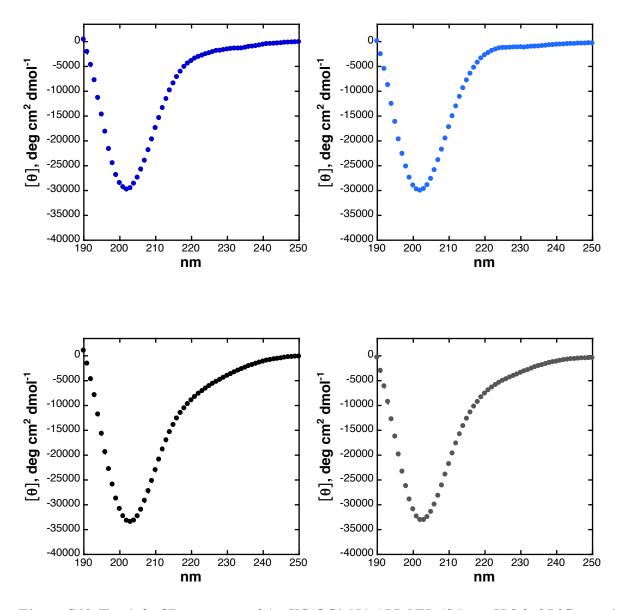
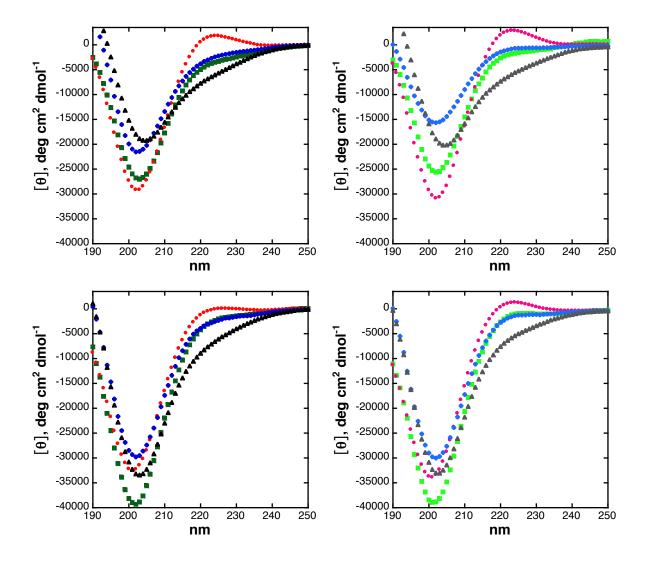


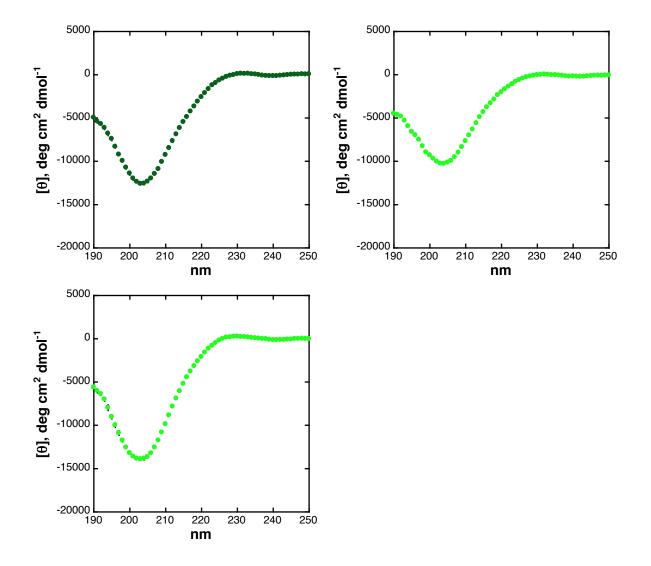
Figure S8. Top left: CD spectrum of Ac-KT(OGlcNAc)PP-NH₂ (**30**) at pH 8.0, 25 °C; top right: CD spectrum of Ac-KT(OGlcNAc)PP-NH₂ (**30**) at pH 8.0, 2 °C; bottom left: CD spectrum of Ac-KT(OPO₃Et₂)PP-NH₂ (**31**) at pH 8.0, 2 °C; and bottom right: CD spectrum of Ac-KT(OPO₃Et₂)PP-NH₂ (**31**) at pH 8.0, 2 °C. Error bars indicate standard errors.



CD spectra of model peptides Ac-KSxPP-NH₂

Figure S9. Top left: CD spectrum of Ac-KSPP-NH₂ (**32**) at pH 8.0, 25 °C; top right: CD spectrum of Ac-KSPP-NH₂ (**32**) at pH 8.0, 2 °C; bottom left: CD spectrum of Ac-KS(OPO₃²⁻)PP-NH₂ (**33**) at pH 8.0, 25 °C; and bottom right: CD spectrum of Ac-KS(OPO₃²⁻)PP-NH₂ (**33**) at pH 8.0, 2 °C. Error bars indicate standard errors.

Figure S10. Top left: CD spectrum of Ac-KS(OGlcNAc)PP-NH₂ (**34**) at pH 8.0, 25 °C; top right: CD spectrum of Ac-KS(OGlcNAc)PP-NH₂ (**34**) at pH 8.0, 2 °C; bottom left: CD spectrum of Ac-KS(OPO₃Et₂)PP-NH₂ (**35**) at pH 8.0, 2 °C and bottom right: CD spectrum of Ac-KT(OPO₃Et₂)PP-NH₂ (**35**) at pH 8.0, 2 °C. Error bars indicate standard errors.


Figure S11. Top left; CD spectra of Ac-K*Tx*PP-NH₂ peptides at 25 °C; Thr: green squares; phosphothreonine: red circles; ThrOGlcNAc: blue diamonds; Thr diethylphosphate: black triangles; top right; CD spectra of Ac-K*Tx*PP-NH₂ peptides at 2 °C; Thr: light green squares; phosphothreonine: magenta circles; ThrOGlcNAc: light blue diamonds; Thr diethylphosphate: grey triangles; bottom left; CD spectra of Ac-K*Sx*PP-NH₂ peptides at 25 °C; Ser: green squares; phosphoserine: red circles; SerOGlcNAc: blue diamonds; Ser diethylphosphate: black triangles; bottom right; CD spectra of Ac-K*Sx*PP-NH₂ peptides at 2 °C; Ser: green squares; phosphoserine: magenta circles; SerOGlcNAc: blue diamonds; Ser diethylphosphate: black triangles; bottom right; CD spectra of Ac-K*Sx*PP-NH₂ peptides at 2 °C; Ser: light green squares; phosphoserine: magenta circles; SerOGlcNAc: light blue diamonds; Ser diethylphosphate: black triangles. Data were collected in 5 mM phosphate buffer buffer containing 25 mM KF.

peptide		λ at	local			Temp, °C
peptide	[θ] ₂₂₈ , deg cm ² dmol ⁻¹	local [θ] _{max} , nm	[θ] _{max} , deg cm ² dmol ⁻¹	λ at [θ] _{min} , nm	[θ] _{min} , deg cm ² dmol ⁻¹	
Ac-KTPP-NH ₂	-2801	n.a. ^a	n.a.	203	-27045	25
Ac-KT(OPO3 ²⁻)PP-NH2	1321	225	1790	202	-29165	25
Ac-KT(OGlcNAc)PP-NH ₂	-1761	n.a.	n.a.	202	-21545	25
Ac-KT(OPO ₃ Et ₂)PP-NH ₂	-4587	n.a.	n.a.	205	-19258	25
Ac-KTPP-NH ₂	-1295	n.a.	n.a.	202	-25637	2
Ac-KT(OPO3 ²⁻)PP-NH2	2016	223	2852	202	-30878	2
Ac-KT(OGlcNAc)PP-NH ₂	-602	n.a.	n.a.	202	-15672	2
Ac-KT(OPO ₃ Et ₂)PP-NH ₂	-4263	n.a.	n.a.	204	-20187	2
Ac-KSPP-NH ₂	-1638	n.a.	n.a.	202	-39320	25
Ac-KS(OPO3 ²⁻)PP-NH2	8	226	49	201	-32565	25
$\label{eq:ac-KS} Ac-KS(OGlcNAc)PP-NH_2$	-1823	n.a.	n.a.	202	-29790	25
Ac-KS(OPO ₃ Et ₂)PP-NH ₂	-4814	n.a.	n.a.	203	-33453	25
Ac-KSPP-NH ₂	-920	n.a.	n.a.	201	-38960	2
Ac-KS(OPO3 ²⁻)PP-NH2	774	224	1278	201	-33904	2
$\label{eq:ac-KS} Ac-KS(OGlcNAc)PP-NH_2$	-1154	n.a.	n.a.	202	-30043	2
Ac-KS(OPO ₃ Et ₂)PP-NH ₂	-4043	n.a.	n.a.	203	-33087	2

Table S5. Summary of CD data for Ac-K*Tx*PP-NH₂ and Ac-K*Sx*PP-NH₂ peptides. CD data were collected with 100–450 μ M peptide in 5 mM phosphate buffer (pH 8.0) containing 25 mM KF at 2 °C and 25 °C. ^{*a*} No local maximum was observed.

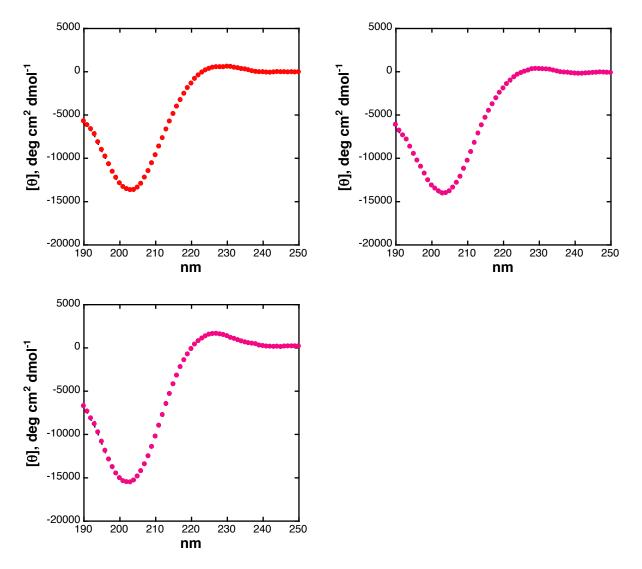
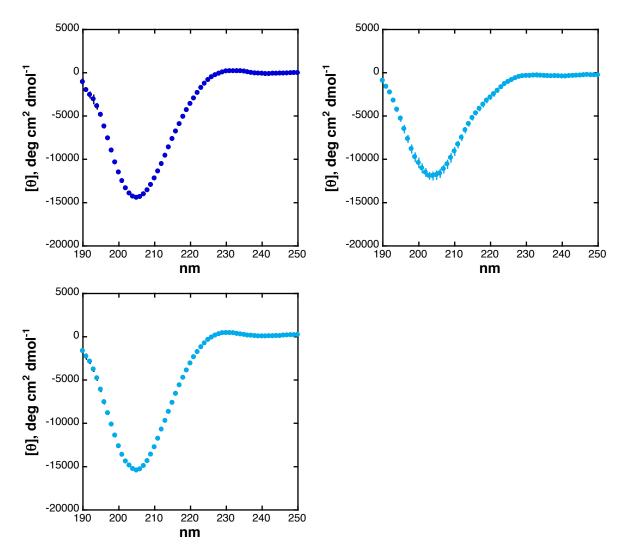
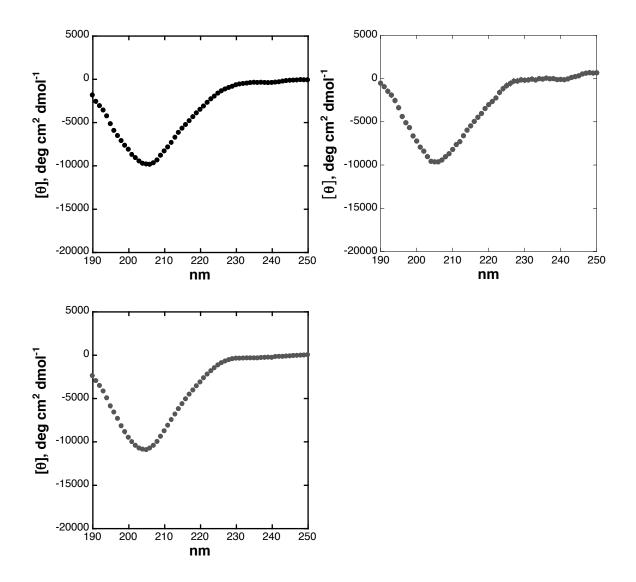

peptide		$[\theta]_{202}$, deg cm ² dmol ⁻¹		Temp, °C
Ac-KTPP-NH ₂	-3522	-26794	-2553	25
Ac-KT(OPO3 ^{2–})PP-NH2	1786	-29165	-2783	25
Ac-KT(OGlcNAc)PP-NH ₂	-2449	-21545	5917	25
Ac-KT(OPO ₃ Et ₂)PP-NH ₂	-6061	-18016	7999	25
Ac-KTPP-NH ₂	-1700	-25637	-3063	2
Ac-KT(OPO3 ^{2–})PP-NH2	2830	-30878	-3801	2
Ac-KT(OGlcNAc)PP-NH ₂	-716	-15672	33	2
Ac-KT(OPO ₃ Et ₂)PP-NH ₂	-5603	-18954	7770	2
Ac-KSPP-NH ₂	-2329	-39320	-7630	25
Ac-KS(OPO3 ^{2–})PP-NH2	-94	-32269	-8803	25
Ac-KS(OGIcNAc)PP-NH ₂	-2543	-29790	414	25
Ac-KS(OPO ₃ Et ₂)PP-NH ₂	-6596	-33212	1030	25
Ac-KSPP-NH ₂	-1052	-38838	-11106	2
Ac-KS(OPO3 ^{2–})PP-NH2	1278	-33389	-11286	2
Ac-KS(OGIcNAc)PP-NH ₂	-1373	-30043	63	2
Ac-KS(OPO ₃ Et ₂)PP-NH ₂	-5433	-33053	-340	2

Table S6. Summary of CD data for Ac-K*Tx*PP-NH₂ and Ac-K*Sx*PP-NH₂ peptides. CD data were collected with 100–450 μ M peptide in 5 mM phosphate buffer (pH 8.0) containing 25 mM KF at 2 °C and 25 °C. ^{*a*} No local maximum was observed.



CD spectra of Ac-GPKTxPPGY-NH₂ peptides


Figure S12. Top left: CD spectrum of Ac-GPKTPPGY-NH₂ (**36**) at pH 6.5, 25 °C; top right: CD spectrum of Ac-GPKTPPGY-NH₂ (**36**) at pH 8.0, 25 °C; and bottom: CD spectrum of Ac-GPKTPPGY-NH₂ (**36**) at pH 8.0, 2 °C. Error bars indicate standard errors.

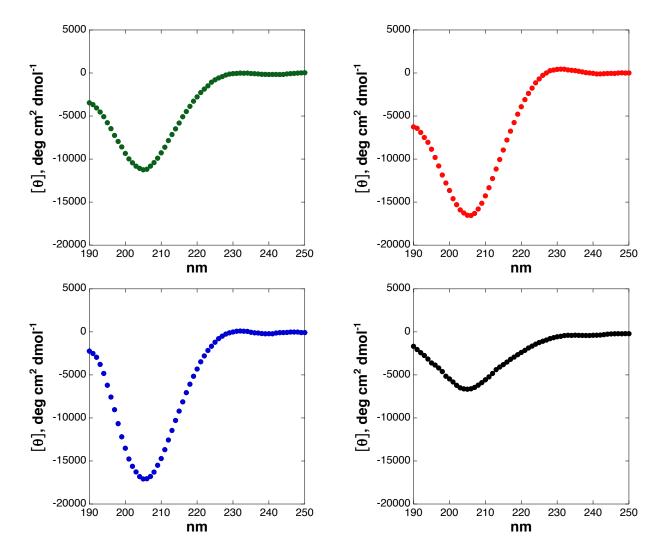

Figure S13. Top left: CD spectrum of Ac-GPKT(OPO₃^{-/2–})PPGY-NH₂ (**37**) at pH 6.5, 25 °C; top right: CD spectrum of Ac-GPKT(OPO₃^{2–})PPGY-NH₂ (**37**) at pH 8.0, 25 °C; bottom: CD spectrum of Ac-GPKT(OPO₃^{2–})PPGY-NH₂ (**37**) at pH 8.0, 2 °C. Error bars indicate standard errors.

Figure S14. Top left: CD spectrum of Ac-GPKT(OGlcNAc)PPGY-NH₂ (**38**) at pH 6.5, 25 °C; top right: CD spectrum of Ac-GPKT(OGlcNAc)PPGY-NH₂ (**38**) at pH 8.0, 25 °C; bottom: CD spectrum of Ac-GPKT(OGlcNAc)PPGY-NH₂ (**38**) at pH 8.0, 2 °C. Error bars indicate standard errors.

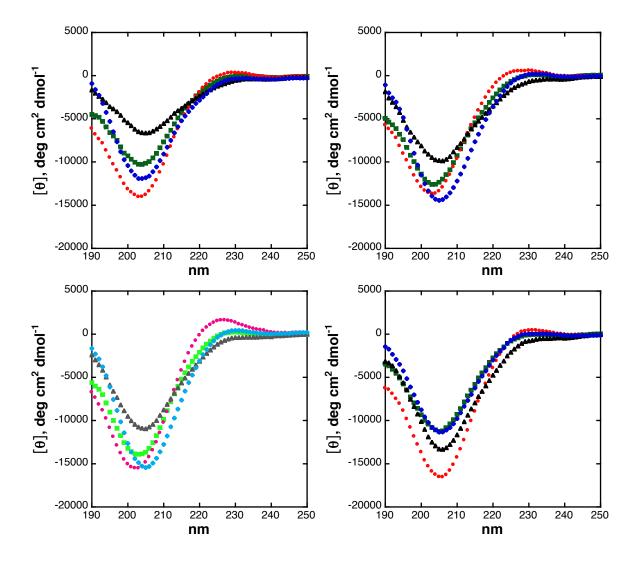
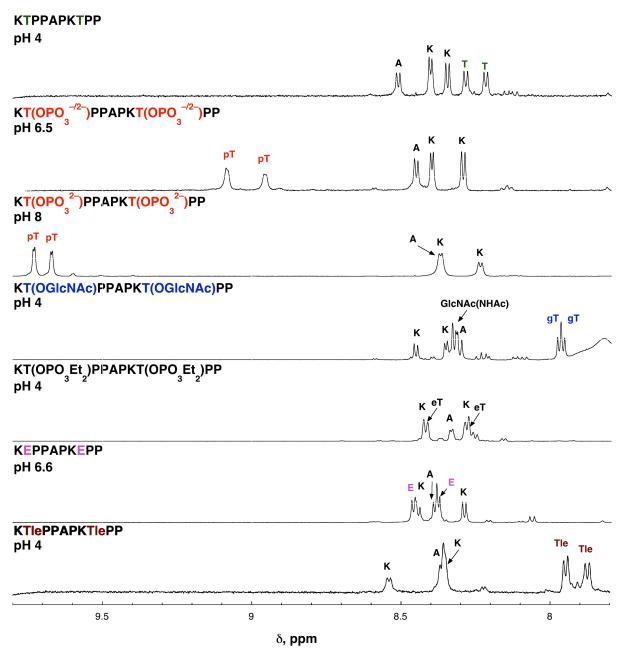


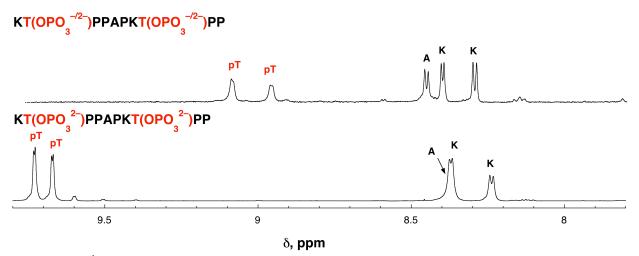
Figure S15. Top left: CD spectrum of Ac-GPKT(OPO₃Et₂)PPGY-NH₂ (**39**) at pH 6.5, 25 °C; top right: CD spectrum of Ac-GPKT(OPO₃Et₂)PPGY-NH₂ (**39**) at pH 8.0, 25 °C; bottom: CD spectrum of Ac-GPKT(OPO₃Et₂)PPGY-NH₂ (**39**) at pH 8.0, 2 °C. Error bars indicate standard error.

CD spectra of peptides Ac-GPPTxPPGY-NH₂

Figure S16. Top left: CD spectrum of Ac-GPPTPPGY-NH₂ (**40**) at pH 8.0, 25 °C; top right: CD spectrum of Ac-GPPT(OPO_3^{2-})PPGY-NH₂ (**41**) at pH 8.0, 25 °C; bottom left: CD spectrum of Ac-GPPT(OGlcNAc)PPGY-NH₂ (**42**) at pH 8.0, 25 °C and bottom right: CD spectrum of Ac-GPPT(OPO_3Et_2)PPGY-NH₂ (**43**) at pH 8.0, 25 °C. Error bars indicate standard error.


Figure S17. Top left; CD spectra of Ac-GPK*Tx*PPGY-NH₂ peptides at pH 6.5 at 25 °C; Thr: green squares; phosphothreonine: red circles; ThrOGlcNAc: blue diamonds; Thr diethylphosphate: black triangles; top right; CD spectra of Ac-GPK*Tx*PPGY-NH₂ peptides at pH 8.0 at 25 °C; Thr: green squares; phosphothreonine: red circles; ThrOGlcNAc: blue diamonds; Thr diethylphosphate: black triangles; bottom left; CD spectra of Ac-GPK*Tx*PPGY-NH₂ peptides at 2 °C; Thr: light green squares; phosphothreonine: magenta circles; ThrOGlcNAc: light blue diamonds; Thr diethylphosphate: grey triangles; bottom right; CD spectra of Ac-GPK*Tx*PPGY-NH₂ peptides at 2 °C; Thr: light green squares; phosphothreonine: magenta circles; ThrOGlcNAc: light blue diamonds; Thr diethylphosphate: grey triangles; bottom right; CD spectra of Ac-GPP*Tx*PPGY-NH₂ peptides at pH 8.0 at 25 °C; Thr: green squares; phosphothreonine: red circles; ThrOGlcNAc: light blue diamonds; Thr diethylphosphate: grey triangles; bottom right; CD spectra of Ac-GPP*Tx*PPGY-NH₂ peptides at pH 8.0 at 25 °C; Thr: green squares; phosphothreonine: red circles; ThrOGlcNAc: blue diamonds; Thr diethylphosphate: black triangles. Data were collected in 5 mM phosphate buffer containing 25 mM KF.

peptide	[θ] ₂₂₈ , deg cm ² dmol ⁻¹	λ at local [θ] _{max} , nm	local [θ] _{max} , deg cm ² dmol ⁻¹	λat [θ] _{min} , nm	[θ] _{min} , deg cm ² dmol ⁻¹	[θ] ₁₉₀ , deg cm ² dmol ⁻¹	Temp, ℃	рН
Ac-GPPTPPGY-NH ₂	-230	n.a. ^a	n.a.	205	-11243	-3448	25	8
Ac-GPPT(OPO3 ²⁻)PPGY-NH2	272	231	449	206	-16553	-6253	25	8
Ac-GPPT(OGlcNAc)PPGY-NH ₂	-252	232	112	205	-17077	-2234	25	8
Ac-GPPT(OPO ₃ Et ₂)PPGY-NH ₂	-1070	n.a.	n.a.	206	-13342	-3158	25	8
Ac-GPKTPPGY-NH ₂	-184	232	50	204	-10285	-4483	25	8
Ac-GPKT(OPO3 ²⁻)PPGY-NH2	285	229	326	203	-14041	-6134	25	8
Ac-GPKT(OPO3 ^{-/2-})PPGY-NH2	516	230	581	203	-13675	-5736	25	6.5
Ac-GPKT(OGlcNAc)PPGY-NH ₂	-473	n.a.	n.a.	203	-11912	-926	25	8
Ac-GPKT(OPO ₃ Et ₂)PPGY-NH ₂	-781	n.a.	n.a.	205	-6652	-1674	25	8
Ac-GPKTPPGY-NH ₂	183	230	253	203	-13896	-5608	2	8
Ac-GPKT(OPO3 ²⁻)PPGY-NH2	1560	227	1620	203	-15526	-6728	2	8
Ac-GPKT(OGlcNAc)PPGY-NH ₂	296	231	432	205	-15436	-1656	2	8
Ac-GPKT(OPO ₃ Et ₂)PPGY-NH ₂	-569	n.a.	n.a.	205	-10956	-2406	2	8


Table S7. Summary of CD data for model peptides. CD data were collected with 100–200 μ M peptide in 5 mM phosphate buffer (pH 8.0 or 6.5) containing 25 mM KF. ^{*a*} No local maximum was observed.

¹H NMR spectra of all peptides: amide region (stacked spectra) and full spectra of individual peptides.

Analysis of peptides derived from tau₁₇₄₋₁₈₃

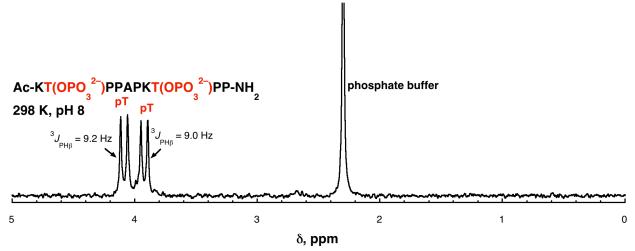
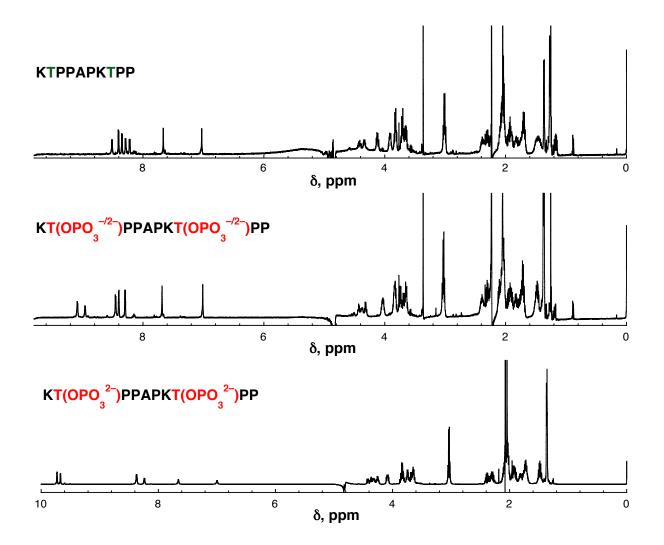


Figure S18. ¹H NMR spectra (amide region) of peptides derived from $tau_{174-183}$. Minor peaks in the NMR spectra are due to the presence of cis amide bonds. pT indicates a phosphorylated threonine residue. eT indicates a diethylphosphorylated (OPO₃Et₂) threonine residue. gT indicates an OGlcNAcylated threonine residue. Tle indicates *tert*-leucine. Peptides were dissolved in 5 mM phosphate buffer (pH 4.0, 6.5, or 8.0) at 298 K and were internally referenced with TSP. Solutions contained 25 mM NaCl, 100 μ M TSP, and 90% H₂O/10% D₂O.


Figure S19. ¹H NMR spectra (amide region) of phosphorylated peptide $tau_{174-183}$ at pH 6.5 (top) and 8 (bottom) at 298 K. Minor peaks in the NMR spectra are due to the presence of cis amide bonds. pT indicates a phosphorylated threonine residue.

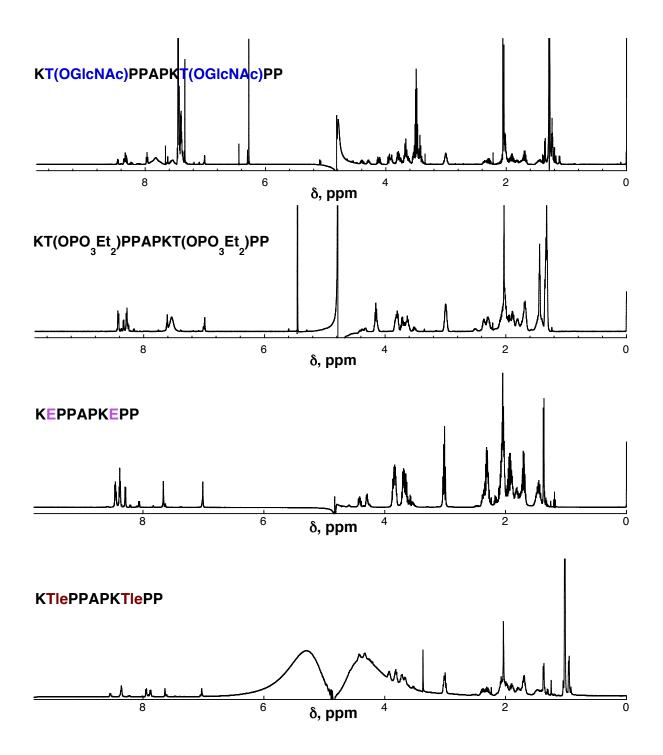
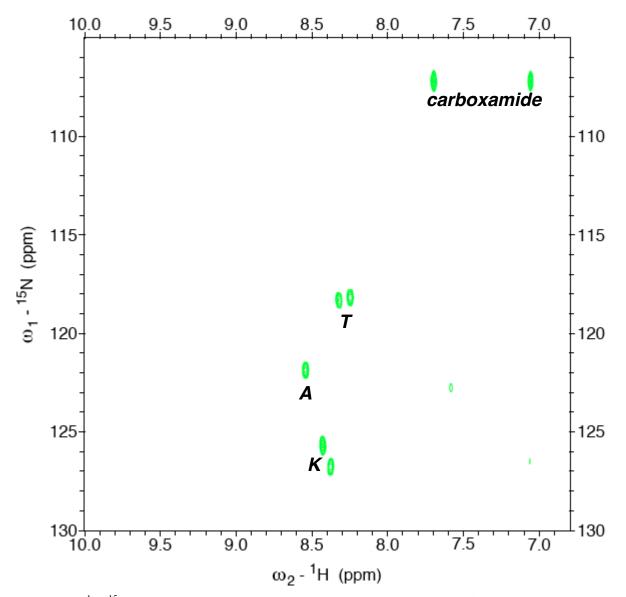
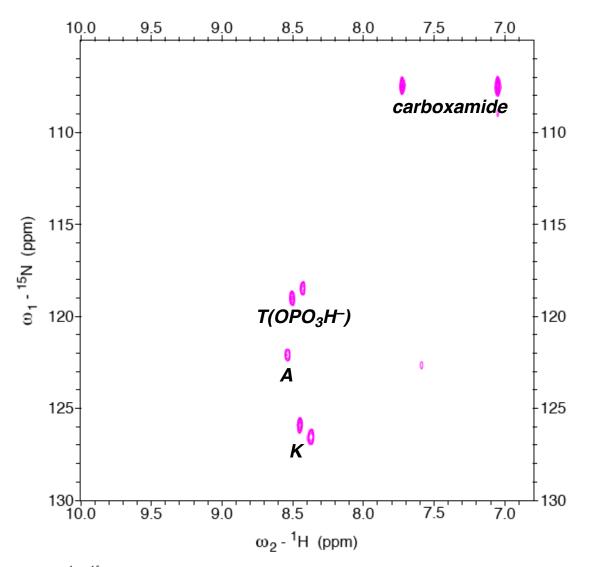
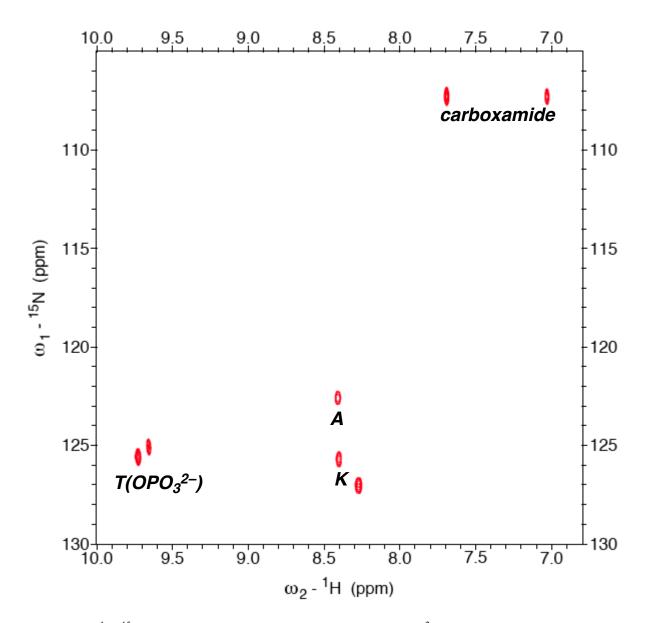

The phosphorylated peptide $tau_{174-183}$ showed unusually slow amide exchange at pH 8.0. All five amide protons corresponding to Thr, Ala, and Lys were observed at pH 8.0.

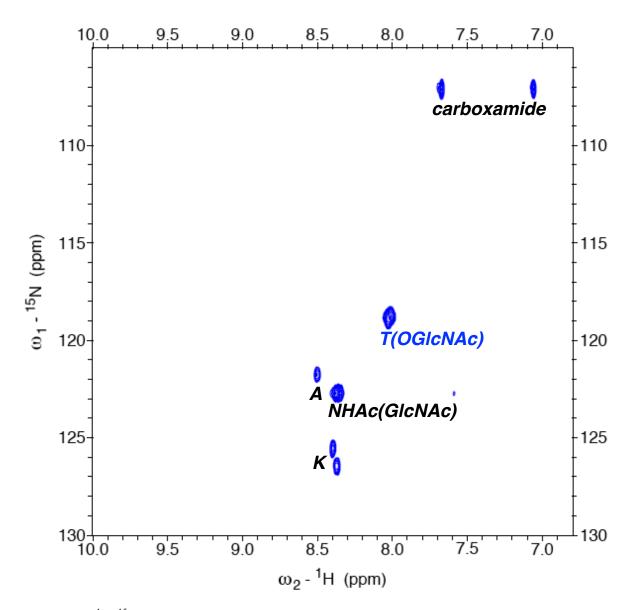
Figure S20. ³¹P NMR spectrum of phosphorylated peptide $tau_{174-183}(OPO_3^{2-})$ at pH 8.0 at 298 K in 5 mM phosphate buffer containing 25 mM NaCl. The NMR spectrum was internally referenced with 85% H₃PO₄ (0 ppm) using a capillary filled with H₃PO₄ located in the NMR tube containing the sample.





peptide	δ, H^N	³ JαN	δ, Ηα	δ, Ηβ	³ <i>J</i> HαHβ
tau _{174–183} (pH 4.0)					
Т	8.22	7.3	4.58	4.11	8.1
Т	8.29	7.3	4.59	4.13	n.d. ^a
К	8.35	6.9	4.33	1.84, 1.77	n.d.
К	8.40	5.5	4.34	1.83, 1.73	n.d.
Α	8.51	6.8	4.59	1.37	n.d.
tau _{174–183} (OPO₃H [¯]) (pH 3.5)					
рТ	8.38	6.7	4.66	4.47	n.d.
рТ	8.45	6.3	4.64	4.47	n.d.
К	8.32	7.0	4.31	1.83, 1.74	n.d.
К	8.49	6.7	4.29	1.84, 1.78	n.d.
A	8.40	5.5	4.57	1.37	n.d.
tau _{174–183} (OPO ₃ ^{-/2–}) (pH 6.5)					
рТ	8.96	4.3	4.51	4.37	n.d.
рТ	9.08	4.2	4.55	4.38	7.6
К	8.29	7.0	4.32	1.83, 1.75	n.d.
К	8.40	5.5	4.32	1.84, 1.78	n.d.
<u>A</u>	8.45	6.8	4.59	1.37	n.d.
tau _{174–183} (OPO ₃ ^{2–}) (pH 8.0)					
рТ	9.68	3.8	4.39	4.26	n.d.
рТ	9.73	3.5	4.37	4.26	n.d.
К	8.23	6.7	4.31	1.81, 1.74	n.d.
К	8.37	n.d.	4.33	1.83, 1.76	n.d.
Α	8.37	n.d.	4.58	1.37	n.d.
tau _{174–183} (OGIcNAc) (pH 4.0)					
gT	7.96	7.5	4.58	4.13	7.4
gT	7.97	7.5	4.58	4.10	n.d.
К	8.33	n.a.	4.28	1.83, 1.75	n.d.
K	8.45	7.0	4.30	1.82, 1.71	n.d.
Α	8.35	5.5	4.57	1.36	n.d.
tau _{174–183} (OPO ₃ Et ₂) (pH 4.0)					
eT	8.28	n.d.	4.87	4.66	n.d.
eT	8.42	n.d.	4.87	4.66	7.1
K	8.28	n.d.	4.33	1.81, 1.71	n.d.
K	8.42	n.d.	4.32	1.82, 1.75	n.d.
<u>A</u>	8.33	5.2	4.57	1.36	n.d.
tau _{174–183} (T175E, T181E) (pH 6.5)					
E	8.37	5.8	4.60	2.30, 2.04	n.d.
E	8.46	6.6	4.59	2.31, 2.04	n.d.
K	8.29	7.1	4.30	1.81, 1.72	n.d.
K	8.44	7.0	4.29	1.82, 1.76	n.d.
A	8.38	7.0	4.59	1.37	n.d.
tau _{174–183} (T175Tle, T181Tle) (pH 4.0)	_			h	
Tle	7.88	7.9	4.58	n.a. ^b	n.d.
Tle	7.95	8.8	4.57	n.a.	n.d.
K	8.35	n.d.	4.32	1.79, 1.70	n.d.
K	8.54	7.4	4.32	n.d.	n.d.
<u>A</u>	8.37	n.d.	4.58	1.36	n.d.


Table S8. Summary of ¹H NMR data for peptides derived from $tau_{174-183}$. Data were collected with 100–200 μ M peptide in 5 mM phosphate buffer (pH 3.5, 4.0, 6.5 or 8) with 25 mM NaCl. pT indicates a phosphorylated threonine residue. eT indicates a diethylphosphorylated (OPO₃Et₂) threonine residue. gT indicates an OGlcNAcylated threonine residue. Tle indicates *tert*-leucine. ^{*a*} n.d. = not determined due to spectral overlap. ^{*b*} n.a. = not applicable.


Figure S21. ¹H-¹⁵N HSQC spectrum of peptide tau_{174–183} at pH 4.0 in 5 mM phosphate buffer containing 25 mM NaCl at 298 K.

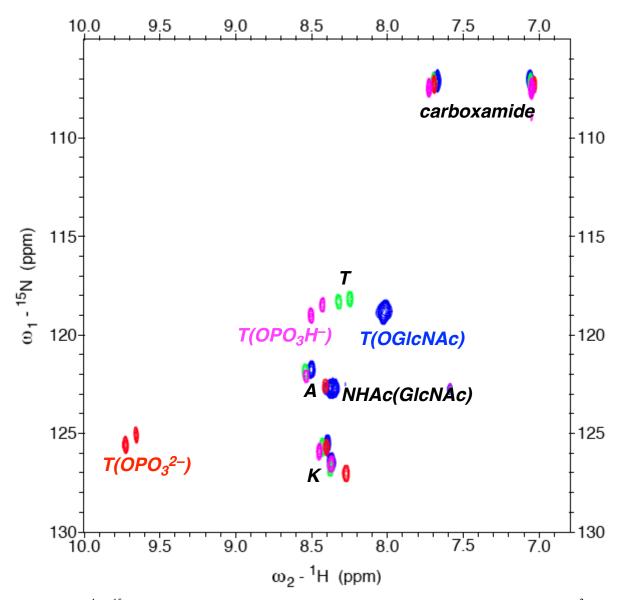
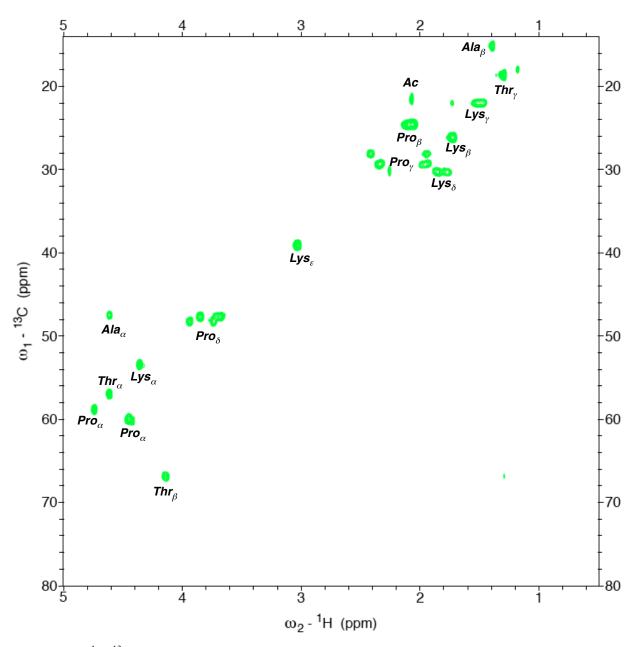
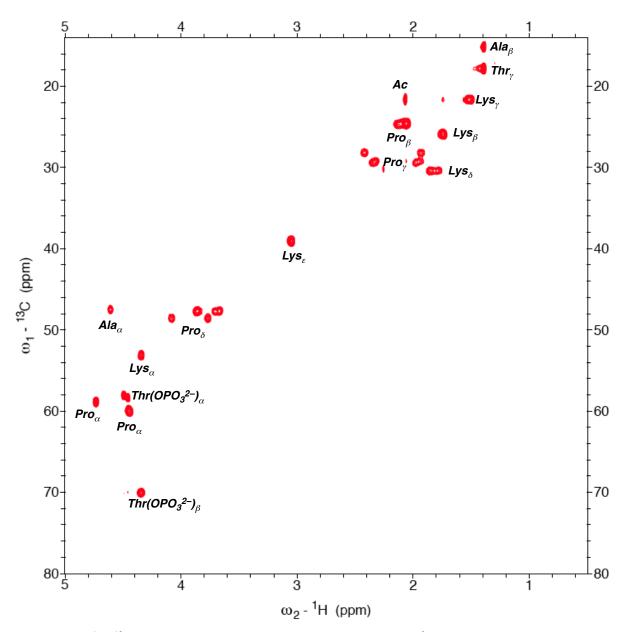
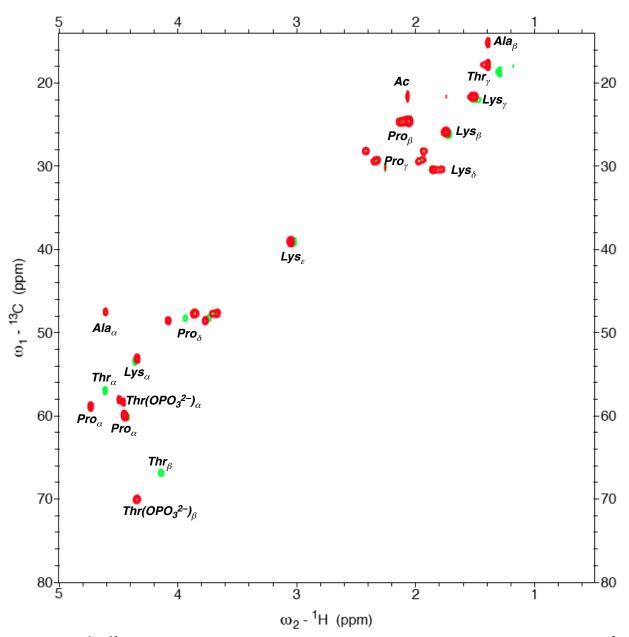

Figure S22. ¹H-¹⁵N HSQC spectrum of peptide $tau_{174-183}(OPO_3H^-)$ at pH 4.0 in 5 mM phosphate buffer containing 25 mM NaCl at 298 K.

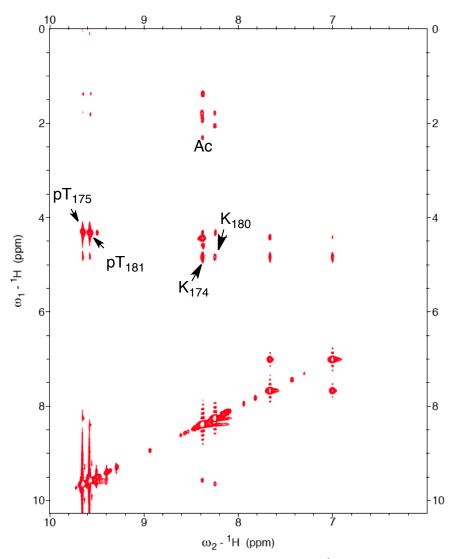
Figure S23. ¹H-¹⁵N HSQC spectrum of peptide $tau_{174-183}(OPO_3^{2-})$ at pH 7.5 in 5 mM phosphate buffer containing 25 mM NaCl at 298 K.

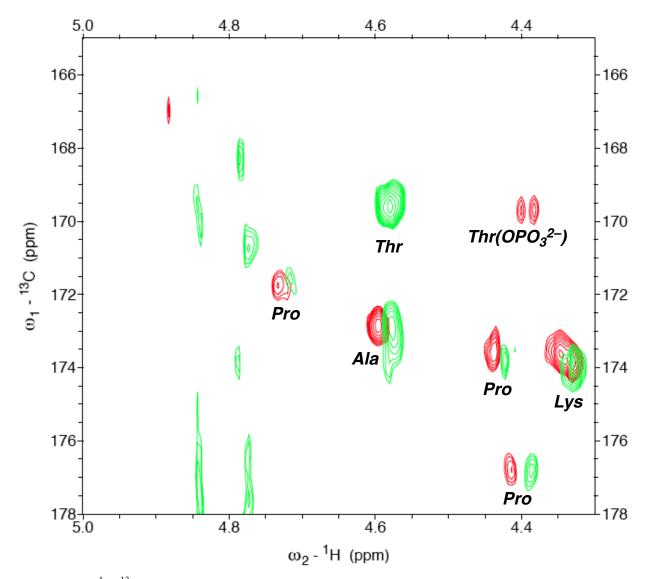

Figure S24. ¹H-¹⁵N HSQC spectrum of peptide tau_{174–183}(OGlcNAc) at pH 4.0 in 5 mM phosphate buffer containing 25 mM NaCl at 298 K.


Figure S25. ¹H-¹⁵N HSQC spectra of peptides $\tan_{174-183}$ at pH 4.0 (green), $\tan_{174-183}(OPO_3^{2-})$ (red), $\tan_{174-183}(OPO_3H^{-})$ (magenta), and $\tan_{174-183}(OGlcNAc)$ (blue) at 298 K. Data were collected with 2–3 mM peptide in 5 mM phosphate buffer (pH 4.0 or 7.5) with 25 mM NaCl.

peptide	Thr _N , ppm	Lys _N , ppm carbo	xamide	pH, Temp
Ac-KTPPAPKTPP-NH ₂	118.2, 118.3	125.7, 126.8	107.2	4.0, 298 K
Ac-KT(OPO3 ^{2–})PPAPKT(OPO3 ^{2–})PP-NH2	125.6, 125.1	125.8, 127.0	107.3	7.5, 298 K
Ac-KT(OPO ₃ H ⁻)PPAPKT(OPO ₃ H ⁻)PP-NH ₂	119.0, 118.5	125.9, 126.6	107.5	4.0, 298 K
Ac-KT(OGlcNAc)PPAPKT(OGlcNAc)PP-NH2	118.8, 118.8	125.5, 126.5	107.1	4.0, 298 K


Table S9. Summary of ${}^{1}\text{H}{}^{15}\text{N}$ HSQC NMR data for peptides derived from tau_{174–183}. Data were collected with 2–3 mM peptide in 5 mM phosphate buffer (pH 4.0 or 7.5) with 25 mM NaCl.


Figure S26. ¹H-¹³C HSQC spectrum of peptides $tau_{174-183}$ at pH 4.0 in 5 mM phosphate buffer with 25 mM NaCl in 100% D₂O at 298 K.


Figure S27. ¹H-¹³C HSQC spectrum of peptides $tau_{174-183}(OPO_3^{2-})$ at pH 8.0 in 5 mM phosphate buffer with 25 mM NaCl in 100% D₂O at 298 K.

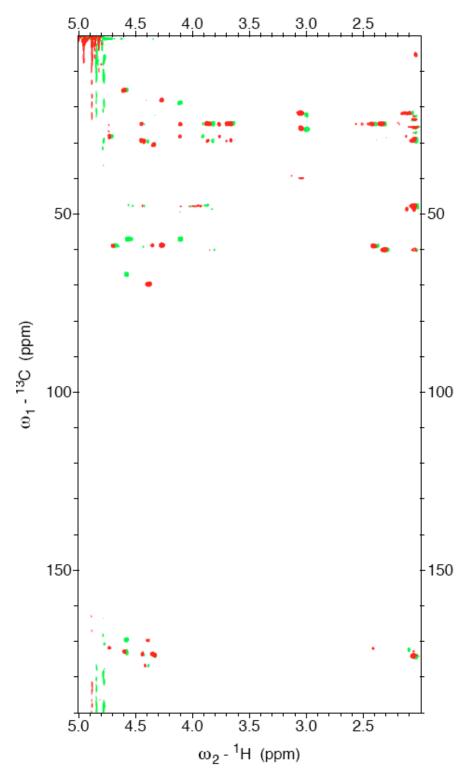

Figure S28. ¹H-¹³C HSQC spectra of peptides $tau_{174-183}$ at pH 4.0 (green) and $tau_{174-183}$ (OPO₃²⁻) (red) at pH 8.0 in 5 mM phosphate buffer with 25 mM NaCl in 100% D₂O at 298 K.

Figure S29. Partial NOESY spectrum of peptide $tau_{174-183}(OPO_3^{2-})$ at pH 8.0 in 5 mM phosphate buffer containing 25 mM NaCl at 298 K.

Figure S30. ¹H-¹³C HMBC spectra (alpha proton region) of peptides $tau_{174-183}$ at pH 4.0 (green) and $tau_{174-183}$ (OPO₃²⁻) (red) at pH 8.0 in 5 mM phosphate buffer with 25 mM NaCl in 100% D₂O at 298 K.

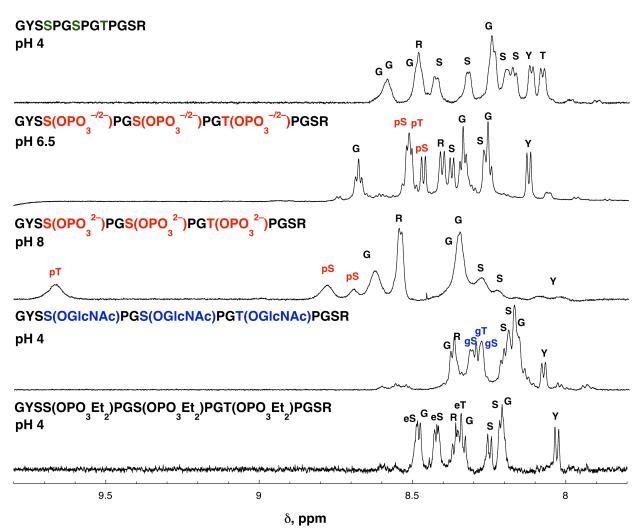


Figure S31. ¹H-¹³C HMBC spectra (full spectra) of peptides $tau_{174-183}$ at pH 4.0 (green) and $tau_{174-183}$ (OPO₃²⁻) (red) at pH 8.0 in 5 mM phosphate buffer with 25 mM NaCl in 100% D₂O at 298 K.

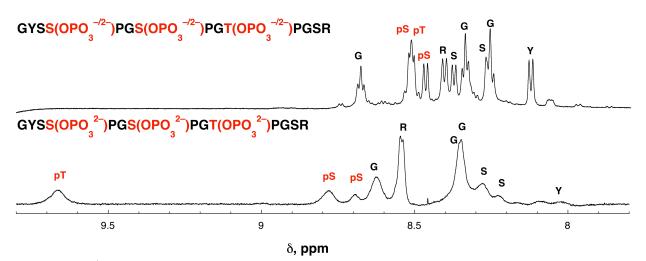

Ac-KTPPAPKTPP-NH ₂		Ac-KpTPPAPKpTPP-NH ₂	
residue	¹³ C δ, ppm	residue	¹³ C δ, ppm
Lys, α	53.4, 53.4	Lys, α	53.1, 53.1
Thr, $lpha$	57.0, 57.0	pThr, $lpha$	58.1, 58.4
Pro, α	58.9, 60.1	Pro, α	58.9, 60.0
Ala, α	47.5	Ala, α	47.5
Thr, β	66.9, 66.9	pThr, β	70.0, 70.0
Pro, δ	47.7, 48.3	Pro, δ	47.7, 48.6
Lys, ε	39.1, 39.1	Lys, ε	39.1, 39.1
Pro, γ	28.1, 28.1	Pro, γ	28.2, 28.2
Lys, β	30.4, 30.4	Lys, β	30.5, 30.5
Pro, β	29.4, 29.4	Pro, β	29.3, 29.3
Lys, γ	26.2. 26.2	Lys, γ	25.9, 25.9
Lys, δ	22.1, 22.1	Lys, δ	21.7, 21.7
Ala, β	15.2	Ala, β	15.2
Thr, γ	18.7, 18.7	pThr, γ	17.8, 17.8
Lys, CO	174.1, 174.1	Lys, CO	173.6, 173.9
Thr, CO	169.6, 169.6	pThr, CO	169.7, 169.7
	176.9, 173.8,		176.8, 173.6,
Pro, CO	n.d. ^a	Pro, CO	171.8
Ala, CO	172.9	Ala, CO	172.9
Ac, CO	174.2	Ac, CO	174.0

Table S10. Summary of ¹H-¹³C HSQC NMR data for peptides $tau_{174-183}$ at pH 4.0 and $tau_{174-183}(OPO_3^{2-})$ at pH 8.0, 298 K. Data were collected with 2–3 mM peptide in 5 mM phosphate buffer with 25 mM NaCl. pThr indicates a phosphorylated threonine residue. ^{*a*} n.d. indicates not determined because peak is in the H₂O peak.

Analysis of peptides derived from tau₁₉₆₋₂₀₉

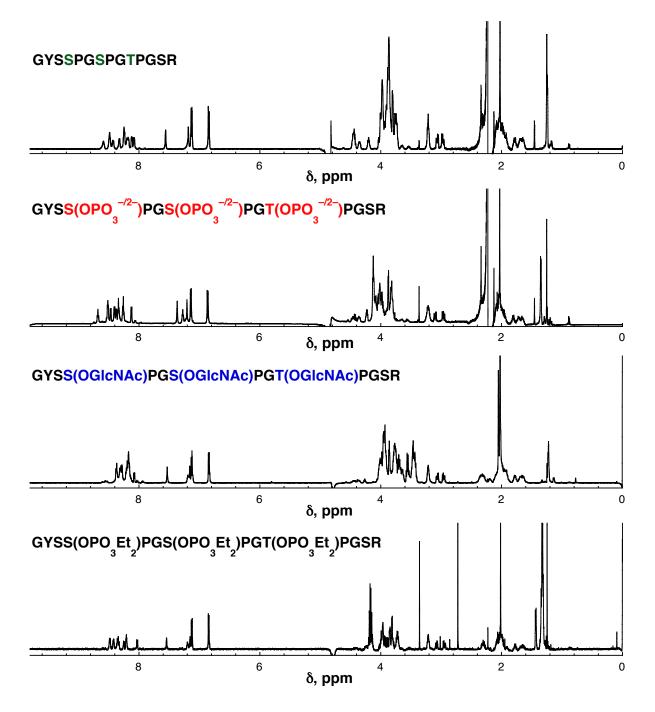
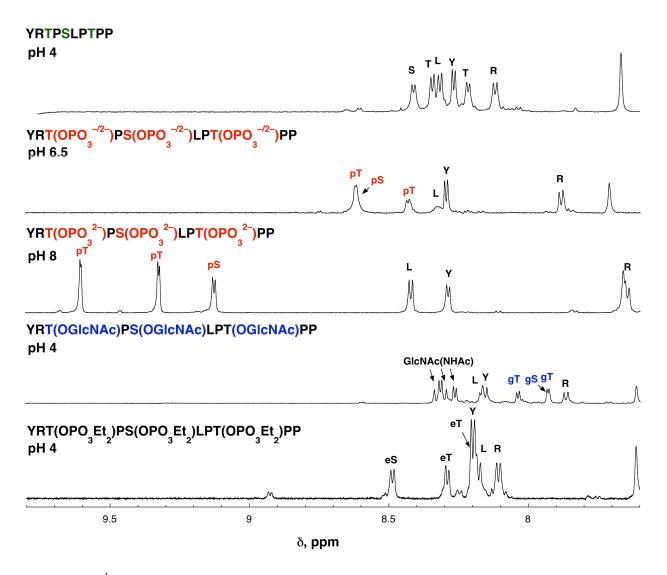


Figure S32. ¹H NMR spectra (amide region) of peptides derived from $tau_{196-209}$. Minor peaks in the NMR spectra are due to the presence of cis amide bonds. Peptides were dissolved in 5 mM phosphate buffer (pH 4.0, 6.5, or 8.0) and were internally referenced with TSP. Solutions contained 25 mM NaCl, 100 μ M TSP, and 90% H₂O/10% D₂O. pS or pT indicates a phosphorylated serine or threonine residue. eS or eT indicates a diethylphosphorylated (OPO₃Et₂) serine or threonine residue. gS or gT indicates an OGlcNAcylated serine or threonine residue.

Figure S33. ¹H NMR spectra (amide region) of phosphorylated peptide $tau_{196-209}$ at pH 6.5 (top) and pH 8.0 (bottom). Peptides were dissolved in 5 mM phosphate buffer and were internally referenced with TSP. Solutions contained 25 mM NaCl, 100 μ M TSP, and 90% H₂O/10% D₂O. Minor peaks in the NMR spectra are due to the presence of cis amide bonds. pS or pT indicates a phosphorylated serine or threonine residue.

The phosphorylated peptide $tau_{196-209}$ showed broad amide peaks indicative of faster amide proton exchange rates at pH 8.0 compared to pH 6.5. This observation is in contrast to other phosphorylated tau peptide, which showed more resolved amide protons at pH 8.0 and than at pH 6.5, suggesting less ordered structure seen in these glycine-rich peptides, which did not exhibit PPII structure, than in the other tau peptides investigated. Nonetheless, the amide protons were still observed at higher pH for phosphorylated peptide $tau_{196-209}$. Full ¹H NMR spectra of peptides derived from tau₁₉₆₋₂₀₉



peptide	δ, Η ^Ν	³ J αΝ	δ, Ηα	δ, Ηβ
tau _{196–209} (pH 4.0)	,		,	, <u> </u>
G	8.47	n.d. ^b	3.96	n.a. ^a
G	8.47	n.d.	3.96	n.a.
G	8.57	n.d.	3.98	n.a.
G	8.57	n.d.	3.98	n.a.
Υ	8.11	6.3	4.60	3.06, 2.97
S	8.18	5.8	4.43	3.88, 3.87
S	8.18	5.8	4.43	3.88, 3.87
S	8.23	5.8	4.45	3.85, 3.79
S	8.23	5.8	4.45	3.85, 3.79
Т	8.07	7.2	4.63	4.19
R	8.41	5.9	4.34	1.90, 1.77
tau _{196–209} (OPO ₃ ^{-/2–}) (pH 6.5)				
G	8.24	n.d.	3.86	n.a.
G	8.32	n.d.	3.99	n.a.
G	8.32	n.d.	3.99	n.a.
G	8.66	n.d.	4.00	n.a.
Y	8.11	7.3	4.62	3.09, 2.95
S	8.25	n.d.	4.68	n.d.
S	8.36	6.5	4.92	4.11
pS	8.45	7.3	4.69	4.22, 4.10
pS	8.49	5.5	4.90	4.22, 4.11
рТ	8.50	4.4	4.53	n.d.
R	8.39	7.7	4.34	1.96, 1.80
tau _{196–209} (OPO ₃ ^{2–}) (pH 8.0)				
G	8.29	n.d.		
G	8.35	n.d.		
G	8.35	n.d.		
G	8.63	n.d.		
Y	8.06	n.d.		
S S	8.23	n.d.		
	8.28	n.d.		
pS	8.69	n.d.		
pS	8.78	n.d.		
рТ	9.67	n.d.		
R	8.54	n.d.		
tau _{196–209} (OGIcNAc) (pH 4.0)				
G	8.21	n.d.	3.86	n.a.
G	8.28	n.d.	3.95	n.a.
G	8.37	n.d.	4.00	n.a.
G	8.61	n.d.	3.96	n.a.
Y	8.08	7.0	4.61	3.06, 2.97

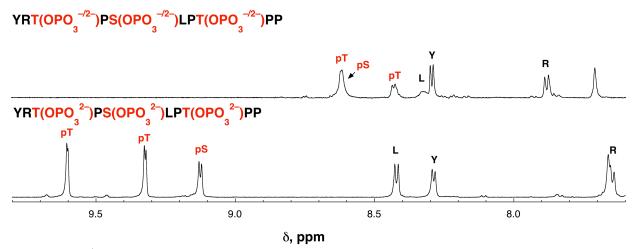

S	8.16	n.d.	4.57	3.69, 3.56
S	8.19	n.d.	4.69	
gS	8.18	n.d.	4.59	3.72, 3.57
gS	8.28	n.d.	4.57	3.64, 3.55
gT	8.19	n.d.	4.70	4.27
R	8.37	6.8	8.31	1.93, 1.78
tau _{196–209} (OPO ₃ Et ₂) (pH 4.0)				
G	8.21	n.d.	3.85	n.a.
G	8.34	n.d.	3.99	n.a.
G	8.42	n.d.	3.98	n.a.
G	8.47	n.d.	3.96	n.a.
Y	8.03	7.3	4.63	3.08, 2.96
S	8.22	n.d.	4.45	3.85
S	8.25	7.6	4.49	3.82
eT	8.43	n.d.	4.91	n.d.
eS	8.48	n.d.	4.99	4.39, 4.26
eS	8.36	n.d.	5.04	4.40, 4.24
<u>R</u>	8.42	n.d.	4.35	1.93, 1.79

Table S11. Summary of ¹H NMR data for peptides derived from $tau_{196-209}$. Data were collected with 100–200 μ M peptide in 5 mM phosphate buffer with 25 mM NaCl. pS or pT indicates a phosphorylated serine or threonine residue. eS or eT indicates a diethylphosphorylated (OPO₃Et₂) serine or threonine residue. gS or gT indicates an OGlcNAcylated serine or threonine residue. ^{*a*} n.a. = not applicable. ^{*b*} n.d. = not determined due to spectral overlap or exchange broadening.

Analysis of peptides derived from tau₂₁₁₋₂₁₉

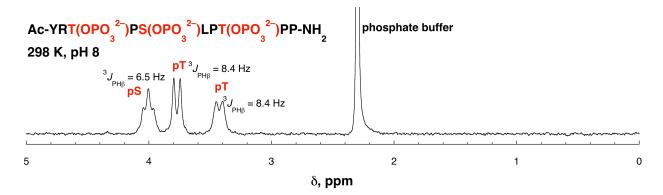


Figure S34. ¹H NMR spectra (amide region) of peptides derived from $tau_{211-219}$. Minor peaks in the NMR spectra are due to the presence of cis amide bonds. Peptides were dissolved in 5 mM phosphate buffer (pH 4.0, 6.5, or 8.0) and were internally referenced with TSP. Solutions contained 25 mM NaCl, 100 μ M TSP, and 90% H₂O/10% D₂O. pS or pT indicates a phosphorylated serine or threonine residue. eS or eT indicates a diethylphosphorylated (OPO₃Et₂) serine or threonine residue. gS or gT indicates an OGlcNAcylated serine or threonine residue.

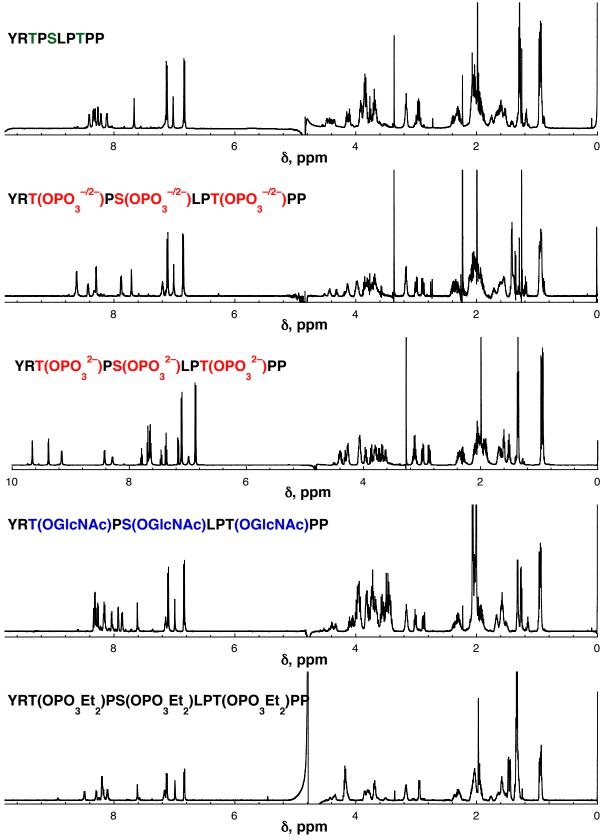
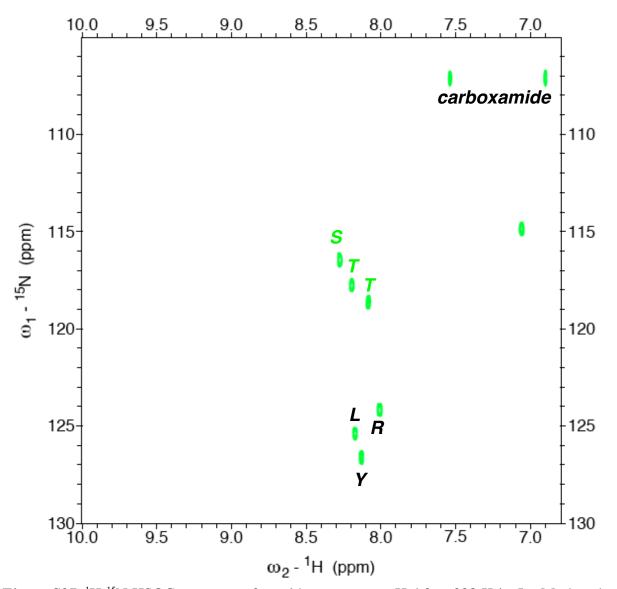
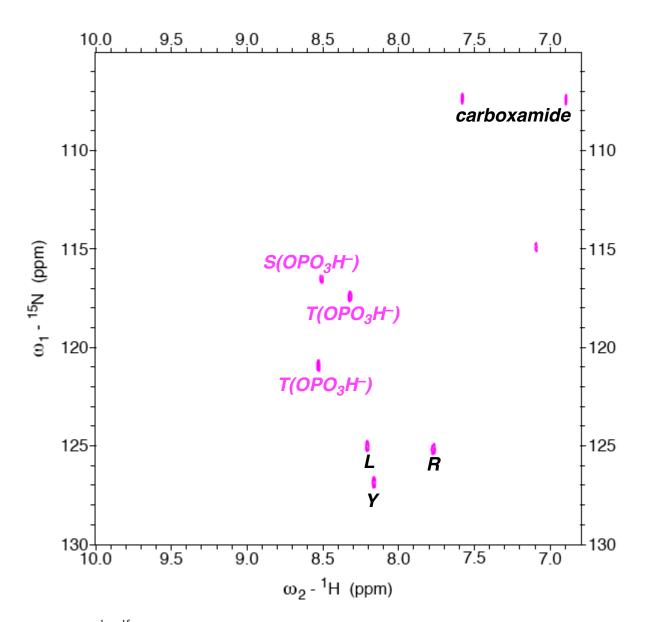


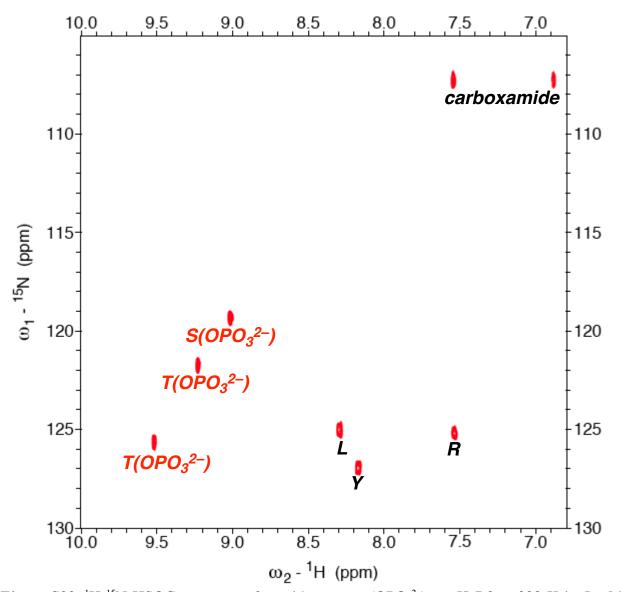
Figure S35. ¹H NMR spectra (amide region) of phosphorylated peptide $tau_{211-219}$ at pH 6.5 (top) and 8 (bottom). Minor peaks in the NMR spectra are due to the presence of cis amide bonds. Peptides were dissolved in 5 mM phosphate buffer and were internally referenced with TSP. Solutions contained 25 mM NaCl, 100 μ M TSP, and 90% H₂O/10% D₂O. pS or pT indicates a phosphorylated serine or threonine residue.

As observed previously for phosphorylated peptide $tau_{174-183}$, the amide protons were observed to be in slow exchange and were more resolved at pH 8.0 compared to pH 6.5.


Figure S36. ³¹P NMR spectrum of phosphorylated peptide $tau_{211-219}$ at pH 8.0, 298 K in 5 mM phosphate buffer containing 25 mM NaCl. The NMR spectrum was internally referenced with 85% H₃PO₄ (0 ppm) using a capillary filled with H₃PO₄ located in the NMR tube containing the sample.


Full ¹H NMR spectra of peptides derived from tau₂₁₁₋₂₁₉

tau ₂₁₁₋₂₁₉ (pH 4.0) Y 8.26 6.3 4.48 2.96, 2.96 R 8.12 7.7 4.37 1.75, 1.66 T 8.21 6.4 4.48 4.15 S 8.41 6.5 4.44 3.85, 3.85 L 8.32 7.1 4.68 1.06 T 8.34 7.0 4.55 4.11 7.0 tau ₂₁₁₋₂₁₉ (OPO ₃ H7) (pH 4.0) Y 8.27 6.4 4.42 2.99, 2.88 R 7.87 8.0 4.30 1.70, 1.61 pT pT 8.39 6.6 4.65 4.49 n.d. L 8.31 7.4 4.69 1.11 n.d. Tau_211-219(OPO ₃ -72) (pH 6.5) Y 8.29 6.3 4.44 3.00, 2.89 R 7.88 8.0 4.32 1.72, 1.63 n.d. pT 8.29 6.3 4.44 3.00, 2.89 R. Q5 8.29 6.3	peptide	δ, Η ^Ν	³ JαN	δ, Ηα	δ, Ηβ	³ <i>J</i> HαHβ
Y8.266.34.482.96, 2.96R8.127.74.371.75, 1.66T8.216.44.484.15S8.416.54.443.85, 3.85L8.327.14.681.69T8.347.04.554.117.0tau211-219(OPO_3HT) (pH 4.0)7.878.04.301.70, 1.61Y8.276.44.422.99, 2.88R7.878.04.301.70, 1.61pT8.396.64.654.49nd8.574.54.49n.d.pS8.574.54.491.67, 1.58pT8.586.74.544.11n.d.tau211-219(OPO_3^-72) (pH 6.5)78.586.74.544.11Y8.296.34.443.00, 2.89R7.888.04.321.72, 1.63n.d.pT8.62n.d.n.d.n.d.n.d.pS8.62n.d.n.d.n.d.n.d.pS8.62n.d.n.d.n.d.n.d.pS8.62n.d.1.4442.99, 2.89n.d.pS9.65n.d.4.271.68, 1.52n.d.pT9.393.74.414.28n.d.pS9.175.54.701.70, 1.61n.d.pS9.175.54.701.70, 1.61n.d.pS9.175.34.60		-)		-,	-, -,	<u> </u>
R 8.12 7.7 4.37 1.75, 1.66 T 8.21 6.4 4.48 4.15 S 8.41 6.5 4.44 3.85, 3.85 L 8.32 7.1 4.68 1.69 T 8.34 7.0 4.55 4.11 7.0 tuz1::216(OPO_3H) (pH 4.0) Y 8.27 6.4 4.42 2.99, 2.88 R 7.87 8.0 4.30 1.70, 1.61 pT pT 8.39 6.6 4.65 4.49 n.d. pS 8.57 4.5 4.41 n.d. n.d. pS 8.57 4.5 4.49 n.d. n.d. pS 8.57 4.5 4.49 n.d. n.d. pS 8.57 4.54 4.11 n.d. n.d. pS 8.57 4.54 4.11 n.d. n.d. pS 8.62 n.d. 4.22 1.72, 1.63 n.d. p.d. pS 8.62 n.d. d.1 n.d. n.d. n.d. <td< td=""><td></td><td>8.26</td><td>6.3</td><td>4.48</td><td>2.96, 2.96</td><td></td></td<>		8.26	6.3	4.48	2.96, 2.96	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					-	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
T 8.34 7.0 4.55 4.11 7.0 tau ₂₁₁₋₂₁₉ (OPO ₃ H) (pH 4.0) % <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Т					7.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	tau ₂₁₁₋₂₁₉ (OPO ₃ H ⁻) (pH 4.0)					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		8.27	6.4	4.42	2.99, 2.88	
pT 8.39 6.6 4.65 4.49 n.d. pS 8.57 4.5 4.49 4.11, 4.11 n.d. L 8.31 7.4 4.69 1.67, 1.58 pT 8.58 6.7 4.54 4.11 n.d. tau211-219(OPO3 ⁻⁷²⁻) (pH 6.5) Y 8.29 6.3 4.44 3.00, 2.89 R 7.88 8.0 4.32 1.72, 1.63 pS 8.62 n.d. 4.53 4.14, 4.14 L 8.32 n.d. n.d. n.d. pS 8.62 2.9 4.53 4.53 n.d. pT 8.62 2.9 4.53 4.53 n.d. pS 9.17 5.5 4.42 4.09	R				-	
pS 8.57 4.5 4.49 4.11, 4.11 n.d. L 8.31 7.4 4.69 1.67, 1.58 pT 8.58 6.7 4.54 4.11 n.d. tau ₂₁₁₋₂₁₉ (OPO ₃ ⁻⁷²) (pH 6.5)	Τq	8.39				n.d.
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	•				4.11, 4.11	
pT 8.58 6.7 4.54 4.11 n.d. tau211-219(OPO3 ⁻⁷²) (pH 6.5)						
tau 211-219(OPO3 -72) (pH 6.5)Y8.296.34.443.00, 2.89R7.888.04.321.72, 1.63pT8.425.94.684.53n.d.pS8.62n.d.4.534.14, 4.14L8.32n.d.n.d.n.d.pT8.622.94.534.53n.d.pT8.622.94.534.53n.d.tau 211-219(OPO32)7.65n.d.4.271.68, 1.52PT9.393.74.414.28n.d.pS9.175.54.424.09, 3.97n.d.L8.447.54.701.70, 1.61pT9.663.14.304.30n.d.tau 211-219(OGIcNAc) (pH 4.0)7.934.24.344.06Y8.266.14.322.91, 2.77R7.868.34.267.934.2gT7.934.24.344.06n.d.gS8.157.84.543.54, 3.43n.d.L8.175.34.69n.d.gT8.035.74.534.116.6tau 211-219(OPO3Et2) (pH 4.0)8.197.04.4824.478.0Y8.197.04.4824.478.0gS8.197.04.4824.478.0eS8.487.34.624.35, 4.35n.d.L8.19 <td>рТ</td> <td></td> <td></td> <td></td> <td></td> <td>n.d.</td>	рТ					n.d.
Y8.296.34.443.00, 2.89R7.888.04.321.72, 1.63pT8.425.94.684.53n.d.pS8.62n.d. ^d 4.534.14, 4.14L8.32n.d.n.d.n.d.pT8.622.94.534.53n.d.pT8.622.94.534.53n.d.tau ₂₁₁₋₂₁₉ (OPO ₃ ²) (pH 8.0)Y8.296.14.442.99, 2.89R7.65n.d.4.271.68, 1.52pT9.393.74.414.28n.d.pS9.175.54.424.09, 3.97n.d.L8.447.54.701.70, 1.61pT9.663.14.304.30n.d.tau ₂₁₁₋₂₁₉ (OGIcNAc) (pH 4.0)Y8.266.14.322.91, 2.77R7.868.34.26GGgT7.934.24.344.06n.d.gS8.157.84.543.54, 3.43n.d.L8.175.34.69n.d.gT8.035.74.534.116.6tau ₂₁₁₋₂₁₉ (OPO ₃ Et ₂) (pH 4.0)Y8.197.04.824.478.0eT8.107.74.37es4.574.35n.d.L8.187.74.71n.d.5.74.531.416.6	· · · · · · · · · · · · · · · · · · ·	0.00	0.1			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		8 29	63	4 44	3 00 2 89	
pT 8.42 5.9 4.68 4.53 n.d. pS 8.62 n.d. 4.53 4.14, 4.14 114 L 8.32 n.d. n.d. n.d. n.d. pT 8.62 2.9 4.53 4.14, 4.14 114 L 8.32 n.d. n.d. n.d. n.d. pT 8.62 2.9 4.53 4.53 n.d. tau211-219(OPO3 ²) (pH 8.0) Y 8.29 6.1 4.44 2.99, 2.89 R 7.65 n.d. 4.27 1.68, 1.52 12 pT 9.39 3.7 4.41 4.28 n.d. pS 9.17 5.5 4.42 4.09, 3.97 n.d. L 8.44 7.5 4.70 1.70, 1.61 170 pT 9.66 3.1 4.30 4.30 n.d. gT 7.86 8.3 4.26 1.4.32 2.91, 2.77 R 7.86 8.3 4.26 1.4.32 2.91, 2.77 R 7.86 8.3 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
pS 8.62 n.d. ^a 4.53 4.14, 4.14 L 8.32 n.d. n.d. n.d. pT 8.62 2.9 4.53 4.53 n.d. tau ₂₁₁₋₂₁₉ (OPO ₃ ²) (pH 8.0) Y 8.29 6.1 4.44 2.99, 2.89 R 7.65 n.d. 4.27 1.68, 1.52 p pT 9.39 3.7 4.41 4.28 n.d. pS 9.17 5.5 4.42 4.09, 3.97 n.d. L 8.44 7.5 4.70 1.70, 1.61 p pT 9.66 3.1 4.30 4.30 n.d. tau ₂₁₁₋₂₁₉ (OGIcNAc) (pH 4.0) Y 8.26 6.1 4.32 2.91, 2.77 R 7.86 8.3 4.26 g g 1.4.30 4.06 n.d. gS 8.15 7.86 8.3 4.26 g 1.4.32 2.91, 2.77 R 7.93 4.2 4.34 4.06 n.d. 1.6.6 1.4.32 2.91, 2.77 R 8.15 <						n d
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						ind.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-					
Tau $_{211-219}(OPO_3^{2^-})$ (pH 8.0)Y8.296.14.442.99, 2.89R7.65n.d.4.271.68, 1.52pT9.393.74.414.28n.d.pS9.175.54.424.09, 3.97n.d.L8.447.54.701.70, 1.61pT9.663.14.304.30n.d.tau $_{211-219}(OGicNAc)$ (pH 4.0)Y8.266.14.322.91, 2.77R7.868.34.26gTgT7.934.24.344.06n.d.gS8.157.84.543.54, 3.43n.d.gT8.035.74.534.116.6tau $_{211-219}(OPO_3Et_2)$ (pH 4.0)Y8.197.04.492.96, 2.96R6.14.324.378.0gT8.197.04.824.478.08.187.74.71n.d.	—					n.d.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.02				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		8.29	6.1	4.44	2.99, 2.89	
pT 9.39 3.7 4.41 4.28 n.d. pS 9.17 5.5 4.42 4.09, 3.97 n.d. L 8.44 7.5 4.70 1.70, 1.61 nd. pT 9.66 3.1 4.30 4.30 n.d. tau ₂₁₁₋₂₁₉ (OGIcNAc) (pH 4.0) Y 8.26 6.1 4.32 2.91, 2.77 R 7.86 8.3 4.26 9	R					
pS 9.17 5.5 4.42 4.09, 3.97 n.d. L 8.44 7.5 4.70 1.70, 1.61 1.70, 1.61 pT 9.66 3.1 4.30 4.30 n.d. tau_211-219(OGIcNAc) (pH 4.0) Y 8.26 6.1 4.32 2.91, 2.77 R 7.86 8.3 4.26 90 1.00 1.00 1.00 gT 7.86 8.3 4.26 90 1.00						n.d.
L 8.44 7.5 4.70 1.70, 1.61 pT 9.66 3.1 4.30 4.30 n.d. tau ₂₁₁₋₂₁₉ (OGIcNAc) (pH 4.0) Y 8.26 6.1 4.32 2.91, 2.77 R 7.86 8.3 4.26 gT 7.93 4.2 4.34 4.06 n.d. gS 8.15 7.8 4.54 3.54, 3.43 n.d. L 8.17 5.3 4.69 n.d. gT 8.03 5.7 4.53 4.11 6.6 tau ₂₁₁₋₂₁₉ (OPO ₃ Et ₂) (pH 4.0) Y 8.19 7.0 4.49 2.96, 2.96 R 8.10 7.7 4.37 eT 8.19 7.0 4.82 4.47 8.0 eS 8.48 7.3 4.62 4.35, 4.35 n.d. L 8.18 7.7 4.71 n.d.	•					
pT9.663.14.304.30n.d.tau_211-219(OGIcNAc) (pH 4.0)8.266.14.322.91, 2.77R7.868.34.2691gT7.934.24.344.06n.d.gS8.157.84.543.54, 3.43n.d.L8.175.34.69n.d.gT8.035.74.534.116.6tau_211-219(OPO_3Et_2) (pH 4.0)7.74.371Y8.197.04.492.96, 2.96R8.107.74.371eT8.197.04.824.478.0eS8.487.34.624.35, 4.35n.d.L8.187.74.71n.d.1						
tau $_{211-219}$ (OGIcNAc) (pH 4.0)Y8.266.14.322.91, 2.77R7.868.34.26gT7.934.24.344.06n.d.gS8.157.84.543.54, 3.43n.d.L8.175.34.69n.d.gT8.035.74.534.116.6tau $_{211-219}$ (OPO $_3Et_2$) (pH 4.0)8.197.04.492.96, 2.96R8.107.74.37eT8.197.04.824.478.0eS8.487.34.624.35, 4.35n.d.L8.187.74.71n.d.	τq					n.d.
Y 8.26 6.1 4.32 2.91, 2.77 R 7.86 8.3 4.26 gT 7.93 4.2 4.34 4.06 n.d. gS 8.15 7.8 4.54 3.54, 3.43 n.d. L 8.17 5.3 4.69 n.d. gT 8.03 5.7 4.53 4.11 6.6 tau ₂₁₁₋₂₁₉ (OPO ₃ Et ₂) (pH 4.0) Y 8.19 7.0 4.49 2.96, 2.96 R 8.10 7.7 4.37 6.0 6.0 eT 8.19 7.0 4.82 4.47 8.0 eS 8.48 7.3 4.62 4.35, 4.35 n.d. L 8.18 7.7 4.71 n.d.						
R 7.86 8.3 4.26 gT 7.93 4.2 4.34 4.06 n.d. gS 8.15 7.8 4.54 3.54, 3.43 n.d. L 8.17 5.3 4.69 n.d. gT 8.03 5.7 4.53 4.11 6.6 tau ₂₁₁₋₂₁₉ (OPO ₃ Et ₂) (pH 4.0) Y 8.19 7.0 4.49 2.96, 2.96 R 8.10 7.7 4.37 - - - eT 8.19 7.0 4.82 4.47 8.0 eS 8.48 7.3 4.62 4.35, 4.35 n.d. L 8.18 7.7 4.71 n.d.		8.26	6.1	4.32	2.91, 2.77	
gT 7.93 4.2 4.34 4.06 n.d. gS 8.15 7.8 4.54 3.54, 3.43 n.d. L 8.17 5.3 4.69 n.d. gT 8.03 5.7 4.53 4.11 6.6 tau ₂₁₁₋₂₁₉ (OPO ₃ Et ₂) (pH 4.0) Y 8.19 7.0 4.49 2.96, 2.96 R 8.10 7.7 4.37 6.0 eT 8.19 7.0 4.82 4.47 8.0 eS 8.48 7.3 4.62 4.35, 4.35 n.d. L 8.18 7.7 4.71 n.d.	R					
gS 8.15 7.8 4.54 3.54, 3.43 n.d. L 8.17 5.3 4.69 n.d. gT 8.03 5.7 4.53 4.11 6.6 tau ₂₁₁₋₂₁₉ (OPO ₃ Et ₂) (pH 4.0) Y 8.19 7.0 4.49 2.96, 2.96 R 8.10 7.7 4.37 eT 8.19 7.0 4.82 4.47 8.0 eS 8.48 7.3 4.62 4.35, 4.35 n.d. L 8.18 7.7 4.71 n.d.	gT				4.06	n.d.
L 8.17 5.3 4.69 n.d. gT 8.03 5.7 4.53 4.11 6.6 tau ₂₁₁₋₂₁₉ (OPO ₃ Et ₂) (pH 4.0) Y 8.19 7.0 4.49 2.96, 2.96 R 8.10 7.7 4.37 eT 8.19 7.0 4.82 4.47 8.0 eS 8.48 7.3 4.62 4.35, 4.35 n.d. L 8.18 7.7 4.71 n.d.	-					
gT8.035.74.534.116.6tau_211-219(OPO_3Et_2) (pH 4.0)8.197.04.492.96, 2.96R8.107.74.37-eT8.197.04.824.478.0eS8.487.34.624.35, 4.35n.d.L8.187.74.71n.d.	-	8.17				
tau211-219(OPO3Et2) (pH 4.0)Y8.197.04.492.96, 2.96R8.107.74.37eT8.197.04.824.478.0eS8.487.34.624.35, 4.35n.d.L8.187.74.71n.d.	gT					6.6
Y8.197.04.492.96, 2.96R8.107.74.37eT8.197.04.824.478.0eS8.487.34.624.35, 4.35n.d.L8.187.74.71n.d.						
R8.107.74.37eT8.197.04.824.478.0eS8.487.34.624.35, 4.35n.d.L8.187.74.71n.d.		8.19	7.0	4.49	2.96, 2.96	
eT8.197.04.824.478.0eS8.487.34.624.35, 4.35n.d.L8.187.74.71n.d.	R					
eS 8.48 7.3 4.62 4.35, 4.35 n.d. L 8.18 7.7 4.71 n.d.	еТ				4.47	8.0
L 8.18 7.7 4.71 n.d.						
		8.18				
			6.8	4.74		n.d.


Table S12. Summary of ¹H NMR data for peptides derived from $tau_{211-219}$. Data were collected with 100–200 μ M peptide in 5 mM phosphate buffer with 25 mM NaCl. pS or pT indicates a phosphorylated serine or threonine residue. eS or eT indicates a diethylphosphorylated (OPO₃Et₂) serine or threonine residue. gS or gT indicates an OGlcNAcylated serine or threonine residue.^{*a*} n.d. = not determined due to spectral overlap.

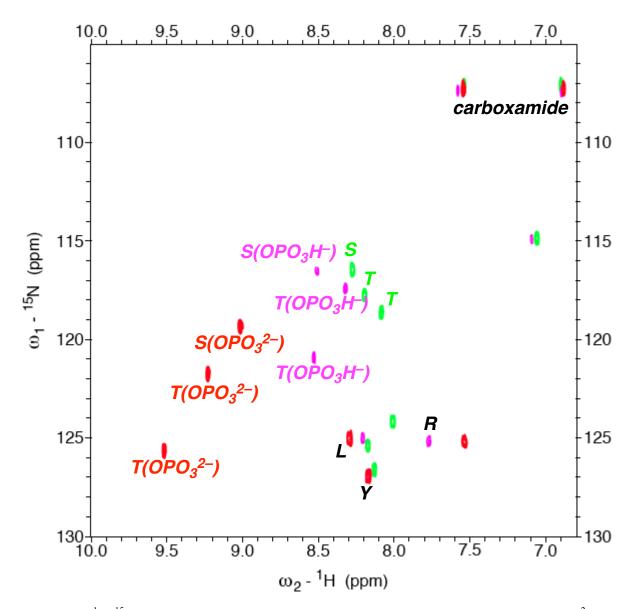
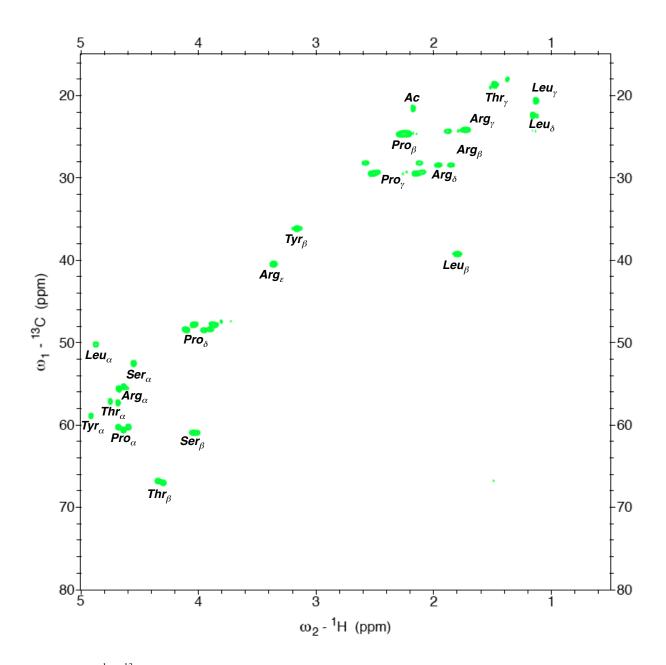
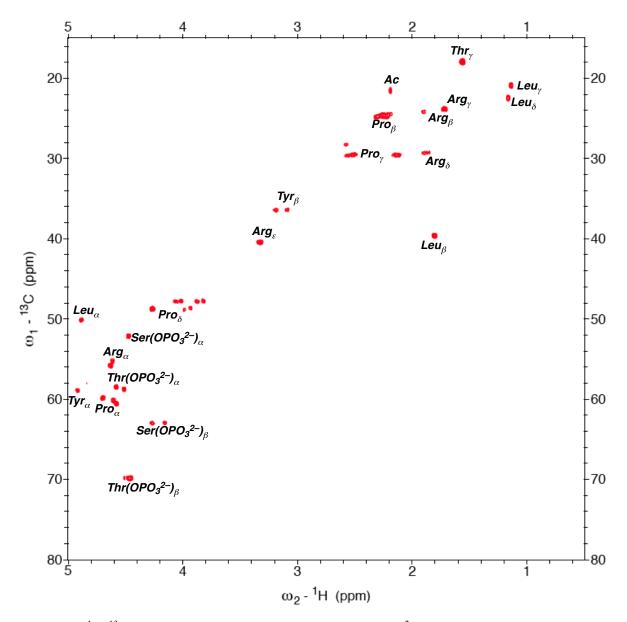

Figure S37. ¹H-¹⁵N HSQC spectrum of peptide tau₂₁₁₋₂₁₉ at pH 4.0 at 298 K in 5 mM phosphate buffer containing 25 mM NaCl.

Figure S38. ¹H-¹⁵N HSQC spectrum of peptide $tau_{211-219}(OPO_3H^-)$ at pH 4.0 at 298 K in 5 mM phosphate buffer containing 25 mM NaCl.


Figure S39. ¹H-¹⁵N HSQC spectrum of peptide $tau_{211-219}(OPO_3^{2-})$ at pH 7.9 at 298 K in 5 mM phosphate buffer containing 25 mM NaCl.


Figure S40. ¹H-¹⁵N HSQC spectra of peptides $tau_{211-219}$ at pH 4.0 (green), $tau_{211-219}$ (OPO₃²⁻) (red) (pH 7.9), and $tau_{211-219}$ (OPO₃H⁻) (magenta) (pH 4.0) at 298 K. Data were collected with 2–3 mM peptide in 5 mM phosphate buffer (pH 4.0 or 7.9) with 25 mM NaCl.

peptide	Thr _N , ppm	Ser _N , ppm	others	pH, Temp
Ac-YRTPSLPTPP-NH ₂	117.8,	116.5	124.2 (Arg),	4.0, 298 K
	118.6		125.4 (Leu),	
			126.6 (Tyr),	
			107.1	
			(carboxamide)	
Ac-YRT(OPO ₃ H ⁻)PS(OPO ₃ H ⁻)LPT(OPO ₃ H ⁻)PP-NH ₂	<u>117.4,</u>	116.6	125.2 (Arg),	4.0, 298 K
	120.9		125.0 (Leu),	
			126.9 (Tyr),	
			107.4	
			(carboxamide)	
Ac-YRT(OPO ₃ ²⁻)PS(OPO ₃ ²⁻)LPT(OPO ₃ ²⁻)PP-NH ₂	121.8,	119.4	125.2 (Arg),	7.9, 298 K
	125.7		125.1 (Leu),	
			127.0 (Tyr),	
			107.4	
			(carboxamide)	

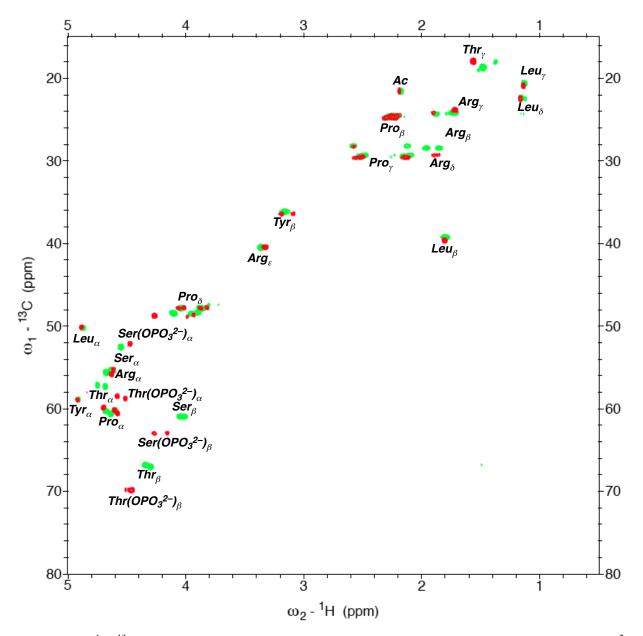

Table S13. Summary of ${}^{1}\text{H}{}^{15}\text{N}$ HSQC NMR data for peptides derived from tau₂₁₁₋₂₁₉. Data were collected with 2–3 mM peptide in 5 mM phosphate buffer (pH 4.0 or 7.9) with 25 mM NaCl.

Figure S41. 1 H- 13 C HSQC spectrum of peptide tau₂₁₁₋₂₁₉ at pH 4.0 in 5 mM phosphate buffer with 25 mM NaCl in 100% D₂O at 298 K.

Figure S42. ¹H-¹³C HSQC spectrum of peptide $tau_{211-219}(OPO_3^{2-})$ at pH 8.0 in 5 mM phosphate buffer with 25 mM NaCl in 100% D₂O at 298 K.

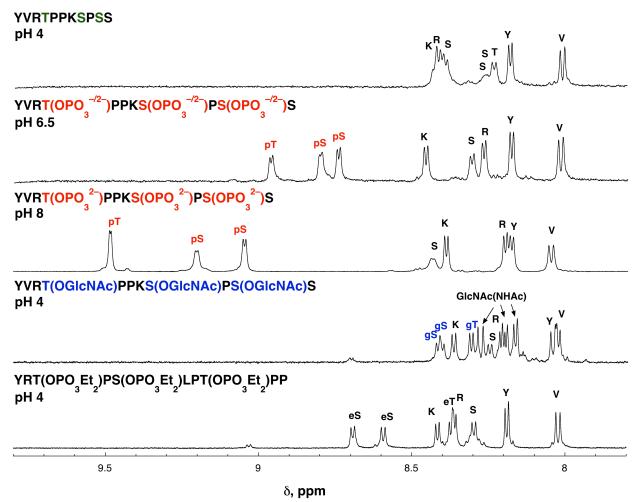


Figure S43. ¹H-¹³C HSQC spectra of peptides $tau_{211-219}$ at pH 4.0 (green) and $tau_{211-219}(OPO_3^{2-})$ (red) (pH 8.0) at 298 K. Data were collected with 1 mM peptide in 5 mM phosphate buffer containing 25 mM NaCl.

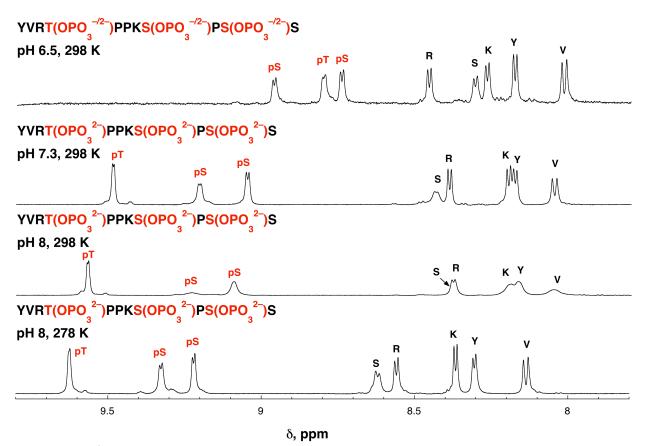
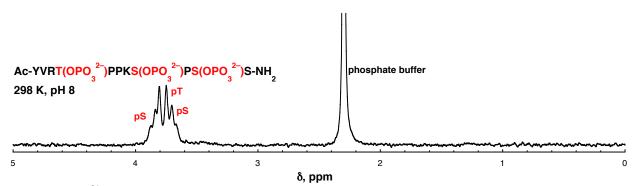

Ac-YRTPSLPTPP-NH ₂		Ac-YRpTPpSLPpTPP-NH ₂		
residue	¹³ C δ, ppm	residue	¹³ C δ, ppm	
Arg, α	55.4	Arg, α	55.2	
Thr, $lpha$	57.1, 57.3	pThr, α	58.5, 58.8	
Ser, α	52.5	• •	52.2	
Leu, α	50.2	Leu, α	50.1	
Pro, α	55.6, 60.2, 60.3, 60.6	Pro, α	55.8, 59.8, 60.2, 60.6	
Tyr, α	58.9	Tyr, α	58.9	
Ser, β	60.9	pSer, β	63.0	
Thr, β	66.8, 67.0	pThr, β	69.9, 69.9	
Tyr, β	36.2	Tyr, β	36.4	
Pro, δ	47.8, 48.4, 48.4	Pro, δ	47.8, 48.8, 48.8	
Arg, ε	40.5	Arg, ε	40.4	
Pro, γ	29.5, 29.5, 29.5, 29.5	Pro, γ	29.6, 29.6, 29.6, 29.6	
Arg, β	n.d.	Arg, β	n.d.	
Pro, β	24.6, 24.6, 24.6, 24.6	Pro, β	24.6, 24.6, 24.6, 24.6	
Leu, β	39.3	Leu, β	39.6	
Leu, γ	20.8	Leu, γ	20.9	
Arg, γ	24.2	Arg, γ	23.8	
Arg, δ	28.4	Arg, δ	39.6	
Leu, δ	22.4	Leu, δ	22.5	
Thr, γ	18.7, 18.7	pThr, γ	17.9, 17.9	
Ac	21.5		21.5	

Table S14. Summary of ${}^{1}\text{H}{}^{-13}\text{C}$ NMR data for peptides derived from $tau_{211-219}$. Data were collected with 1 mM peptide in 5 mM phosphate buffer with 25 mM NaCl. pSer or pThr indicates a phosphorylated serine or threonine residue.


Analysis of peptides derived from tau₂₂₉₋₂₃₈

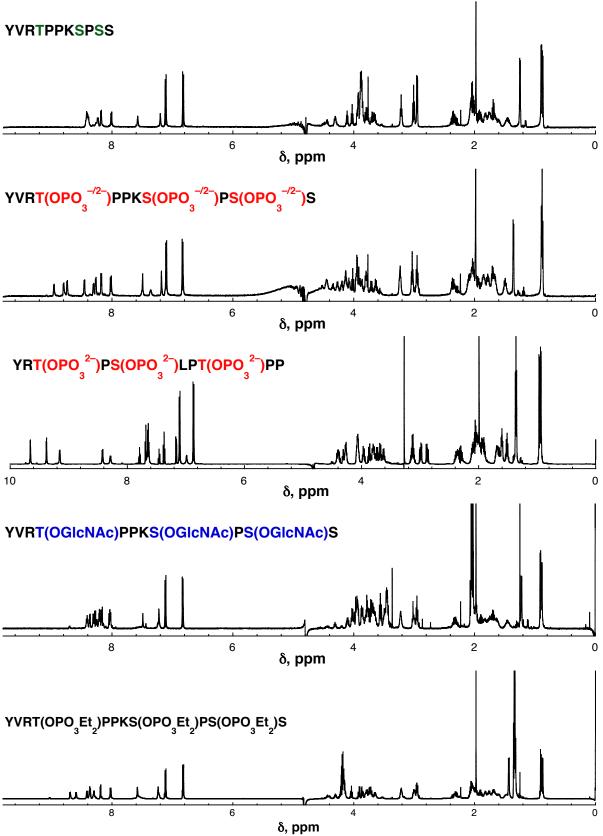
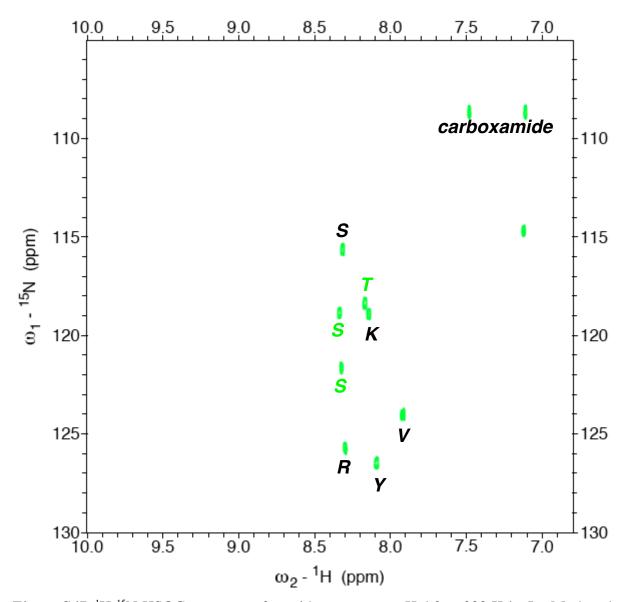
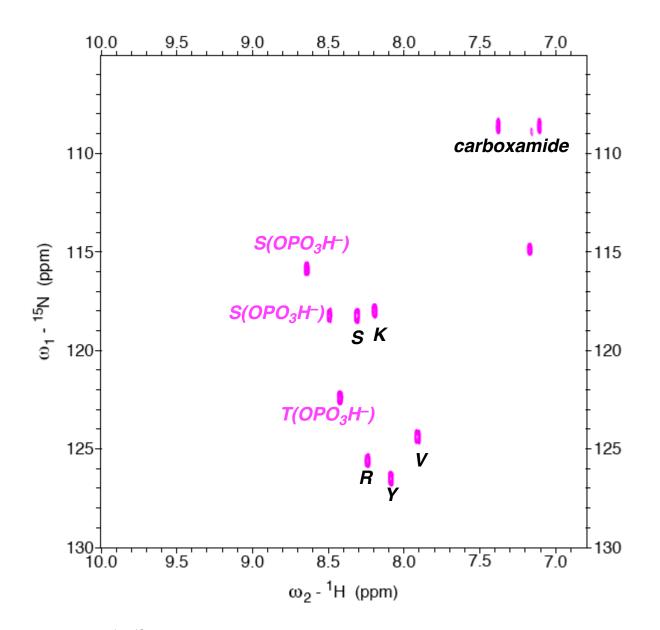

Figure S44. ¹H NMR spectra (amide region) of peptides derived from $tau_{229-238}$. Minor peaks in the NMR spectra are due to the presence of cis amide bonds. Peptides were dissolved in 5 mM phosphate buffer (pH 4.0, 6.5, or 8.0) and were internally referenced with TSP. Solutions contained 25 mM NaCl, 100 μ M TSP, and 90% H₂O/10% D₂O. pS or pT indicates a phosphorylated serine or threonine residue. eS or eT indicates a diethylphosphorylated (OPO₃Et₂) serine or threonine residue. gS or gT indicates an OGlcNAcylated serine or threonine residue.

Figure S45. ¹H NMR spectra (amide region) of phosphorylated peptide $tau_{229-238}$ at pH 8.0, 7.3, and 6.5 at 298 K or as indicated. Minor peaks in the NMR spectra are due to the presence of cis amide bonds. Peptides were dissolved in 5 mM phosphate buffer and were internally referenced with TSP. Solutions contained 25 mM NaCl, 100 μ M TSP, and 90% H₂O/10% D₂O. pS or pT indicates a phosphorylated serine or threonine residue.


Figure S46. ³¹P NMR spectrum of phosphorylated peptide $tau_{229-238}$ at pH 8.0 at 298 K in 5 mM phosphate buffer containing 25 mM NaCl. The NMR spectrum was internally referenced with 85% H₃PO₄ (0 ppm) using a capillary filled with H₃PO₄ located in the NMR tube containing the sample.


Full ¹H NMR spectra of peptides derived from tau₂₂₉₋₂₃₈ at pH 6.5 or 8, 298 K

peptide	δ, Η ^Ν	³ JaN	δ, Ηα	δ, Ηβ	³ JHαHβ
tau ₂₂₉₋₂₃₈ (pH 4.0)				•	<u> </u>
Υ	8.18	6.5	4.52	2.96	
V	8.01	8.6	4.03	1.96	
R	8.39	7.0	4.32	1.84, 1.76	
Т	8.23	7.3	4.57	4.12	8.9
К	8.41	n.d. ^a	4.30	1.82, 1.75	
S	8.25	n.d.	4.45	3.94, 3.89	n.d.
S	8.25	n.d.	4.45	3.94, 3.89	n.d.
S	8.40	n.d.	4.48	3.93, 3.88	n.d.
tau _{229–238} (OPO₃H⁻) (pH 4.0)					
Y	8.19	6.6	4.50	2.92, 2.92	
V	8.01	8.8	4.00	0.87, 0.87	
R	8.53	6.7	4.32	1.82, 1.77	
рТ	8.39	7.1	4.68	4.56	n.d.
К	8.30	7.0	4.27	1.84, 1.76	
S	8.34	6.4	4.42	3.94, 3.90	
pS	8.59	6.4	4.86	4.15, 4.09	n.d.
pS	8.73	6.4	4.57	4.24, 4.15	n.d.
tau ₂₂₉₋₂₃₈ (OPO ₃ ^{-/2-}) (pH 6.5)					
Y	8.18	6.6	4.52	2.95	
V	8.02	9.0	4.02	1.95	
R	8.26	6.3	4.28	1.85, 1.78	n.d.
рТ	8.80	5.0	4.56	4.46	
К	8.45	6.7	4.34	1.84, 1.77	
S	8.30	7.1	4.79	4.44, 3.94	
pS	8.74	5.6	4.85	4.14, 4.07	n.d.
pS	8.96	5.0	4.52	4.20, 4.12	n.d.
tau ₂₂₉₋₂₃₈ (OPO ₃ ²⁻) (pH 8.0)					
Y	8.20	6.5	4.52	2.97, 2.93	
V	8.06	9.1	4.00	1.94	
R	8.18	6.4	4.24	1.85, 1.76	
рТ	9.49	3.8	4.37	4.29	n.d.
К	8.39	6.6	4.34	1.81, 1.71	
S	8.44	n.d.	4.43	3.95, 3.91	
pS	9.05	5.5	4.74	4.08, 3.98	n.d.
pS	9.21	5.3	4.46	4.13, 4.07	n.d.
tau ₂₂₉₋₂₃₈ (OGIcNAc) (pH 4.0)					
Y	8.17	7.0	4.55	2.96	
V	8.04	8.6	4.49	4.04	
R	8.32	6.8	4.30	1.80, 1.72	
gT	8.02	6.5	4.56	4.10	6.3
К	8.38	7.4	4.32	1.83, 1.77	
S	8.24	6.4	4.42	3.93, 3.87	
gS	8.40	8.0	4.61	4.12, 4.01	6.2
gS	8.42	6.9	4.85	4.02, 3.96	5.9
tau ₂₂₉₋₂₃₈ (OPO ₃ Et ₂) (pH 4.0)					
Y	8.18	6.7	4.54	2.96	
V	8.02	8.3	4.05	1.97	
R	8.36	4.7	4.31	1.83, 1.76	-
еТ	8.37	5.9	4.86	4.66	6.5
К	8.42	6.8	4.30	1.80, 1.75	
S	8.30	7.1	4.46	3.92, 3.86	
eS	8.59	7.4	5.01	4.42, 4.23	4.8
eS	8.69	7.0	4.71	4.44, 4.41	5.0

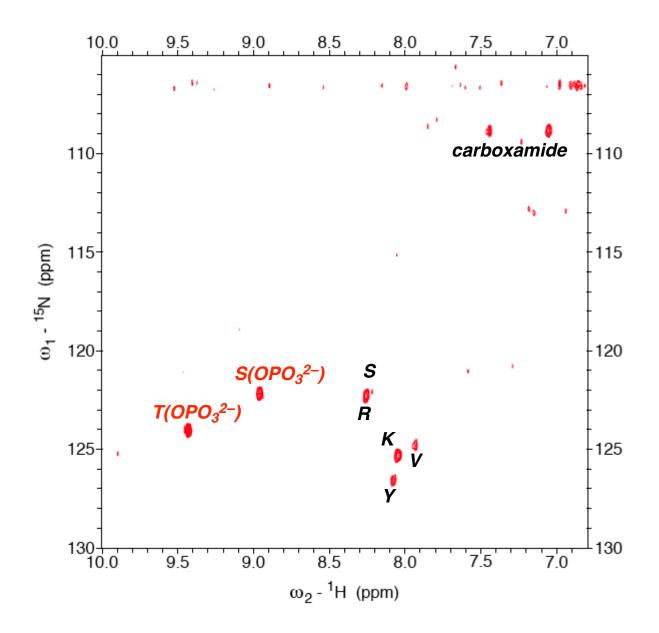
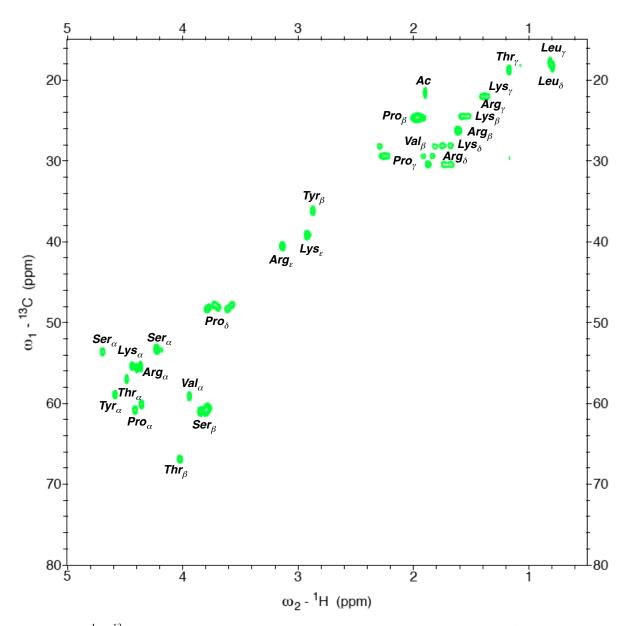
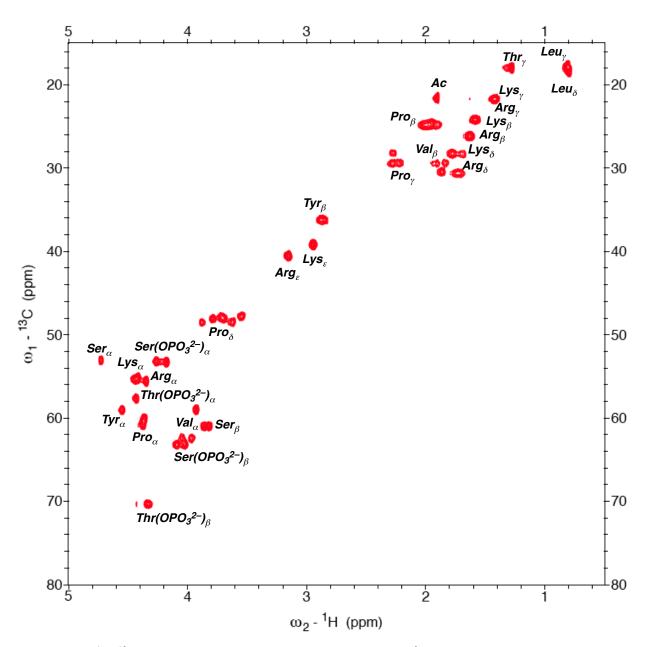

Table S15. Summary of ¹H NMR data for peptides derived from $tau_{229-238}$. Data were collected with 100–200 μ M peptide in 5 mM phosphate buffer containing 25 mM NaCl. pS or pT indicates a phosphorylated serine or threonine residue. eS or eT indicates a diethylphosphorylated (OPO₃Et₂) serine or threonine residue. gS or gT indicates an OGlcNAcylated serine or threonine residue.^{*a*} n.d. = not determined due to spectral overlap.

Figure S47. ¹H-¹⁵N HSQC spectrum of peptide tau₂₂₉₋₂₃₈ at pH 4.0 at 298 K in 5 mM phosphate buffer containing 25 mM NaCl.

Figure S48. ¹H-¹⁵N HSQC spectrum of peptide $tau_{229-238}(OPO_3H^-)$ at pH 4.0 at 298 K in 5 mM phosphate buffer containing 25 mM NaCl.


Figure S49. ¹H-¹⁵N HSQC spectrum of peptide $tau_{229-238}(OPO_3^{2-})$ at pH 8.0 at 298 K in 5 mM phosphate buffer containing 25 mM NaCl. The missing resonance contour for $S(OPO_3^{2-})$ could not be determined because of rapid amide exchange at pH 8.0.


Figure S50. ¹H-¹⁵N HSQC spectra of peptides $tau_{229-238}$ at pH 4.0 (green), $tau_{229-238}$ (OPO₃²⁻) (red) (pH 8.0), and $tau_{229-238}$ (OPO₃H⁻) (magenta) (pH 4.0) at 298 K. Data were collected with 2–3 mM peptide in 5 mM phosphate buffer (pH 4.0 or 8) with 25 mM NaCl.

peptide	Thr _N , ppm	Ser _N , ppm	others pH, temp
Ac-YVRTPPKSPSS-NH ₂	118.4	115.6,118.9,	118.9 (Lys), 4.0, 298 K
		121.7	124.1 (Val),
			125.7 (Arg),
			126.5 (Tyr),
			107.1
			(carboxamide)
Ac-YVRT(OPO ₃ H ⁻)PPKS(OPO ₃ H ⁻)PS(OPO ₃ H ⁻)S-NH ₂	<u>122.4</u>	115.9 (pS),	118.0 (Lys), 4.0, 298 K
		118.2 (pS),	124.4 (Val),
		118.3 (S)	125.6 (Arg),
			126.5 (Tyr),
			107.1
			(carboxamide)
Ac-YVRT(OPO ₃ ²⁻)PPKS(OPO ₃ ²⁻)PS(OPO ₃ ²⁻)S-NH ₂	124.0	122.2 (pS)	122.3 (Lys), 8.0, 298 K
			124.8 (Val),
			125.3 (Arg),
			126.6 (Tyr),
			108.9
			(carboxamide)

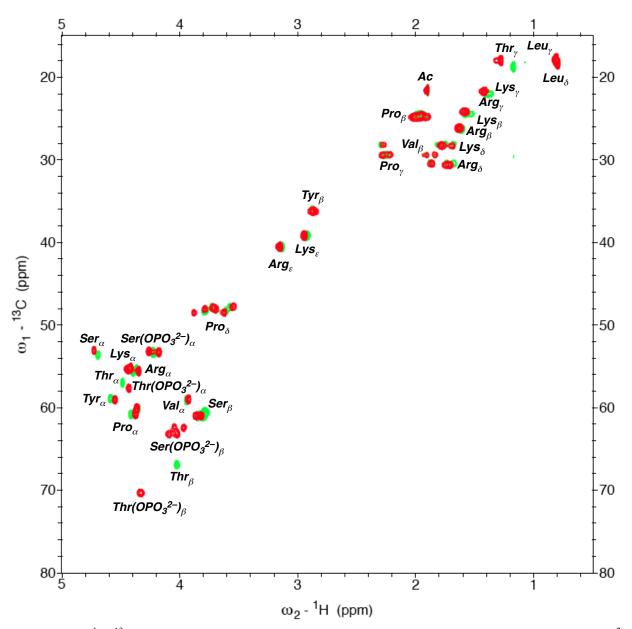
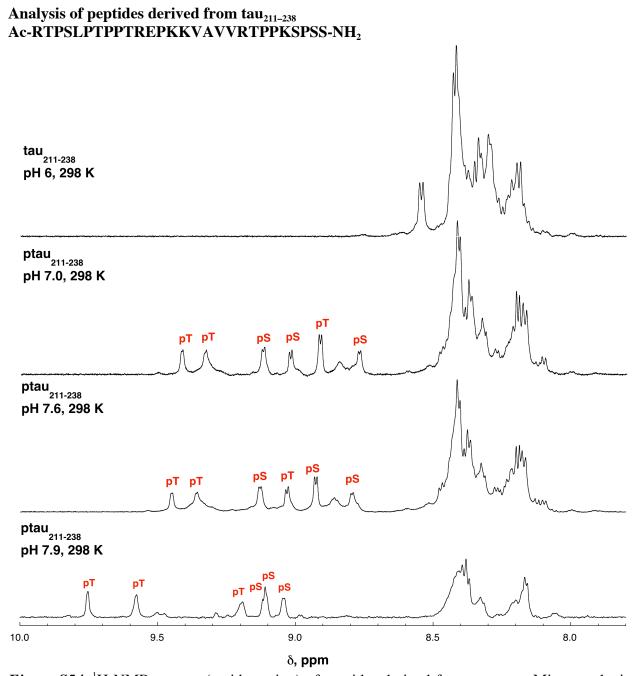
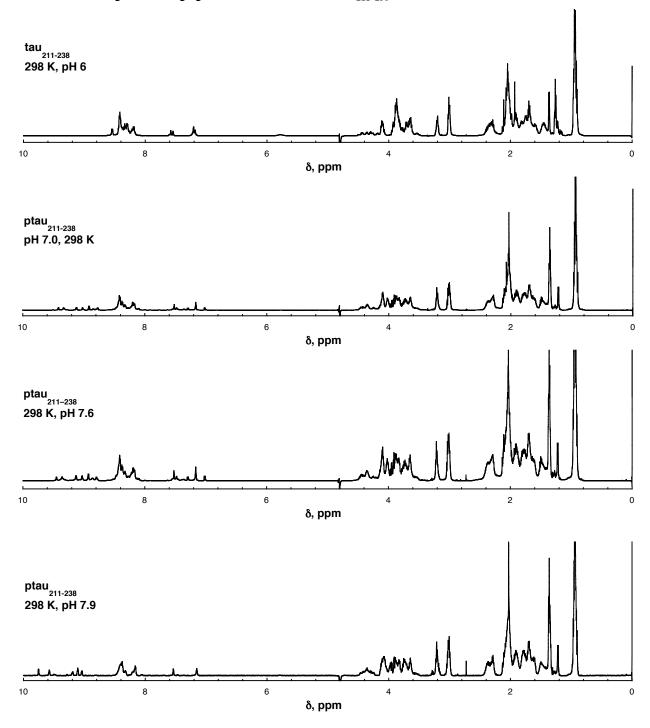

Table S16. Summary of ${}^{1}\text{H}{}^{15}\text{N}$ HSQC NMR data for peptides derived from tau₂₂₉₋₂₃₈. Data were collected with 2–3 mM peptide in 5 mM phosphate buffer (pH 4.0 or 8) with 25 mM NaCl. pS indicates a phosphorylated serine residue.

Figure S51. ¹H-¹³C HSQC spectrum of peptide $tau_{229-238}$ at pH 4.0 at 298 K in 5 mM phosphate buffer with 25 mM NaCl in 100% D₂O at 298 K.


Figure S52. ¹H-¹³C HSQC spectrum of peptide $tau_{229-238}(OPO_3^{2-})$ at pH 8.0 at 298 K in 5 mM phosphate buffer with 25 mM NaCl in 100% D₂O at 298 K.


Figure S53. ¹H-¹³C HSQC spectra of peptides $tau_{229-238}$ at pH 4.0 (green) and $tau_{229-238}$ (OPO₃²⁻) (red) (pH 8.0) at 298 K. Data were collected with 2 mM peptide in 5 mM phosphate buffer containing 25 mM NaCl.

Ac-YVRTPPKSPSS-NH ₂		Ac-YVRpTPPKpSPpSS-NH ₂	
residue	¹³ C δ, ppm	residue	¹³ C δ, ppm
Lys, α	55.4	Lys, α	55.6
Thr, α	57.0	pThr, α	57.7
Ser, α	53.6, 53.6	pSer, α	53.1, ^a n.d.
Ser, α	53.3	Ser, α	55.3
Val, α	59.1	Val, α	59.0
Pro, α	60.1, 60.8, 60.8	Pro, α	60.1, 60.8, 60.8
Tyr, α	59.0	Tyr, α	59.0
Arg, α	55.4	Arg, α	53.2
Ser, β	60.7	pSer, β	62.5, 63.2
Ser, β	61.0, 61.0	Ser, β	61.0
Thr, β	66.9	pThr, β	70.4
Val, β	29.4	Val, β	29.4
Tyr, β	36.2	Tyr, β	36.2
Lys, β	24.5	Lys, β	24.6
Arg, β	24.5	Arg, β	24.6
Pro, β	24.6, 24.6, 24.6	Pro, β	24.6, 24.6, 24.6
Pro, δ	47.8, 48.2, 48.2	Pro, δ	48.1, 48.1, 48.5
Lys, δ	26.2	Lys, δ	26.2
Arg, δ	30.4	Arg, δ	30.5
Lys, ε	39.2	Lys, ε	39.2
Arg, ε	40.6	Arg, ε	40.5
Pro, γ	28.1, 29.4, 29.4	Pro, γ	28.2, 29.5, 29.5
Lys, γ	22.0	Lys, γ	21.6
Arg, γ	24.5	Arg, γ	24.1
Val, γ	17.8, 18.3	Val, γ	17.7, 18.3
Thr, γ	18.8	pThr, γ	18.0
Ac	21.5	Ac	21.6

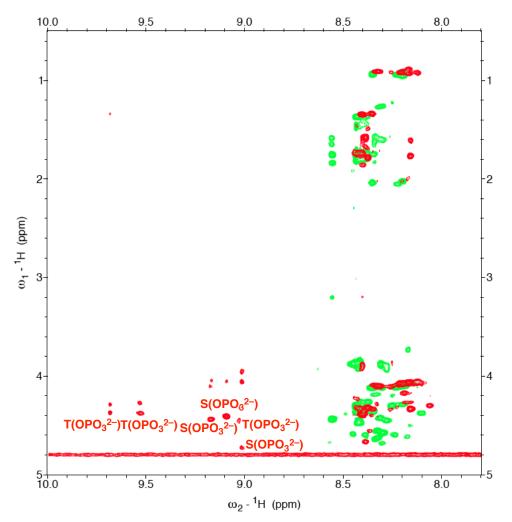
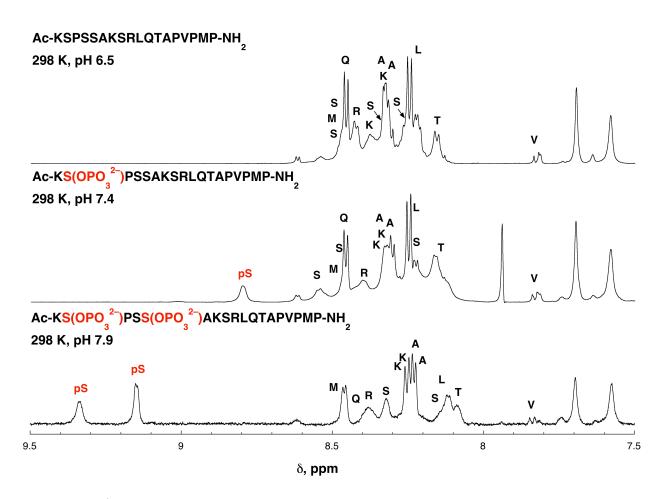
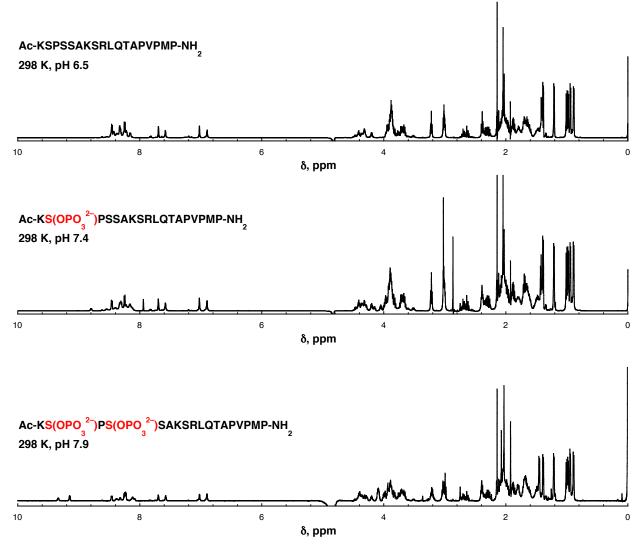

Table S17. Summary of ${}^{1}\text{H}{}^{-13}\text{C}$ NMR data for peptides derived from $tau_{229-238}$. Data were collected with 2 mM peptide in 5 mM phosphate buffer containing 25 mM NaCl. pSer or pThr indicates a phosphorylated serine or threonine residue. a n.d. = not determined due to spectral overlap with residual water peak.

Figure S54. ¹H NMR spectra (amide region) of peptides derived from $tau_{211-238}$. Minor peaks in the NMR spectra are due to the presence of cis amide bonds. Peptides were dissolved in 5 mM phosphate buffer (pH 6.0, 7.0, 7.6, or 7.9) and were internally referenced with TSP. Solutions contained 25 mM NaCl, 100 μ M TSP, and 90% H₂O/10% D₂O. pS or pT indicates a phosphorylated serine or threonine residue.

Full ¹H NMR spectra of peptides derived from tau₂₁₁₋₂₃₈ at 298 K

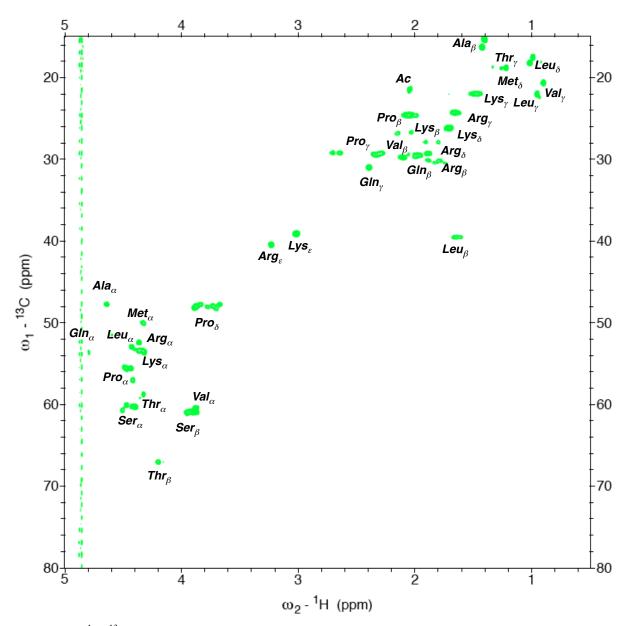

Figure S55. TOCSY spectra (amide region) of peptides $tau_{211-238}$ (green) at pH 6.0 and $tau_{211-238}$ (OPO₃²⁻) (red) at pH 7.9 at 298 K. Minor peaks in the spectrum are due to the presence of cis amide bonds.

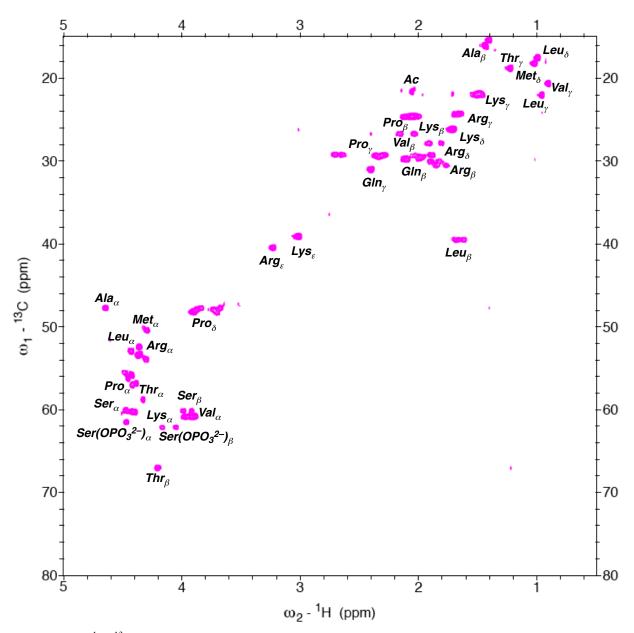
	δ, Η ^Ν	³ J αN	δ, Ηα	δ, Ηβ
tau _{211–238} (pH 6)				
E	8.57	n.d.	4.66	1.65, 1.55
Κ	8.56	n.d.	4.30	1.80, 1.68
K	8.56	n.d.	4.30	1.80, 1.68
K	8.56	n.d.	4.30	1.80, 1.68
S	8.45	n.d.	4.58	3.88, 3.88
R	8.44	n.d.	4.42	1.82, 1.73
R	8.44	n.d.	4.42	1.82, 1.73
S	8.42	n.d.	4.47	3.87, 3.87
Т	8.40	n.d.	4.58	4.34
R	8.39	n.d.	4.42	1.82, 1.73
V	8.35	n.d.	4.12	2.04
Т	8.33	n.d.	4.56	4.42
S	8.31	n.d.	4.43	3.88, 3.88
Т	8.30	n.d.	4.56	4.42
A	8.30	n.d.	4.52	1.25
S	8.28	n.d.	4.45	3.90, 3.93
V	8.22	n.d.	4.11	2.05
V	8.20	n.d.	4.09	2.02
Т	8.20	n.d.	4.25	4.14
L	8.14	n.d.	4.38	2.01
tau _{211–238} (OPO ₃ ^{2–}) (pH 7.9)				
рТ	9.76	3.1 ^b	4.38	4.31
pT	9.59	3.7 ^b	4.39	4.29
pS	9.22	5.3	4.47	4.08, 4.13
pT	9.21	4.7 ^b	4.47	4.35
pS	9.15	5.5	4.43	3.99, 4.10
pS	9.07	5.3	4.75	3.98, 4.08
K	8.43	n.d.	4.32	1.79, 1.72
K	8.43	n.d.	4.32	1.79, 1.72
K	8.43	n.d.	4.32	1.79, 1.72
R	8.36	n.d.	4.41	1.89, 1.77
R	8.36	n.d.	4.41	1.89, 1.77
R	8.36	n.d.	4.41	1.89, 1.77
Т	8.26	n.d.	4.57	4.35
S	8.25	n.d.	4.35	3.94, 3.88
V	8.19	n.d.	4.07	2.05
V	8.19	n.d.	4.07	2.03
L	8.18	n.d.	4.36	1.66
V	8.14	n.d.	4.06	2.04
A	n.d.	n.d.	4.13	0.94
E	n.d.	n.d.	n.d.	n.d.


Table S18. Summary of ¹H NMR data for peptides derived from $tau_{211-238}$. Data were collected with 200-500 µM peptide in 5 mM phosphate buffer containing 25 mM NaCl. pS or pT indicates a phosphorylated serine or threonine residue. ^{*a*} n.d. indicates not determined due to spectral overlap or peak broadening. ^{*b*} Data were obtained at pH 7.0 at 298 K.

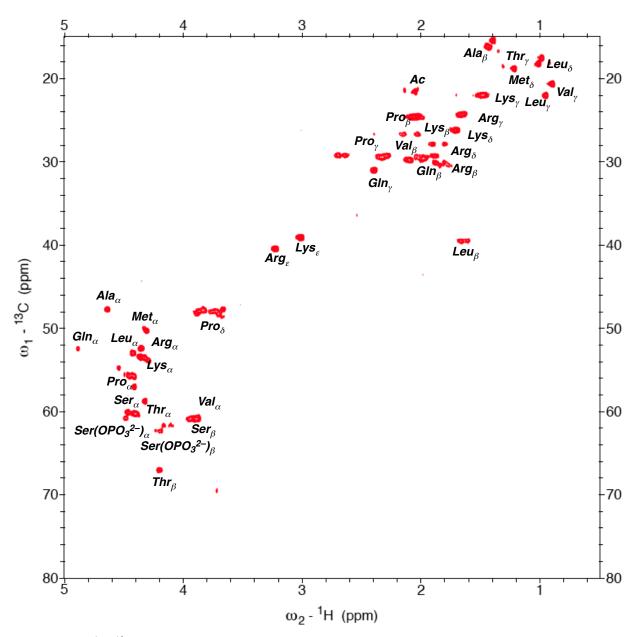
Analysis of peptides derived from tau₂₃₄₋₂₅₁

Ac-KSPSSAKSRLQTAPVPMP-NH₂, Ac-KpSPSSAKSRLQTAPVPMP-NH₂, and Ac-KpSPpSSAKSRLQTAPVPMP-NH₂,


Figure S56. ¹H NMR spectra (amide region) of peptides derived from $tau_{234-251}$. Minor peaks in the NMR spectra are due to the presence of cis amide bonds. Peptides were dissolved in 5 mM phosphate buffer (pH 4.0, 7.2, or 7.9) and were internally referenced with TSP. Solutions contained 25 mM NaCl, 100 μ M TSP, and 90% H₂O/10% D₂O. pS indicates a phosphorylated serine residue.


Full ¹H NMR spectra of peptides derived from tau₂₃₄₋₂₅₁ at pH 6.5, 7.4, or 7.9

peptide	δ, Η ^Ν	³ JαN	δ, Ηα	δ, Ηβ
tau ₂₃₄₋₂₅₁ (pH 6)	0,11	Uun	0,110	0,110
К	8.33	n.d.	4.32	1.82, 1.72
S	8.48	n.d.	4.38	3.89, 3.89
S	8.52	n.d.	4.47	3.86, 3.94
S	8.26	n.d.	4.41	3.89, 3.89
A	8.23	n.d.	4.35	1.63
K	8.27	n.d.	4.31	1.89, 1.78
S	8.46	n.d.	4.47	3.94, 3.89
R	8.39	n.d.	4.35	1.90, 1.79
L	8.26	n.d.	4.41	2.10
Q	8.43	n.d.	4.42	2.13, 2.02
T	8.17	7.7	4.32	4.20
Â	8.23	n.d.	4.35	1.63
V	7.84	n.d.	4.25	1.98
M	8.46	n.d.	4.47	2.11, 1.97
tau _{234–251} (pS235) (pH 7.4)	0.40	n.u.	4.47	2.11, 1.37
К	8.30	n.d.	n.d.	1.88, 1.81
pS	8.80	n.d.	n.d.	4.16, 4.05
S	8.55	n.d.	4.38	3.99, 3.91
S	n.d	n.d.	n.d	n.d
A	8.23	n.d.	4.34	1.64
K	8.22	n.d.	4.40	1.88, 1.81
S	8.19	n.d.	4.41	3.91, 3.91
R	8.31	n.d.	4.34	1.90, 1.80
L	8.25	n.d.	4.41	2.08
Q	8.41	n.d.	4.41	2.14, 2.01
Т	8.16	n.d.	4.33	4.19
A	8.23	n.d.	4.34	1.64
V	7.84	n.d.	4.24	1.97
M	8.47	n.d.	4.37	2.10, 1.97
tau _{234–251} (pS235/pS237) (pH 7.9)				
К	8.10	n.d.	4.30	1.90, 1.83
pS	9.34	n.d.	4.40	4.10, 4.10
S	8.39	n.d.	4.41	3.94, 3.94
pS	9.15	n.d.	4.74	4.10, 4.00
A	8.23	n.d.	4.39	1.47
K	8.24	n.d.	4.40	1.80, 1.70
S	8.19	n.d.	4.30	3.95, 3.89
R	8.24	n.d.	4.36	1.91, 1.79
L	8.26	n.d.	4.40	2.08
Q	8.37	n.d.	4.44	2.14, 2.02
T	8.14	n.d.	4.33	4.21
A	8.23	n.d.	4.39	1.47
V	7.84	n.d.	4.24	0.92
Μ	8.46	n.d.	4.38	2.11, 1.99


Table S19. Summary of ¹H NMR data for peptides derived from $tau_{234-251}$. Data were collected with 2 mM peptide in 5 mM phosphate buffer containing 25 mM NaCl. pS indicates a phosphorylated serine residue. ^{*a*} n.d. indicates not determined due to spectral overlap.

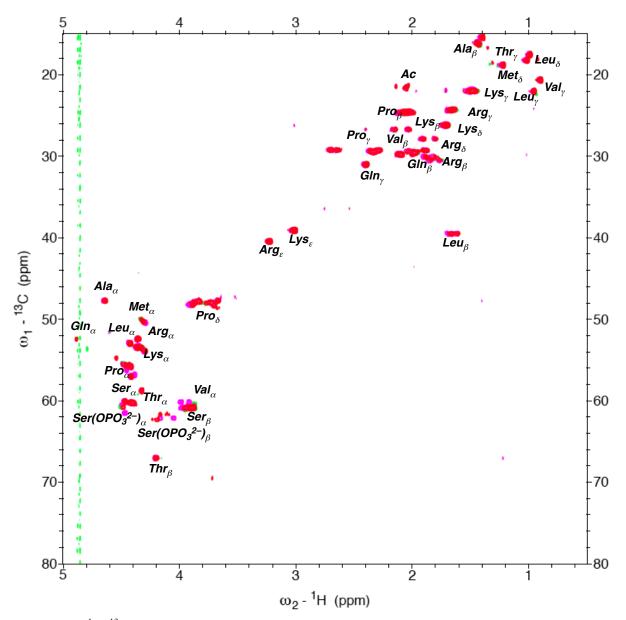

Figure S57. ¹H-¹³C HSQC spectrum of peptide $tau_{234-251}$ at pH 4.0 at 298 K in 5 mM phosphate buffer with 25 mM NaCl in 100% D₂O at 298 K.

Figure S58. ¹H-¹³C HSQC spectrum of peptide $tau_{234-251}$ (pS235) at pH 8.0 at 298 K in 5 mM phosphate buffer with 25 mM NaCl in 100% D₂O at 298 K. pS indicates a phosphorylated serine residue.

Figure S59. ¹H-¹³C HSQC spectrum of peptide $tau_{234-251}$ (pS235/pS237) at pH 8.0 at 298 K in 5 mM phosphate buffer with 25 mM NaCl in 100% D₂O at 298 K. pS indicates a phosphorylated serine residue.

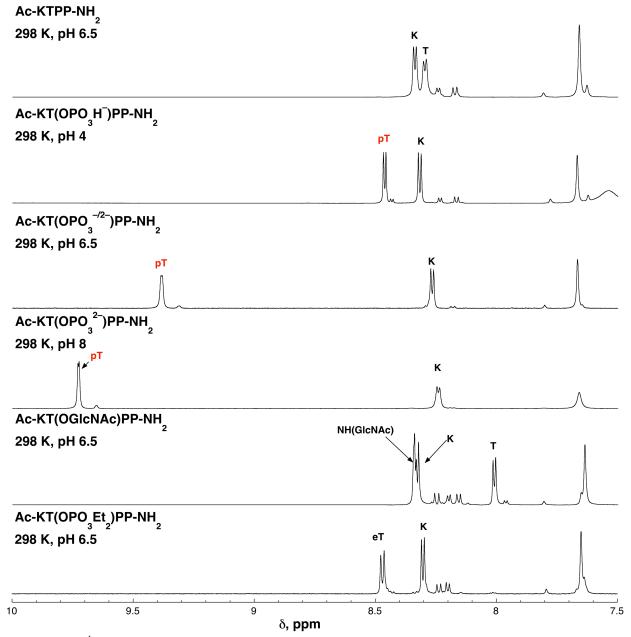


Figure S60. ¹H-¹³C HSQC spectra of peptides tau₂₂₉₋₂₃₈ at pH 4.0 (green), tau₂₃₄₋₂₅₁(pS235) at pH 8.0 (magenta), and tau₂₃₄₋₂₅₁(pS235/pS237) (red) at pH 8.0. Data were collected at 298 K with 2 mM peptide in 5 mM phosphate buffer containing 25 mM NaCl.

KSPSSAKSRLQTAPVPMP		KpSPSSAKSRLQTAPVPMP		KpSPpSSAKSRLQTAPVPMP	
	¹³ C δ,		¹³ Cδ,		¹³ C δ,
residue	ppm	residue	ppm		ppm
	53.5,		53.8,		53.7,
Lys, α	53.4 60.7,	Lys, α	53.4 60.4,	Lys, α	53.4 60.8,
Ser, α	60.3,		60.4, 60.2,		60.8, 60.1
,	60.1	Ser, α	60.1	Ser, α	
					60.3,
Ser, α	60.1	pSer, α	60.5	pSer, α	60.3
	57.0, 55.6,		56.9, 56.1,		57.0, 55.7,
Pro, α	55.6,	_	55.8,		55.7, 55.7,
	55.6	Pro, α	55.5	Pro, α	55.7
Ala, α	47.7		47.7	Ala, α	47.7
Arg, α	52.4		52.4	Arg, α	52.4
Leu, α	53.0	-	52.9	Leu, α	53.0
Gln, α	53.6		n.d.	Gln, α	52.4
Thr, α	58.8		58.9	Thr, α	58.8
Val, α	60.2		60.2	Val, α	60.3
Met, α	50.0	Met, α	50.4	Met, α	50.3
Lys, β	26.8		26.8	Lys, β	26.8
	60.9,		60.9,		60.9,
•	60.9,		60.9,	•	60.9
Ser, β	60.9	Ser, β	60.1	Ser, β	60.0
Ser, β	60.9	pSer, β	62.2	pSer, β	62.3, 61.7
00 1, p	24.6,	μοσι, μ	24.6,	peer , p	24.6,
	24.6,		24.6,		24.6,
Pro, β	24.6,	Pro, β	24.6,	Pro, β	24.6,
	24.6		24.6 16.3,		24.6 16.3,
Ala, β	16.3, 15.4	Ala, β	15.4	Ala, β	15.4
Arg, β	29.6		29.6	Arg, β	29.6
Leu, β	39.5		39.5	Leu, β	39.5
Gln, β	29.8		29.8		29.8
Thr, β	67.0	-	67.0	Thr, β	67.0
Val, β	29.4		29.4	Val, β	29.4
Vα, β Met, β	29.3	-	29.3	Met, β	29.3
	22.0		22.0	Lys, γ	29.0
Lys, γ Bro. v	29.2		29.2		29.2
Pro, γ Aro, γ	29.2 24.3		29.2 24.3	Pro, γ Ara γ	29.2 24.3
Arg, γ				Arg, γ	
Leu, γ	22.0		22.0	Leu, γ	22.0
Gln, γ	31.0		31.0	Gln, γ	31.0
Thr, γ	18.8		18.8		18.8
Val, γ	20.6	Val, γ	20.6	Val, γ	20.6

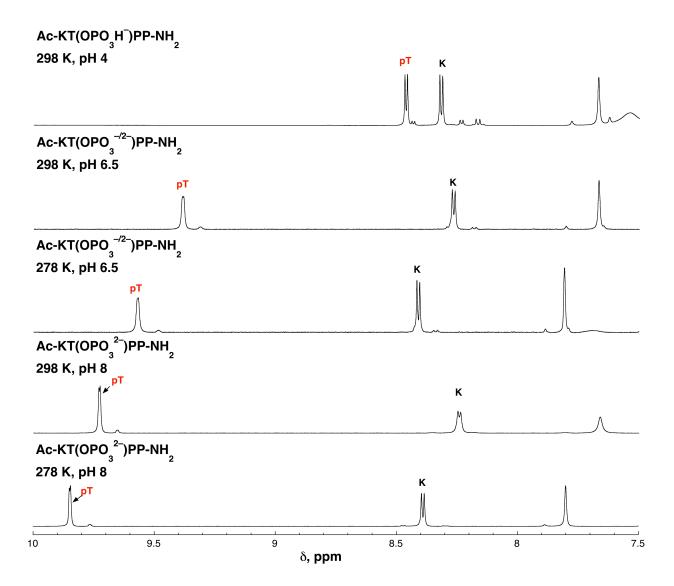
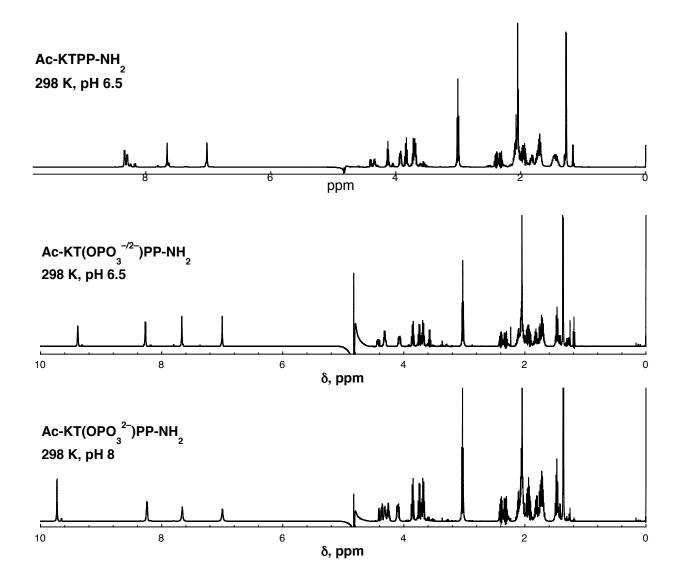
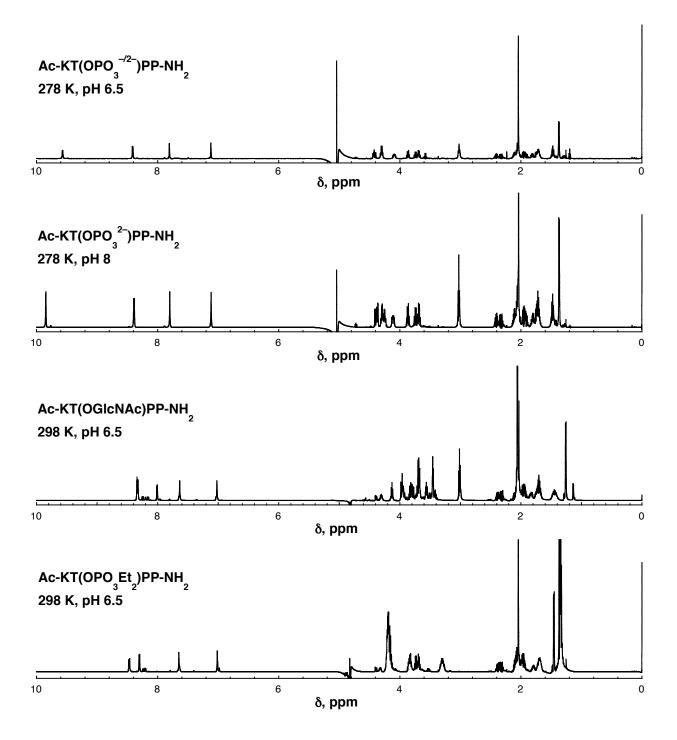

	I				
	47.7,		47.7,		47.7,
	47.7,		47.7,		47.7,
Pro, δ	48.8,	Pro, δ	48.8,	Pro, δ	48.8,
	48.8		48.8		48.8
Leu, δ	17.5	Leu, δ	17.5	Leu, δ	17.5
Met, δ	18.2	Met, δ	18.2	Met, δ	18.2
Arg, δ	29.3	Arg, δ	29.3	Arg, δ	29.3
Arg, ε	40.5	Arg, ε	40.5	Arg, ε	40.5
Lys, ε	39.1	Lys, ε	39.1	Lys, ε	39.1
NHAc	14.2	NHAc	14.2	NHAc	14.2

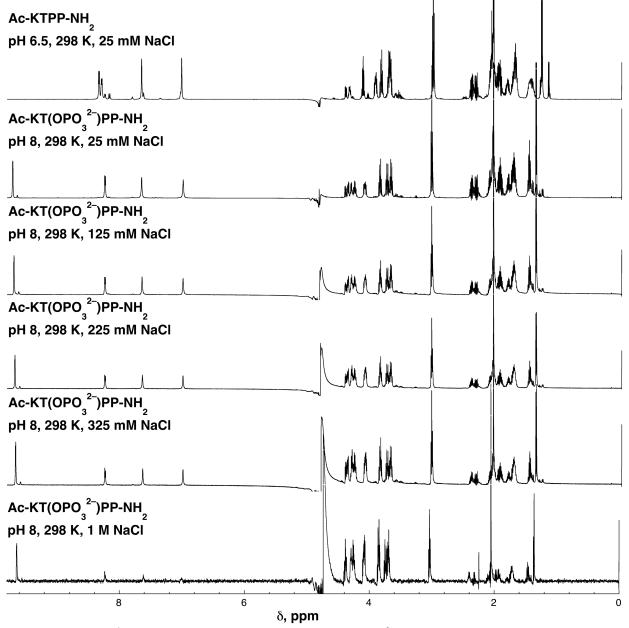
Table S20. Summary of ${}^{1}\text{H}{}^{-13}\text{C}$ NMR data for peptides derived from $tau_{234-251}$. Data were collected with 2 mM peptide in 5 mM phosphate buffer containing 25 mM NaCl. pSer indicates a phosphorylated serine residue. ^{*a*} n.d. indicates not determined due to spectral overlap with residual water peak.

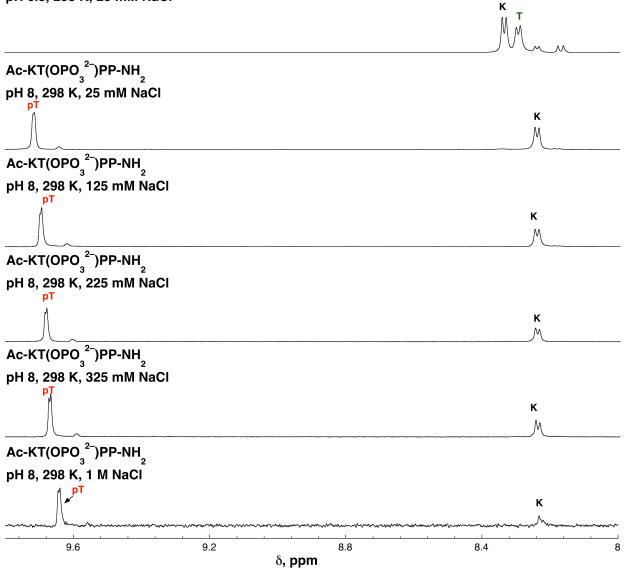
¹H NMR spectra of model peptides Ac-KTxPP-NH₂


Figure S61. ¹H NMR spectra (amide region) of Ac-K*Tx*PP-NH₂ peptides at 298 K. Minor peaks in the NMR spectra are due to the presence of cis amide bonds. Peptides were dissolved in 5 mM phosphate buffer (pH 4.0, 6.5, or 8.0) and were internally referenced with TSP. Solutions contained 25 mM NaCl, 100 μ M TSP, and 90% H₂O/10% D₂O.



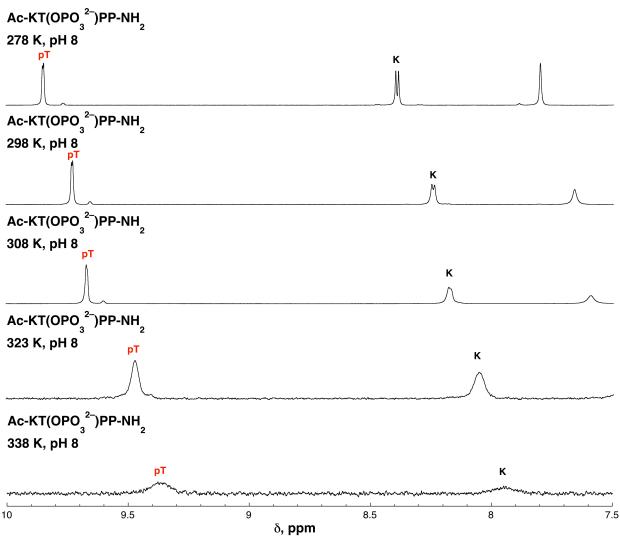
pH-dependent NMR spectra of peptide Ac-KpTPP-NH₂

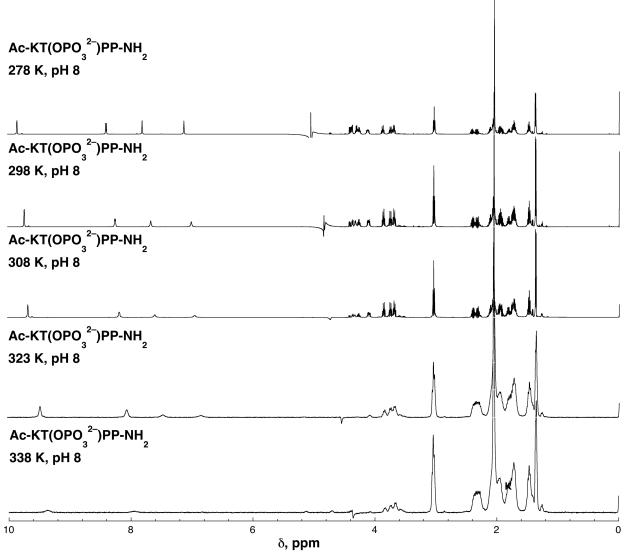

Figure S62. ¹H NMR spectra (amide region) of Ac-KpTPP-NH₂ peptides. Minor peaks in the NMR spectra are due to the presence of cis amide bonds. Peptides were dissolved in 5 mM phosphate buffer (pH 4.0, 6.5, or 8.0) and were internally referenced with TSP. Solutions contained 25 mM NaCl, 100 μ M TSP, and 90% H₂O/10% D₂O.



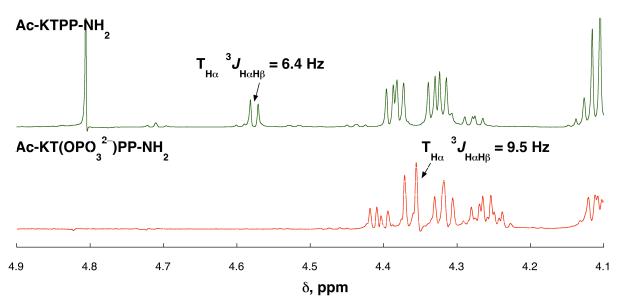
Due to the unusually slow exchange of the amide protons at pH 8.0 for the peptide Ac-KT(OPO₃²⁻)PP-NH₂, ¹H NMR experiments were conducted with increased salt (NaCl) concentrations to identify whether lysine electrostatic interactions were the basis of slow exchange. A very modest upfield shift of the Thr and Lys amide proton was observed with increased NaCl. The rest of the protons throughout the peptide remained essentially unperturbed. The peaks appear to be more resolved at higher salt concentrations. Strikingly, the Thr amide proton at 1 M NaCl concentration at pH 8.0 was still observed to be in slow exchange. These observations are consistent with a dynamic hydrogen bond between the phosphate and Thr backbone amide ordering the peptide and reducing backbone amide exchange rates, potentially via $n \rightarrow \pi^*$ interactions stabilizing structure. These data are not consistent with a lysine-phosphate electrostatic interaction driving the structure. Notably, experiments were conducted in 5 mM phosphate buffer.

Figure S63. Full ¹H NMR spectra of peptide Ac-KT(OPO₃²⁻)PP-NH₂ in 5 mM phosphate buffer containing 25 mM, 125 mM, 225 mM, or 1 M NaCl.


Ac-KTPP-NH₂ pH 6.5, 298 K, 25 mM NaCl


Figure S64. ¹H NMR spectra (amide region) of peptide Ac-KT(OPO₃^{2–})PP-NH₂ in 5 mM phosphate buffer containing 25 mM, 125 mM, 225 mM, or 1 M NaCl at pH 8.0.

¹H NMR spectra of Ac-KT(OPO₃²⁻)PP-NH₂ at higher temperatures


To examine the possibility of hydrogen bonding between the backbone amide and the side-chain phosphate, ¹H NMR experiments were conducted at elevated temperatures. As expected, with increasing temperature the Thr amides exhibited faster exchange rates, and at 338 K no amide resonances were observed. Temperature-dependent NMR experiments at 323 and 338 K were conducted on an AV 400 MHz instrument equipped with a BBO probe. 1–D spectra were collected with a watergate pulse sequence with 65536 acquisition data points and a relaxation delay of 3 s.

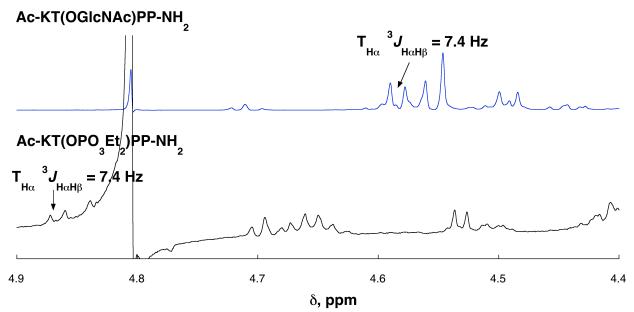

Figure S65. ¹H NMR spectra (amide region) of peptide Ac-KT(OPO_3^{2-})PP-NH₂ in 5 mM phosphate buffer containing 25 mM NaCl at 278, 298, 308, 323, and 338 K.

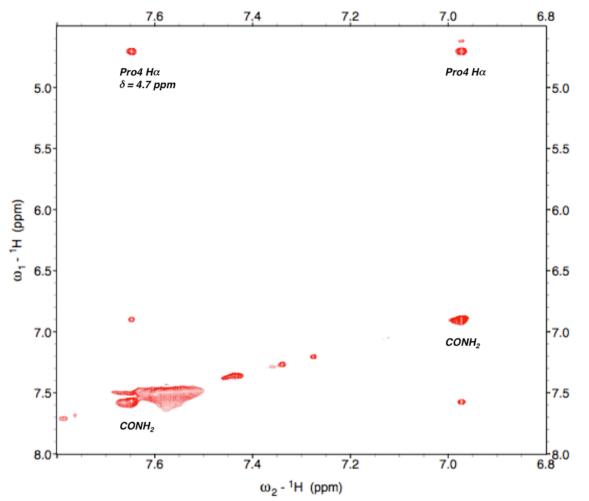
Figure S66. Full ¹H NMR spectra of peptide Ac-KT(OPO₃²⁻)PP-NH₂ in 5 mM phosphate buffer containing 25 mM NaCl at 278, 298, 308, 323, and 338 K.

Figure S67. ¹H NMR spectra (H α region) of peptides Ac-KTPP-NH₂ and Ac-KT(OPO₃^{2–})PP-NH₂ at pH 8.0 in 100% D₂O (eliminating HN-H α coupling due to amide H-D exchange) showing the coupling between Thr H α and H β protons.

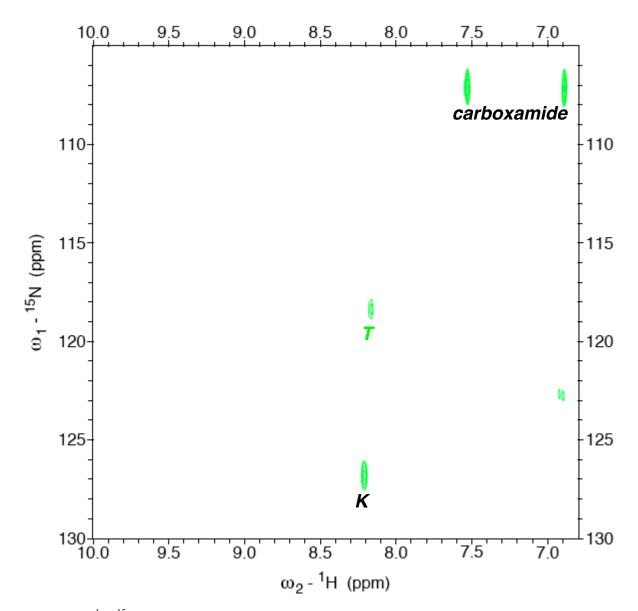
Figure S68. ¹H NMR spectra of peptides Ac-KT(OGlcNAc)PP-NH₂ and Ac-KT(OPO₃Et₂)PP-NH₂ at pH 6.5 in 100% D₂O showing the coupling between Thr H α and H β protons.

peptide	δ, Η ^Ν	³ J αΝ	δ, Ηα	α δ, C α	δ, C _c	others
Ac-KTPP-NH ₂	pH 4.0	298 K				
Lys	8.32	6.8	4.33	3 n.d.	n.d	. 2.99, 1.81, 1.71, 1.43
Thr	8.28	7.3	4.58	3 n.d.	n.d	. 4.11, 1.25
Pro3	n.a.	n.a.	4.38	3 n.d.	n.d	. 3.82, 3.67, 2.32, 2.30, 2.05, 1.93
Pro4	n.a. ^a	n.a.	n.d.	^b n.d.	n.d	. 3.91, 3.70, 2.38, 2.07, 2.02, 1.92
Ac-						2.03
Ac-KTPP-NH ₂	pH 6.5	298 K		δ, C α ^c	δ, C_{co}	c
Lys	8.34	6.8	4.34			
Thr	8.30	7.2	4.59	9 57.1	169.5	5 4.12, 1.28
Pro3	n.a.	n.a.	4.40) 60.2	176.7	3.84, 3.69, 2.31, 2.07, 1.95
Pro4	n.a.	n.a.	4.72	2 58.9	n.d	. 3.92, 3.71, 2.39, 2.09, 2.03, 1.91
Ac-					174.3	3 2.05
Ac-KTPP-NH ₂	pH 6.5	278 K				
Lys	8.49	6.9	4.33	8 n.d.	n.d	. 3.00, 1.82, 1.72, 1.45
Thr	8.48	6.8	4.58	8 n.d.	n.d	. 4.11, 1.28
Pro3	n.a.	n.a.	4.38	8 n.d.	n.d	. 3.85, 3.69, 2.35, 2.32, 2.06, 1.96
Pro4	n.a.	n.a.	4.74	l n.d.	n.d	. 3.95, 3.71, 2.40, 2.09, 1.93
Ac-					n.d	. 2.04
peptide		δ,	H ^N	${}^{3}J_{\alpha N}$	δ, Ηα	others
Ac-KT(OGIcNA	c)PP-NH			298 K		
Lys		- 8	3.34	7.0	4.31	3.01, 1.83, 1.73, 1.45
Thr		8	3.01	6.4	4.59	4.13, 1.26
Pro3			n.a.	n.a.	4.40	3.82, 3.68, 2.32, 2.06, 1.95
Pro4			n.a.	n.a.	4.72	3.95, 3.69, 2.39, 2.08, 2.04, 1.94
Ac-						2.03
Ac-KT(OPO ₃ Et ₂	2)PP-NH2	рН	4.0	298 K		
Lys		8	3.30	7.0	4.32	3.16, 1.80, 1.72, 1.36
Thr		8	8.47	8.4	4.88	4.67, 1.45
Pro3		l	n.a.	n.a.	4.40	3.84, 3.69, 2.32, 2.07, 1.96
Pro4		n	.a. ^a	n.a.	4.64	3.86, 3.74, 2.39, 2.10, 2.04, 1.96
Ac-						2.04

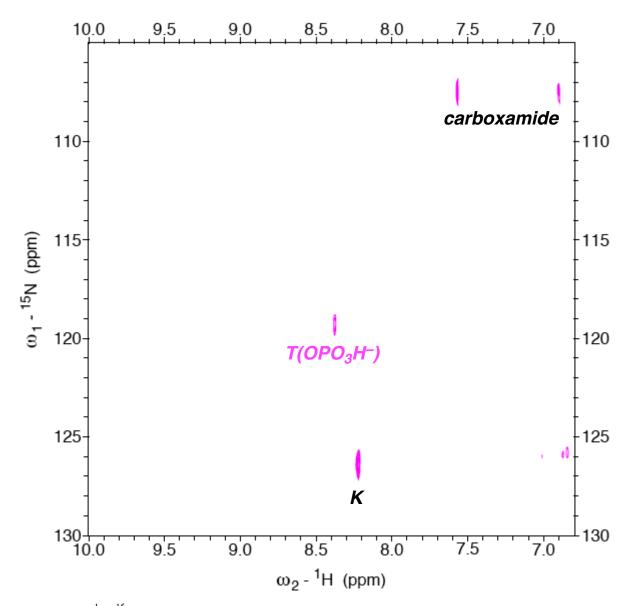
Summary of NMR data for peptides Ac-KTxPP-NH₂

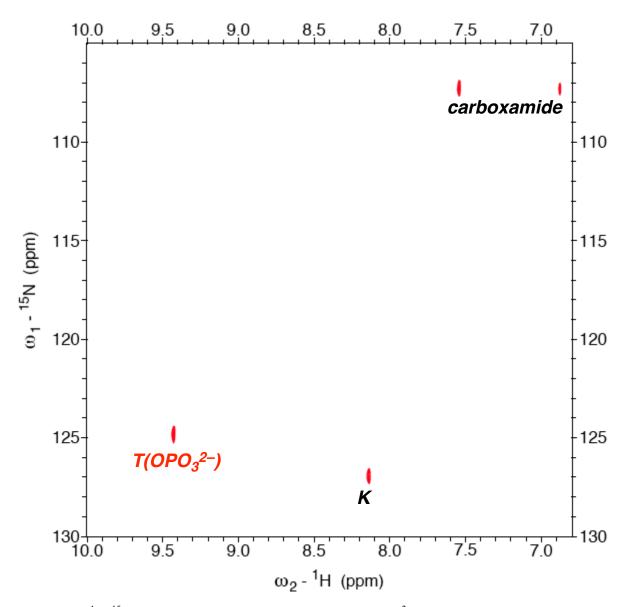

Table S21. Summary of ¹H NMR data for peptides Ac-K*Tx*PP-NH₂. ^{*a*} n.a. = not applicable. ^{*b*} n.d. = not determined. ^{*c*} Data obtained at pH 8.0.

peptide	δ, Η ^Ν	³ J αΝ	δ, Ηα	δ, C α	δ, C _{co}	others
Ac-KT(OPO ₃ H ⁻)PP-NH ₂	pH 4.0					
Lys	8.31	7.0	4.31	n.d.	n.d.	3.00, 1.83, 1.74, 1.68, 1.45
Thr	8.46	6.1	4.63	n.d.	n.d.	4.45, 1.37
Pro3	n.a.	n.a.	4.41	n.d.	n.d.	3.82, 3.67, 2.31, 2.05, 1.95
Pro4	n.a.	n.a.	n.d.	n.d.	n.d. 3.99	9, 3.73, 2.38, 2.10, 2.02, 1.90
Ac-						2.04
Ac-KT(OPO ₃ ^{-/2-})PP-NH ₂	pH 6.5	298 K				
Lys	8.27	7.0	4.32	n.d.	n.d.	3.03, 1.82, 1.75, 1.53
Thr	9.39	3.1	4.44	n.d.	n.d.	4.31, 1.37
Pro3	n.a.	n.a.	4.41	n.d.	n.d.	3.85, 3.68, 2.32, 2.06, 1.95
Pro4	n.a.	n.a.	n.d.	n.d.	n.d. 4.08	3, 3.73, 2.41, 2.11, 2.04, 1.93
Ac-						2.05
Ac-KT(OPO ₃ ^{2–})PP-NH ₂	pH 8.0	298 K				
Lys	8.24	6.8	4.32	53.6	173.8	3.03, 1.81, 1.75, 1.47
Thr	9.73	3.5	4.36	57.1	169.7	4.26, 1.37
Pro3	n.a.	n.a.	4.40	60.2	176.9	3.85, 3.68, 2.32, 2.06, 1.95
Pro4	n.a.	n.a.	4.70	59.0	n.d. 4.11	I, 3.75, 2.40, 2.11, 2.05, 1.93
Ac-					174.3	2.05
Ac-KT(OPO ₃ ^{-/2-})PP-NH ₂	pH 6.5	278 K				
Lys	8.41	6.9	4.14	n.d.	n.d.	2.86, 1.65, 1.58, 1.31
Thr	9.57	3.1	4.27	n.d.	n.d.	4.14, 1.22
Pro3	n.a.	n.a.	4.42	n.d.	n.d.	3.87, 3.70, 2.34, 2.07, 1.96
Pro4	n.a.	n.a.	4.74	n.d.	n.d.	4.11, 3.74, 2.42, 2.03, 1.92
Ac-						2.04
Ac-KT(OPO ₃ ^{2–})PP-NH ₂	pH 8.0	278 K				
Lys	8.39	6.8	4.13	n.d.	n.d.	2.86, 1.70, 1.57, 1.31
Thr	9.85	3.5	4.20	n.d.	n.d.	4.09, 1.21
Pro3	n.a.	n.a.	4.40	n.d.	n.d.	3.85, 3.67, 2.32, 2.06, 1.95
Pro4	n.a.	n.a.	4.74	n.d.		2, 3.74, 2.41, 2.11, 2.05, 1.90
Ac-	n.a.	n.a.		n.d.	n.d.	2.04


Table S22. Summary of ¹H NMR data for peptides Ac-K*Tx*PP-NH₂. ^{*a*} n.a. = not applicable. ^{*b*} n.d. = not determined due to overlap with water peak.

	δ, Η ^Ν	³ J αN, 8	δ, Ηα	δ, Η β	δ, Η ^Ν	$^{3}J_{\alpha N},$	δ, Ηα	
peptide	Thr	Thr	Thr	Thr	Lys	Lys	Lys	δ, Lys _{others} pH
KTPP	8.28	7.3	4.58	4.11	8.32	6.8	4.33	2.99, 1.81, 1.71, 1.43 4.0
KT(OPO₃H [–])PP	8.46	6.1	4.63	4.45	8.31	7.0	4.31	3.00, 1.83, 1.74, 1.68, 1.45 4.0
KT(OPO ₃ ^{2–})PP	9.73	3.5	4.27	4.14	8.24	6.8	4.32	3.03, 1.81, 1.75, 1.47 8.0
KT(OPO ₃ ^{2–})PP ^a	9.85	3.5	4.20	4.09	8.39	6.8	4.13	2.86, 1.70, 1.57, 1.31 8.0
KT(OGlcNAc)PP	8.01	6.4	4.59	4.13	8.34	7.0	4.31	3.01, 1.83, 1.73, 1.45 6.5
KT(OPO ₃ Et ₂)PP	8.47	8.4	4.88	4.67	8.30	7.0	4.32	3.16, 1.80, 1.72, 1.36 4.0


Table S23. Summary of ¹H NMR data for peptides Ac-K*Tx*PP-NH₂ at 298 K. ^{*a*} NMR at 278 K.


Figure S69. Partial ROESY spectrum of peptide Ac-KT(OPO₃²⁻)PP-NH₂ at pH 8.0 in 5 mM phosphate buffer containing 25 mM NaCl at 298 K. These data were used to assign the proline residues via the expected $C\alpha(i) \rightarrow HN(i+1)$ ROEs with the C-terminal carboxamide.

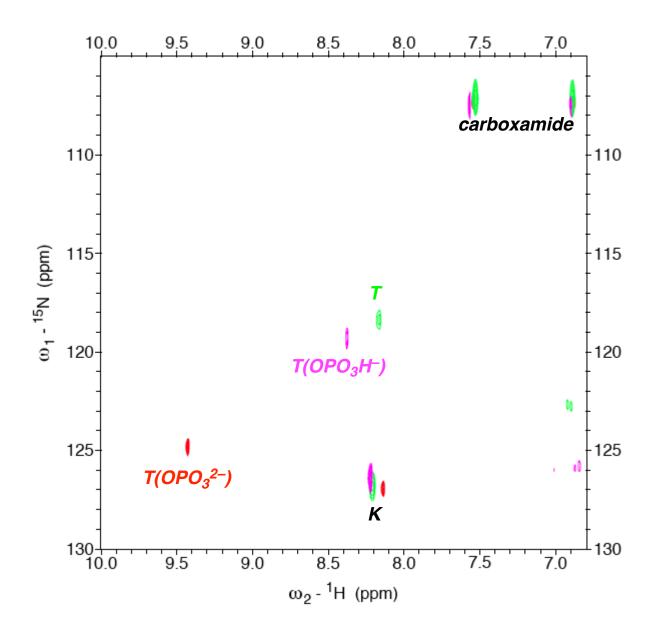
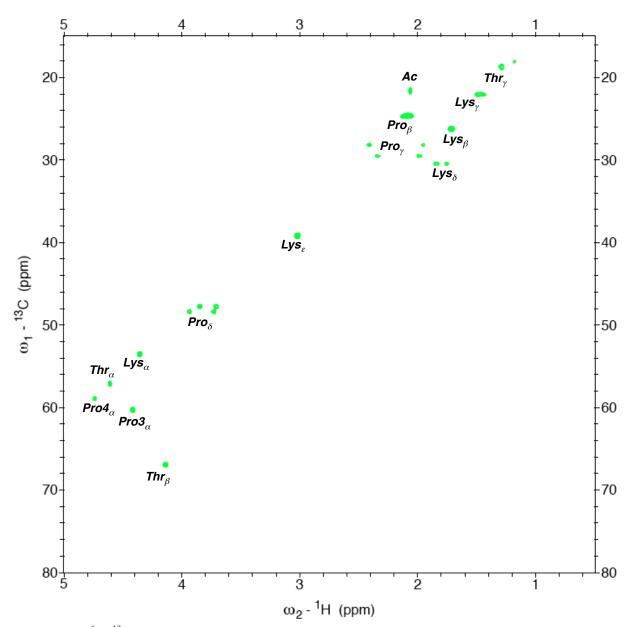
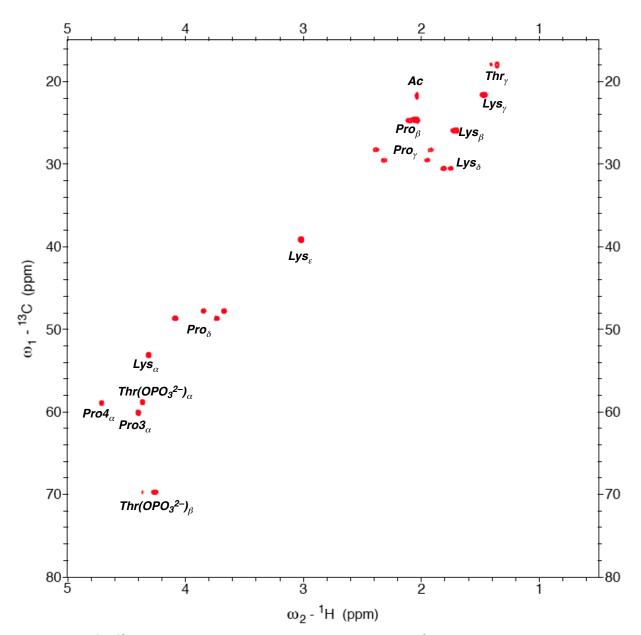
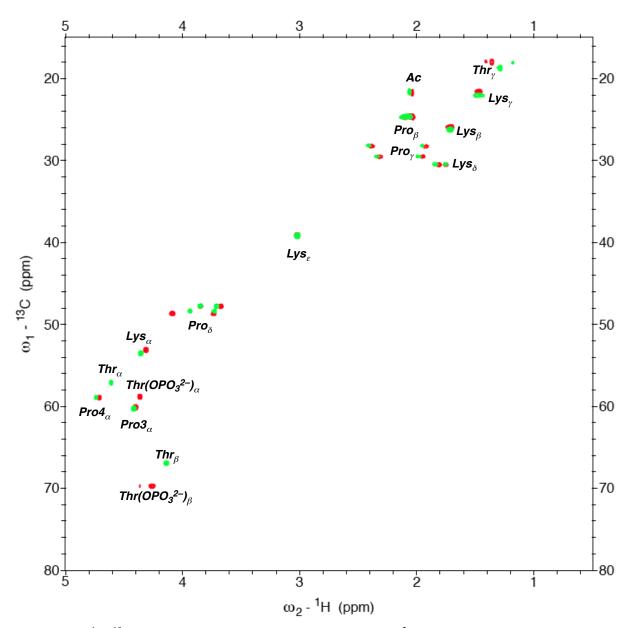

Figure S70. ¹H-¹⁵N HSQC spectrum of peptide Ac-KTPP-NH₂ at pH 6.5 in 5 mM phosphate buffer containing 25 mM NaCl at 298 K.

Figure S71. ¹H-¹⁵N HSQC spectrum of peptide Ac-KT(OPO₃H⁻)NH₂ at pH 4.0 in 5 mM phosphate buffer containing 25 mM NaCl at 298 K.


Figure S72. ¹H-¹⁵N HSQC spectrum of peptide Ac-KT(OPO_3^{2-})NH₂ at pH 7.2 in 5 mM phosphate buffer containing 25 mM NaCl at 298 K.


Figure S73. ¹H-¹⁵N HSQC spectra of peptides Ac-KTPP-NH₂ at pH 6.5 (green), Ac-KT(OPO₃^{2–})PP-NH₂ (red), and Ac-KT(OPO₃H[–])NH₂ (magenta) at 298 K. Data were collected with 1-2 mM peptide in 5 mM phosphate buffer (pH 4.0, 6.5, or 7.2) with 25 mM NaCl.

peptide	Thr _N , ppm	Lys _N , ppm	carboxamide, ppm	pH, temp (K)
Ac-KTPP-NH ₂	118.3	126.8	107.2	6.5, 298 K
Ac-KT(OPO ₃ H ⁻)PP-NH ₂	119.4	126.6	107.4	4.0, 298 K
Ac-KT(OPO ₃ ^{2–})PP-NH ₂	124.8	127.1	107.4	7.2, 298 K


Table S24. Summary of ¹H-¹⁵N HSQC NMR data for peptides Ac-K*Tx*PP-NH₂ at 298 K.

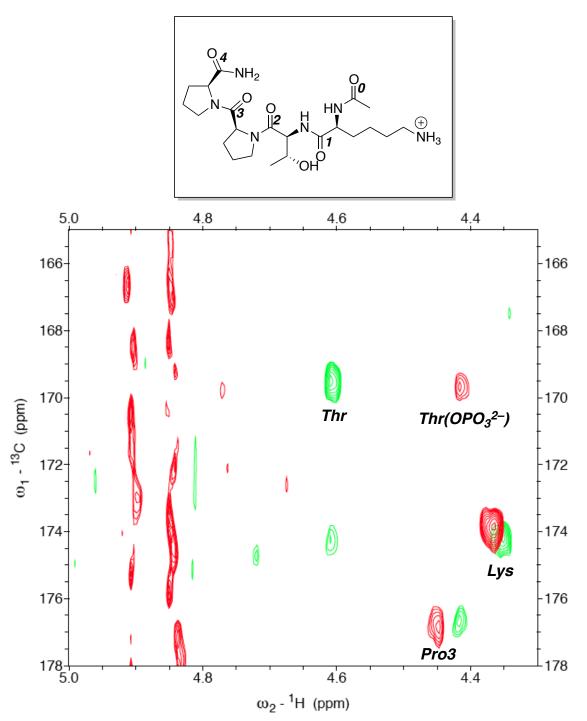

Figure S74. 1 H- 13 C HSQC spectrum of peptide Ac-KTPP-NH₂ at pH 4.0 in 5 mM phosphate buffer with 25 mM NaCl in 100% D₂O at 298 K.

Figure S75. ${}^{1}\text{H}{}^{-13}\text{C}$ HSQC spectrum of peptide Ac-KT(OPO₃²⁻)PP-NH₂ at pH 8.0 in 5 mM phosphate buffer with 25 mM NaCl in 100% D₂O at 298 K.

Figure S76. 1 H- 13 C HSQC spectra of peptides Ac-KT(OPO₃²⁻)PP-NH₂ (red) at pH 8.0 and Ac-KTPP-NH₂ (green) at pH 4.0 in 5 mM phosphate buffer with 25 mM NaCl in 100% D₂O at 298 K.

Figure S77. ¹H-¹³C HMBC spectra of peptides Ac-KTPP-NH₂ (green) and Ac-KT(OPO₃^{2–})PP-NH₂ (red) at pH 8.0 in 5 mM phosphate buffer with 25 mM NaCl in 100% D₂O at 298 K. The Pro4 (4) carbonyl carbon chemical shift could not be determined due to spectral overlap of H α with residual water.

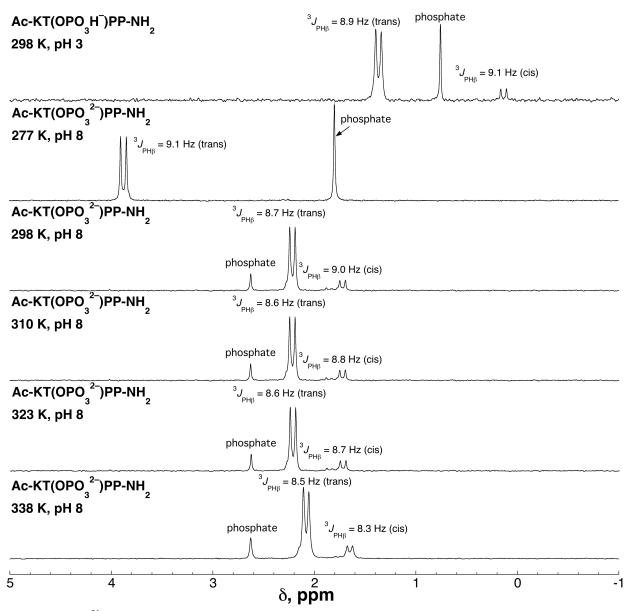

Ac-KTPP-NH ₂		Ac-KT(OPO ₃ ^{2–})PP-NH ₂	
residue	¹³ C δ, ppm	residue	$^{13}C \delta$, ppm
Lys, α	53.5	Lys, α	53.1
Thr, α	57.1	pThr, α	58.8
Ρro3 , α	58.9	Ρro3 , α	58.9
Pro4 , α	60.2	Pro4 , α	60.1
Thr, β	66.9	pThr, β	69.8
Ρro3 , δ	47.8	Ρro3 , δ	47.8
Ρro4 , δ	48.4	Pro4 , δ	48.7
Lys, ε	39.2	Lys, ε	39.2
Ρro3 , γ	28.2	Ρro3 , γ	28.2
Ρro4 , γ	29.6	Pro4 , γ	29.6
Lys, β	30.4	Lys, β	30.5
NHAc	21.6	NHAc	21.6
Pro3 , Pro4 , β	24.6	Pro3 , Pro4 , β	24.7
Lys, γ	22.1	Lys, γ	21.6
Lys, δ	26.3	Lys, δ	25.9
Thr, γ	18.7	pThr, γ	18.0
Lys, CO	174.2	Lys, CO	173.8
Thr, CO	169.5	pThr, CO	169.7
Pro3, CO	176.7	Pro3, CO	176.9
Pro4, CO	n.d.	Pro4, CO	n.d.
Ac, CO	174.3	Ac, CO	174.3

Table S25. Summary of ¹³C NMR data from ¹H-¹³C HSQC and HMBC experiments at 298 K. The spectra were recorded at pH 8.0 in 5 mM phosphate buffer with 25 mM NaCl in 100% D_2O at 298 K. pThr indicates a phosphorylated threonine residue.

Ac-KTPP-NH ₂		Ac-KT(OPO ₃ ²⁻)PP-NH ₂	
residue	¹³ C δ, ppm	residue	$^{13}C \delta$, ppm
Lys, α	53.2	Lys, α	52.8
Thr, $lpha$	57.0	pThr, α	58.5
Pro3, α	58.6	Ρro3 , α	58.7
Pro4, α	59.9	Pro4, α	59.8
Thr, β	66.6	pThr, β	69.4
Ρro3 , δ	47.6	Ρro3 , δ	47.5
Ρro4 , δ	48.1	Ρro4 , δ	48.4
Lys, ε	38.8	Lys, ε	38.8
Pro3 , γ	27.9	Pro3 , γ	28.0
Pro4, γ	29.2	Pro4, γ	29.3
Lys, β	30.1	Lys, β	30.1
Pro3 , β	21.2	Pro3 , β	21.3
Pro4, β	24.4	Pro4, β	24.5
Lys, γ	21.8	Lys, γ	21.4
Lys, δ	25.9	Lys, δ	25.7
Thr, γ	18.4	pThr, γ	17.7

Table S26. Summary of ¹³C NMR data from ¹H-¹³C HSQC experiments at 278 K. The spectra were recorded at pH 8.0 in 5 mM phosphate buffer with 25 mM NaCl in 100% D_2O at 278 K. pThr indicates a phosphorylated threonine residue.

³¹P NMR spectra of peptide Ac-KpTPP-NH₂

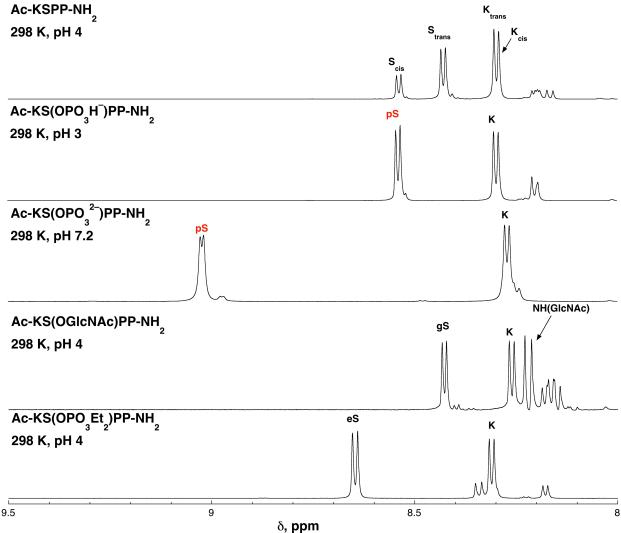
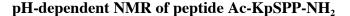
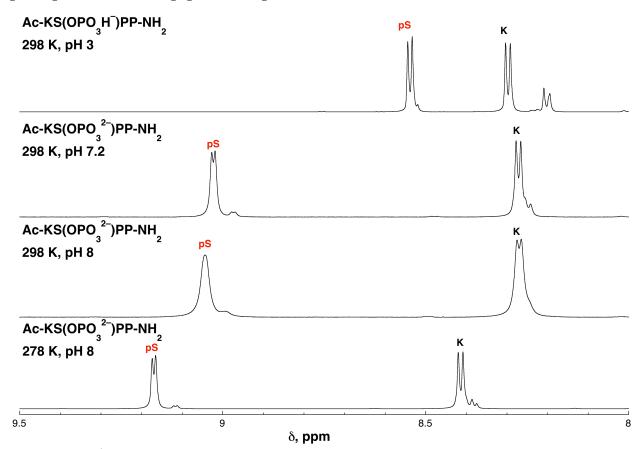


Figure S78. ³¹P NMR spectra of peptide Ac-KT(OPO₃H⁻)PP-NH₂ at pH 3.0 in 5 mM acetate buffer containing 50 μ M phosphate and 250 μ M NaCl and at pH 8.0 in 5 mM phosphate buffer containing 25 mM NaCl. The NMR spectra were internally referenced with 85% H₃PO₄ (0 ppm) using a capillary filled with H₃PO₄ located in the NMR tube containing the sample.


peptide	δ, P_{trans}	δ, P_{cis}	³ J _{PH} , trans	³ J _{PH₅} cis	рΗ	Temp, K
Ac-KT(OPO ₃ H ⁻)PP-NH ₂	1.37	0.14	8.9	9.1	3.0	298
Ac-KT(OPO3 ^{2–})PP-NH2	4.75	n.d.	9.1	n.d.	8.0	277
Ac-KT(OPO3 ^{2–})PP-NH2	2.22	1.72	8.7	9.0	8.0	298
Ac-KT(OPO3 ^{2–})PP-NH2	2.21	1.72	8.6	8.8	8.0	310
Ac-KT(OPO3 ^{2–})PP-NH2	2.22	1.72	8.6	8.7	8.0	323
Ac-KT(OPO ₃ ^{2–})PP-NH ₂	2.08	1.65	8.5	8.3	8.0	338


Table S27. Summary of ³¹P NMR data for peptide Ac-KpTPP-NH₂ at pH 3.0 (298 K) and pH 8.0 (277, 298, 310, 323, and 338 K). n.d. = not determined.

¹H NMR spectra of Ac-KSxPP-NH₂ peptides

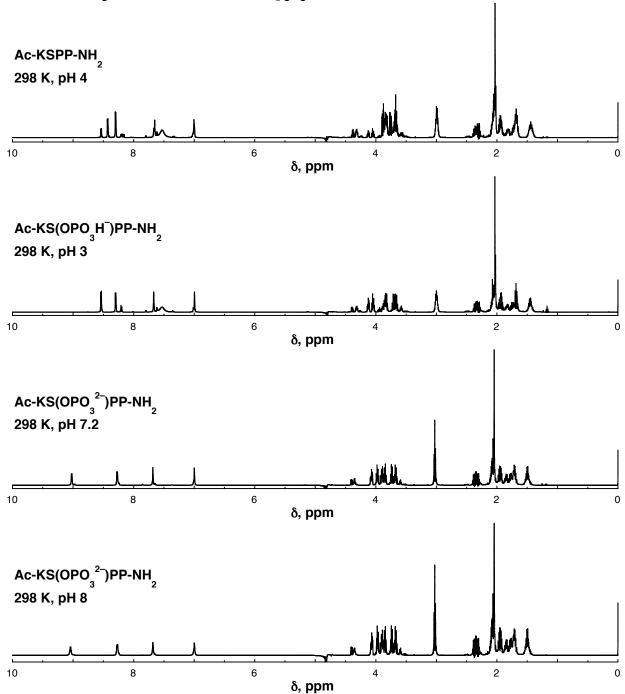


Figure S79. ¹H NMR spectra (amide region) of peptides Ac-K*Sx*PP-NH₂ at 298 K. Minor peaks in the NMR spectra are due to the presence of cis amide bonds. Peptides were dissolved in buffer containing 5 mM phosphate buffer (pH 3.0, 4.0, or 7.2) and were internally referenced with TSP. Solutions contained 25 mM NaCl, 100 μ M TSP, and 90% H₂O/10% D₂O.

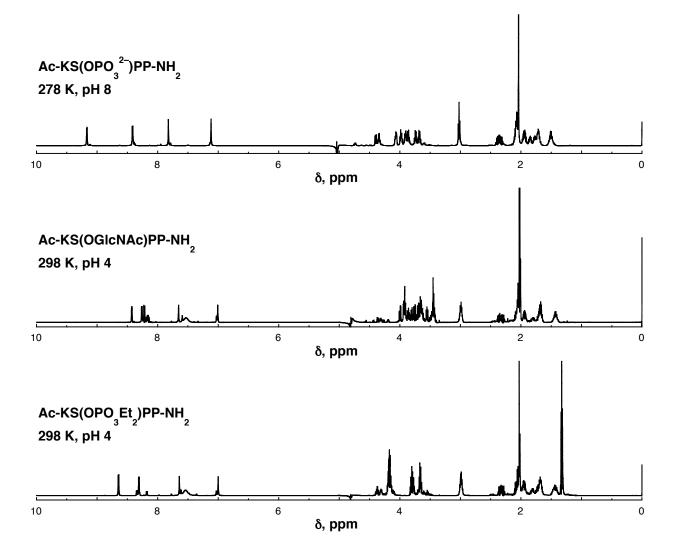
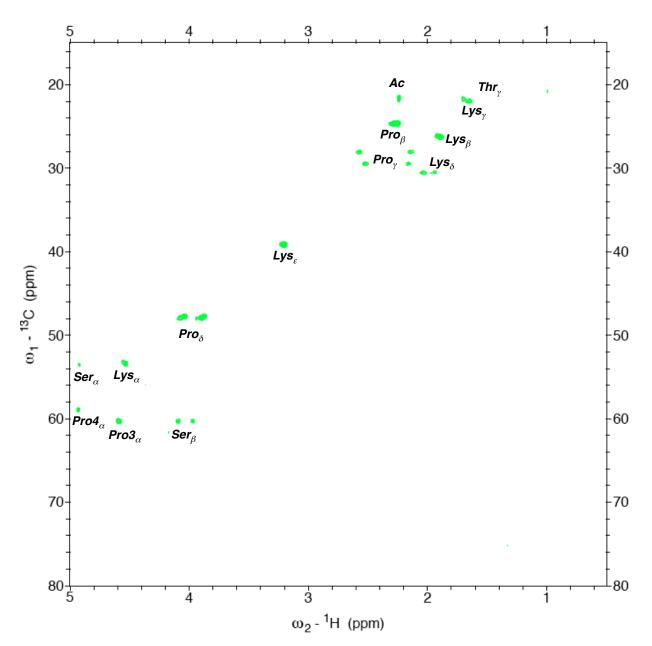
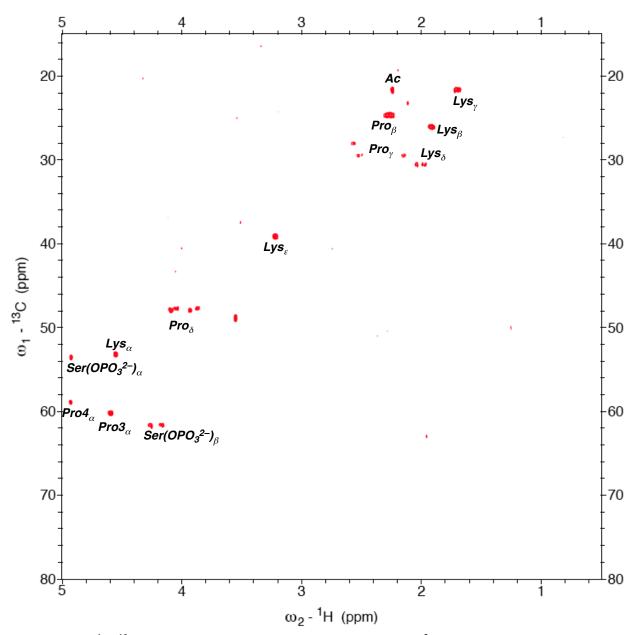


Figure S80. ¹H NMR spectra (amide region) of Ac-KpSPP-NH₂. Minor peaks in the NMR spectra are due to the presence of cis amide bonds. Peptides were dissolved in 5 mM phosphate buffer (pH 3.0, 7.2, or 8.0) and were internally referenced with TSP. Solutions contained 25 mM NaCl, 100 μ M TSP, and 90% H₂O/10% D₂O.

Full ¹H NMR spectra for Ac-KSxPP-NH₂ peptides



	δ, Η ^Ν	³ J _{αN} , δ	δ, Ηα	δ, Η ^Ν	³ J _{αN} , δ	δ, Ηα		
peptide	Ser	Ser	Ser δ, H _β Ser	Lys	Lys	Lys	δ, Lys (others)	рΗ
KSPP	8.42	6.8	4.75 3.89, 3.76	8.29	7.0	4.32 2.99	9, 1.82, 1.72, 1.44	4.0
KS(OPO₃H⁻)PP	8.54	6.5	4.85 4.12, 4.05	8.30	7.0	4.32 3.00), 1.83, 1.74, 1.43	3.0
KS(OPO3 ^{2–})PP	9.02	5.5	4.74 4.07, 3.97	8.27	7.1	4.35 3.03	3, 1.85, 1.77, 1.50	7.2
KS(OPO ₃ ^{2–})PP	9.05	n.d.	4.73 4.07, 3.97	8.27	7.1	4.35 3.03	3, 1.85, 1.77, 1.50	8.0
KS(OPO ₃ ^{2–})PP ^a	9.17	5.0	4.64 3.96, 3.88	8.42	6.9	4.24 2.92	2, 1.75, 1.67, 1.41	8.0
KS(OGIcNAc)PP	8.43	6.4	4.78 4.00, 3.92	8.26	7.2	4.32 2.99	9, 1.81, 1.69, 1.43	4.0
KS(OPO ₃ Et ₂)PP	8.64	7.6	4.99 4.39, 4.19	8.30	7.1	4.31 2.99	9, 1.81, 1.72, 1.44	4.0


Table S28. Summary of ¹H NMR data for peptides Ac-KSxPP-NH₂. The data were collected at 298 K in 5 mM phosphate buffer containing 25 mM NaCl. ^{*a*} NMR data were collected at 278 K.

peptide				
Ac-KSPP-NH ₂ , pH 4.0, 298K	δ, Ηα	δ, Ηβ	δ, Ηγ	δ, Ηδ
Pro3	4.38	2.05, 1.93	2.31, 2.05	3.82, 3.67
Pro4	n.d.	2.05, 1.93	2.37, 2.05	3.89, 3.76
Ac-KS(OPO ₃ H [−])PP-NH ₂ , pH 3.0, 298 K				
Pro3	4.39	2.05, 1.94	2.31, 2.05	3.83, 3.66
Pro4	4.72	2.03, 1.93	2.37, 2.08	3.86, 3.70
Ac-KS(OPO ₃ ²⁻)PP-NH ₂ , pH 7.0.2, 298 K				
Pro3	4.40	2.06, 1.96	2.32, 2.06	3.83, 3.67
Pro4	4.73	2.08, 1.94	2.37, 2.08	3.90, 3.73
Ac-KS(OPO ₃ ²⁻)PP-NH ₂ , pH 8.0, 298 K				
Pro3	4.40	2.06, 1.96	2.32, 2.06	3.85, 3.67
Pro4	4.73	2.08, 1.94	2.38, 2.08	3.90, 3.73
Ac-KS(OPO ₃ ²⁻)PP-NH ₂ , pH 8.0, 278 K				
Pro3	4.40	2.06, 1.95	2.32, 2.06	3.86, 3.68
Pro4	4.75	2.08, 1.93	2.38, 2.08	3.90, 3.74
Ac-KS(OGIcNAc)PP-NH ₂ , pH 4.0, 298 K				
Pro3	4.37	2.04, 1.94	2.30, 2.04	3.81, 3.66
Pro4	4.78	2.05, 1.94	2.38, 2.05	3.87, 3.64
Ac-KS(OPO ₃ Et ₂)PP-NH ₂ , pH 4.0, 298 K				
Pro3	4.37	2.05, 1.94	2.30, 2.05	3.81, 3.67
Pro4	n.d. ^a	2.03, 1.95	2.35, 2.07	3.78, 3.66

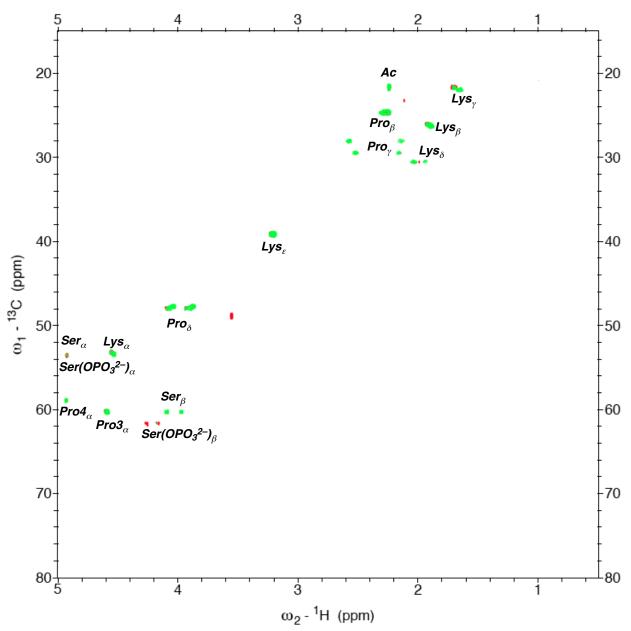

Table S29. ¹H NMR data for proline protons of peptides Ac-K*Sx*PP-NH₂. The peptides were dissolved in 5 mM phosphate buffer buffer containing 25 mM NaCl. ^{*a*} n.d. indicates not determined because the peak is in water peak.

Figure S81. 1 H- 13 C HSQC spectrum of peptide Ac-KSPP-NH₂ at pH 4.0 in 5 mM phosphate buffer with 25 mM NaCl in 100% D₂O at 298 K.

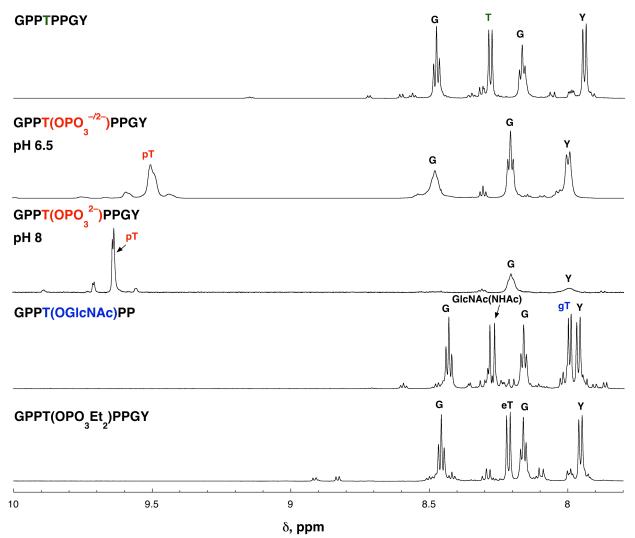

Figure S82. ${}^{1}\text{H}{}^{-13}\text{C}$ HSQC spectrum of peptide Ac-KS(OPO₃²⁻)PP-NH₂ at pH 8.0 in 5 mM phosphate buffer with 25 mM NaCl in 100% D₂O at 298 K.

Figure S83. ¹H-¹³C HSQC spectra of peptides Ac-KS(OPO_3^{2-})PP-NH₂ (red) at pH 8.0 and Ac-KSPP-NH₂ (green) at pH 4.0 in 5 mM phosphate buffer with 25 mM NaCl in 100% D₂O at 298 K.

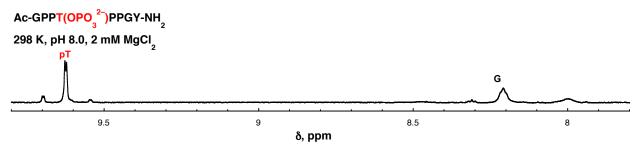
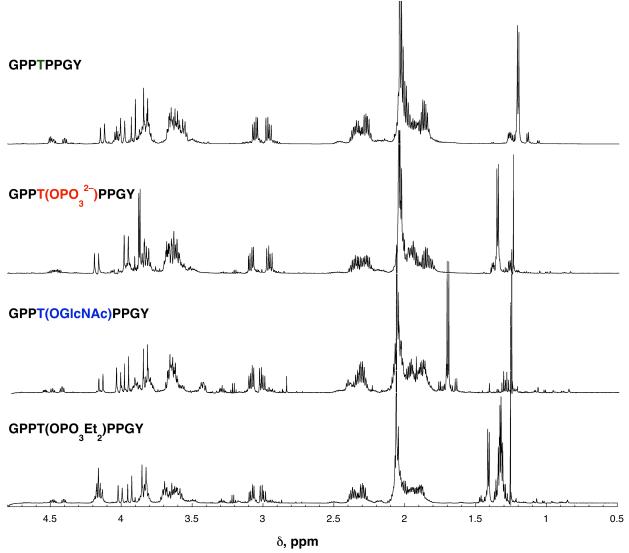

Ac-KSPP-NH ₂		Ac-KS(OPO ₃ ²⁻)PP-NH ₂	
residue	¹³ C δ, ppm	residue	¹³ C δ, ppm
Lys, α	53.4	Lys, α	53.2
Ser, α	53.6	pSer, α	53.6
Pro3, α	60.3	Pro3, α	60.2
Pro4, α	58.9	Pro4 , α	58.9
Ser, β	60.2	pSer, β	61.6
Ρro3 , δ	47.7	Ρro3 , δ	47.7
Pro4 , δ	47.9	Ρro4 , δ	48.0
Lys, ε	39.2	Lys, ε	39.1
Ρro3 , γ	28.0	Ρro3 , γ	28.0
Ρro4 , γ	29.5	Pro4 , γ	29.5
Lys, β	26.2	Lys, β	26.0
Ρro3 , β	21.6	Ρro3 , β	21.6
Pro4, β	24.6	Pro4 , β	24.7
Lys, γ	21.7	Lys, γ	21.6
NHAC	23.2	NHAC	23.2
Lys, δ	30.6	Lys, δ	30.6

Table S30. Summary of ¹³C NMR data from ¹H-¹³C HSQC experiments. The data were collected at pH 4.0 or pH 8.0 in 5 mM phosphate buffer with 25 mM NaCl in D_2O at 298 K. pSer indicates a phosphorylated serine residue.



¹H NMR spectra of Ac-GPP*Tx*PPGY-NH₂ peptides

Figure S84. ¹H NMR spectra (amide region) of peptides Ac-GPP*Tx*PPGY-NH₂ at 298 K. The peptide samples were dissolved in 5 mM phosphate buffer with 25 mM NaCl and 100 μ M TSP. NMR experiments were conducted at pH 4.0 unless otherwise specified.

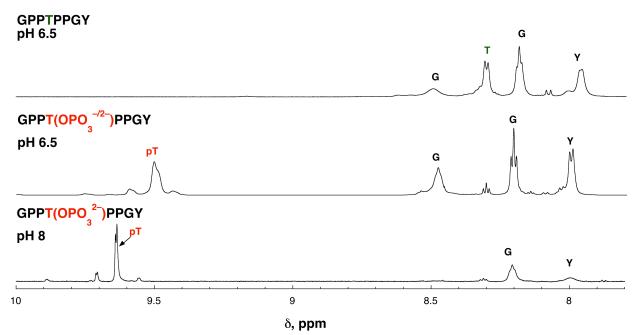
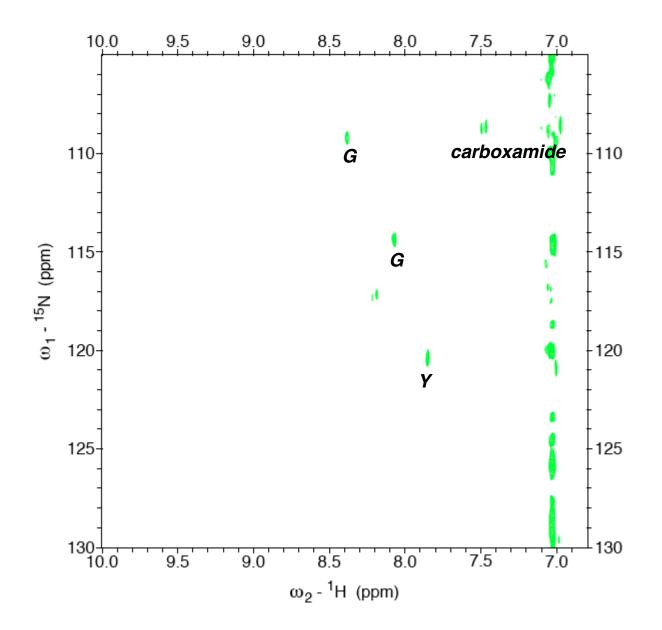


Figure S85. ¹H NMR spectrum (amide region) of Ac-GPPT(OPO_3^{2-})PPGY-NH₂ in the presence of 2 mM MgCl₂ at 298 K. The NMR spectrum is identical to the spectrum obtained in the absence of MgCl₂.


Figure S86. ¹H NMR spectra (aliphatic region) of Ac-GPP*Tx*PPGY-NH₂ peptides at 298 K in D₂O. The peptides were dissolved in 5 mM phosphate buffer pH 8.0 with 25 mM NaCl and 100 μ M TSP.

The modification on threonine produces structural effects which are evident on the diastereotopic β , γ , and δ protons of proline. In the case of the phosphorylated peptide, the diastereotopic proline δ protons are observed to be more dispersed ($\Delta H_{\delta} = 0.10$ ppm) compared to the unmodified peptide ($\Delta H_{\delta} = 0.07$ ppm) and OGlcNAc and diethylphosphoryl (OPO₃Et₂) peptides ($\Delta H_{\delta} = 0.06$ ppm). The more sterically demanding diethylphosphorated and O-GlcNAcylated peptides showed less dispersion of the δ protons compared to the phosphorylated peptide. This effect can also also be seen on proline H_{\beta} and H_{\gamma} protons.

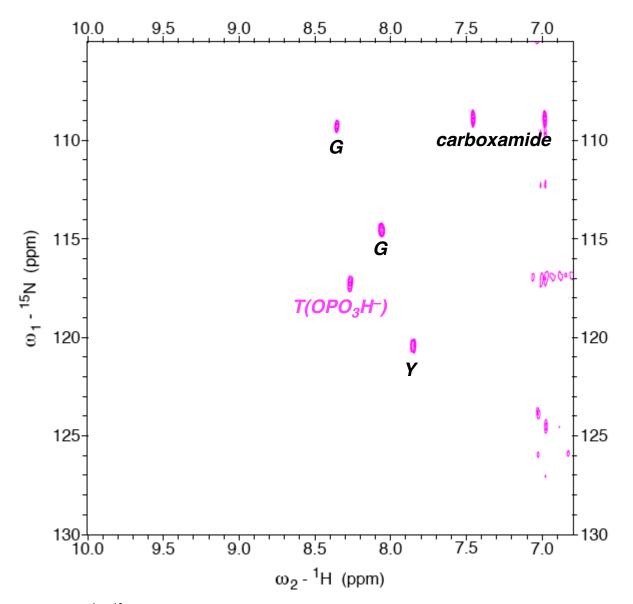


Figure S87. ¹H NMR spectra (amide region) of peptides Ac-GPPTPPGY-NH₂ at pH 6.5 and 8. The peptides were dissolved in 5 mM phosphate buffer (pH 8.0 or 6.5) containing 25 mM NaCl and 100 μ M TSP.

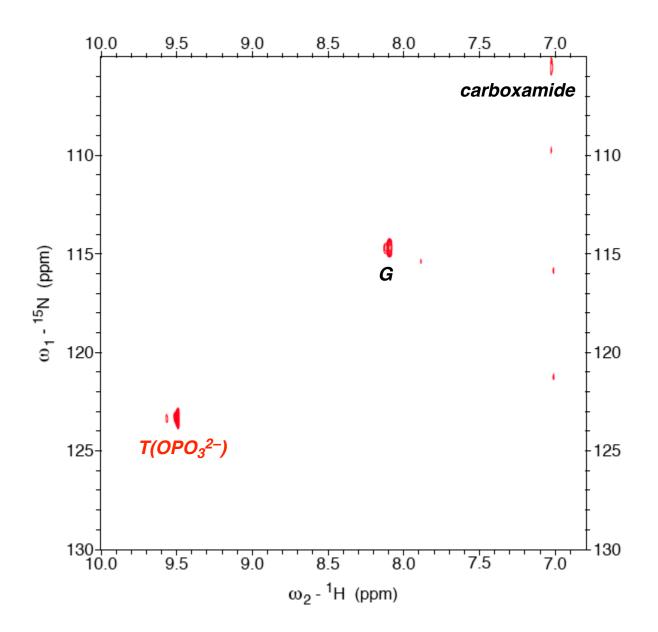

As noted previously for all phosphorylated tau peptides as well as the model peptides Ac-KpTPP-NH₂ and Ac-KpSPP-NH₂, the amide protons of phosphorylated residues were observed to be more downfield and better resolved at pH 8.0 compared to pH 6.5. This downfield shift and better resolved peaks for the amide protons for the phosphorylated residues at pH 8.0 are general for all the peptides analyzed in this study with the lone exception of tau₁₉₆₋₂₀₉, which showed amides in relatively faster exchange (peak broadening and reduced magnitude, as expected for disordered peptides), but nonetheless more downfield than the nonphosphorylated versions.


Figure S88. 1 H- 15 N HSQC spectrum of peptide Ac-GPPTPPGY-NH₂ at pH 4.0 in 5 mM phosphate buffer containing 25 mM NaCl at 298 K.

Figure S89. ¹H-¹⁵N HSQC spectrum of peptide Ac-GPPT(OPO₃H⁻)PPGY-NH₂ at pH 4.0 in 5 mM phosphate buffer containing 25 mM NaCl at 298 K.

Figure S90. ¹H-¹⁵N HSQC spectrum of peptide Ac-GPPT(OPO₃²⁻)PPGY-NH₂ at pH 8.0 in 5 mM phosphate buffer containing 25 mM NaCl at 298 K.

Figure S91. ¹H-¹⁵N HSQC spectra of peptides Ac-GPPTPPGY-NH₂ at pH 4.0 (green), Ac-GPPT(OPO₃^{2–})PPGY-NH₂ (red) (pH 8.0), and Ac-GPPT(OPO₃H[–])PPGY-NH₂ (magenta) (pH 4.0) at 298 K. Data were collected with 1–2 mM peptide in 5 mM phosphate buffer (pH 4.0 or 8.0) with 25 mM NaCl.

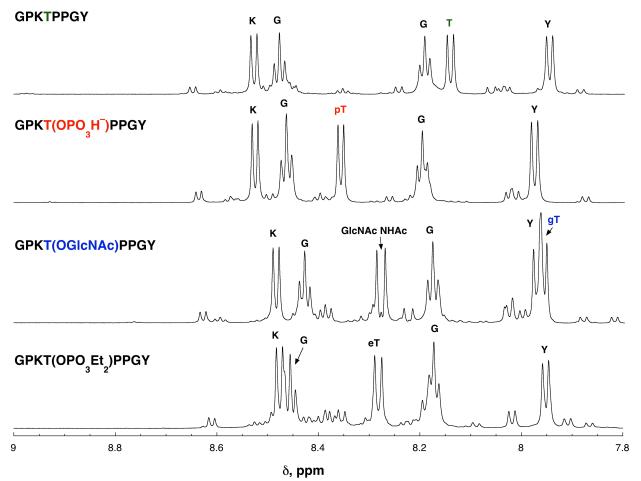

	δ, Η ^ℕ	³ <i>J</i> αN,	δ, Ηα	δ, Η β		δ, Η ^ℕ	$^{3}J_{\alpha N},$	
peptide	Thr	Thr	Thr	Thr	δ, H ^N Gly	Tyr	Tyr	рΗ
GPPTPPGY	8.29	7.3	4.51	4.05	8.49, 8.18	7.95	7.3	4.0
GPPT(OPO₃H⁻)PPGY	8.40	6.5	4.63	4.47	8.48, 8.17	7.97	7.5	4.0
GPPT(OPO3 ^{-/2-})PPGY	9.50	n.d. ^a	4.42	4.30	8.46, 8.20	7.99	n.d.	6.5
GPPT(OPO3 ^{2–})PPGY	9.64	3.5	4.33	4.25	8.21, n.d.	7.99	n.d.	8.0
GPPT(OPO3Et2)PPGY	8.22	7.9	4.65	n.d.	8.47, 8.18	7.97	7.3	6.5
GPPT(OPO3Et2)PPGY	8.22	n.d.	4.65	4.65	8.47, 8.17	7.97	n.d.	7.5
GPPT(OGIcNAc)PPGY	8.01	n.d.	4.51	4.07	8.45, 8.18	7.98	n.d.	7.5
GPPT(OGlcNAc)PPGY	8.01	5.9	4.51	4.07	8.45, 8.18	7.98	7.2	6.5

Table S31. Summary of ¹H NMR data for peptides Ac-GPP*Tx*PPGY-NH₂. Data were collected with 100–200 μ M peptide at 298 K in 5 mM phosphate buffer (pH 4.0, 6.5, 7.5, or 8.0) with 25 mM NaCl. ^{*a*} n.d. = not determined due to rapid amide exchange.

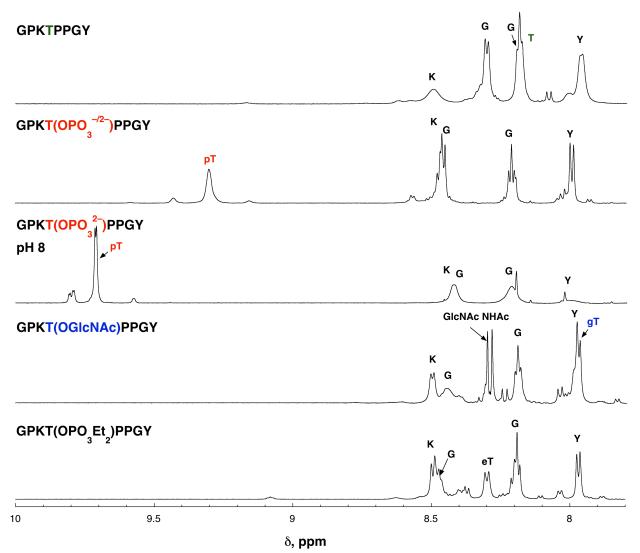

	Thr _N ,		Tyr _N ,	carboxamide,	
peptide	ppm	Gly _N , ppm	ppm	ppm	pH, temp
Ac-GPPTPPGY-NH ₂	117.2	109.2, 114.4	120.4	108.7	4.0, 298 K
Ac-GPPT(OPO ₃ H ⁻)PPGY-NH ₂				108.9	4.0, 298 K
Ac-GPPT(OPO3 ²⁻)PPGY-NH2	123.4	n.d., 114.7	n.d.	105.5	8.0, 298 K

Table S32. Summary of ${}^{1}\text{H}{}^{15}\text{N}$ HSQC NMR data for peptides Ac-GPP*Tx*PPGY-NH₂. Data were collected with 2–3 mM peptide at 298 K in 5 mM phosphate buffer (pH 4.0 or 8.0) with 25 mM NaCl. ^{*a*} n.d. = not determined due to rapid amide exchange.

¹H NMR spectra of Ac-GPK*Tx*PPGY-NH₂ peptides

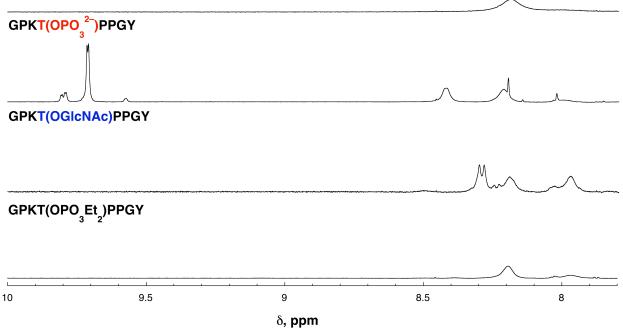
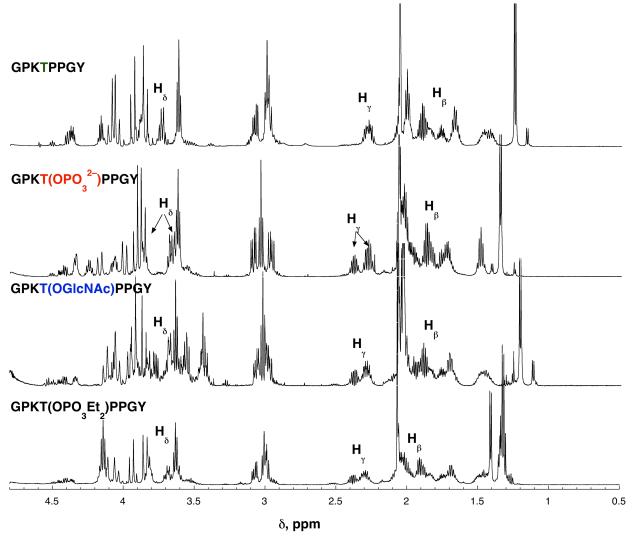


Figure S92. ¹H NMR spectra (amide region) of peptides Ac-GPK*Tx*PPGY-NH₂ at 298 K. The peptide samples were dissolved in 5 mM phosphate buffer buffer pH 4.0 with 25 mM NaCl and 100 μ M TSP.


Figure S93. ¹H NMR spectra (amide region) of peptides Ac-GPK*Tx*PPGY-NH₂ at 298 K. The peptide samples were dissolved in 5 mM phosphate buffer with 25 mM NaCl and 100 μ M TSP (pH 6.5 unless otherwise indicated).

GPKTPPGY

Figure S94. ¹H NMR spectra (amide region) of peptides Ac-GPK*Tx*PPGY-NH₂ at pH 8.0 (298 K). The peptide samples were dissolved in 5 mM phosphate buffer pH 8.0 with 25 mM NaCl and 100 μ M TSP.

All peptides in Ac-GPK*Tx*PPGY-NH₂ series were analyzed at pH 8.0 to examine amide exchange. All peptides except the phosphorylated peptide Ac-GPKT(OPO_3^{2-})PPGY-NH₂ showed rapid amide exchange with water at pH 8.0.

Figure S95. ¹H NMR spectra (aliphatic region) of peptides Ac-GPK*Tx*PPGY-NH₂ at pH 8.0 at 298 K. The peptide samples were dissolved in 5 mM phosphate buffer pH 8.0 with 25 mM NaCl and 100 μ M TSP.

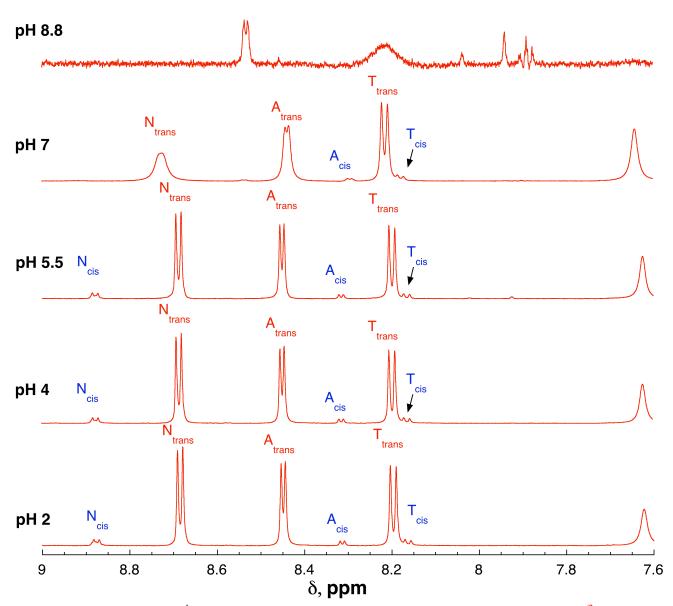
The effect of threonine side chain modification was propagated through the length of the peptide, as is evident from chemical shift differences in the H $_{\beta}$, H $_{\gamma}$, and H $_{\delta}$ protons of proline. The phosphorylated peptide notably showed greater dispersion of the diastereotopic H $_{\delta}$ protons than any of the other peptides.

Summary of NMR data for peptides Ac-GPKTxPPGY-NH₂

peptide	δ, H^N	δ, Ηα	δ,H_β,H_γ	δ, Η ^Ν	δ, Ηα		δ, Lys	(others)	δ, H^N	δ, Ηα	δ, Hβ Tyr	δ, H^N	pН
popilido	Thr	Thr	Thr	Lys	Lys				Tyr	Tyr		Gly	P
GPKTPPGY	8.14	4.52	4.05, 1.20	8.52	4.37	3.00,	1.84, 1	.75, 1.68	7.94	4.48	3.06, 2.97	8.48, 8.19	4.0
GPKT(OPO₃H⁻)PPGY	8.35	4.63	4.45, 1.34	8.52	4.30 3.00,	, 1.84,	1.78, 1	.69, 1.47	7.97	4.50	3.08, 2.95	8.46, 8.20	3.0
GPKT(OPO3 ^{-/2-})PPGY	9.32	4.31	4.23, 1.35	8.46	4.33	3.03,	1.84, 1	.77, 1.48	8.00	4.51	3.09, 2.97	8.48, 8.22	6.5
GPKT(OPO3 ^{2–})PPGY	9.72	4.34	4.24, 1.35	8.43	4.34	3.04,	1.83, 1	.74, 1.49	7.97	4.39	3.08, 2.93	n.d., 8.20	8.0
GPKT(OPO ₃ Et ₂)PPGY	8.28	4.59	n.d., 1.39	8.47	4.34 2.99,	, 1.82,	1.74, 1	.67, 1.43	7.95	4.47	3.05, 2.98	8.46, 8.17	4.0
GPKT(OPO ₃ Et ₂)PPGY	8.29	4.60	4.60, 1.40	8.50	4.36	3.01,	1.84, 1	.75, 1.45	7.97	4.49	3.07, 3.00	8.48, 8.19	6.5
GPKT(OGIcNAc)PPGY	7.96	4.53	4.06, 1.19	8.49	4.33	3.01,	1.82, 1	.75, 1.46	7.97	4.48	3.05, 2.97	8.43, 8.18	4.0
GPKT(OGIcNAc)PPGY	7.98	4.55	4.07, 1.21	8.50	4.34	3.02,	1.84, 1	.76, 1,46	7.99	4.49	3.06, 2.98	8.45, 8.19	6.5

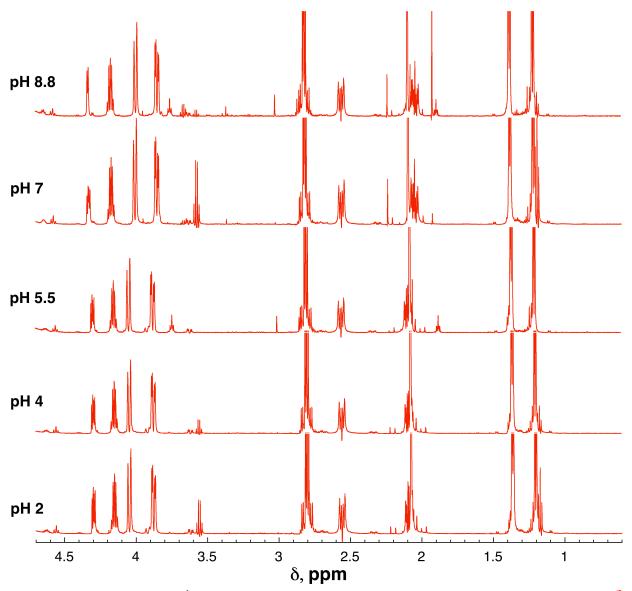
Table S33. Summary of ¹H NMR data of peptides Ac-GPK*Tx*PPGY-NH₂ at 298 K. n.d. indicates not determined due to spectral overlap or fast amide exchange.

	δ, H^N	³ J αN,	δ, H_{α}	δ, Η β	δ, Η ^Ν	³ J _{αN} ,	δ,H_{α}	δ, Η ^Ν	³ J αN,	δ, Hα Tyr	nН
peptide	Thr	Thr	Thr	Thr	Lys	Lys	Lys	Tyr	Tyr	Tyr	P
Ac-GPKTPPGY-NH ₂	8.14	7.4	4.52	4.05	8.52	7.2	4.37	7.94	7.2	4.48	4.0
Ac-GPKT(OPO ₃ H ⁻)PPGY-NH ₂	8.35	6.7	4.63	4.45	8.52	6.8	4.30	7.97	7.4	4.50	3.0
Ac-GPKT(OPO3 ^{-/2-})PPGY-NH ₂	9.32	n.d.	4.31	4.23	8.46	6.8	4.33	8.00	7.4	4.51	6.5
Ac-GPKT(OPO3 ²⁻)PPGY-NH2	9.72	3.5	4.34	4.24	8.43	n.d.	4.34	7.97	n.d.	4.39	8.0
Ac-GPKT(OPO ₃ Et ₂)PPGY-NH ₂	8.28	8.3	4.59	n.d.	8.47	7.3	4.34	7.95	7.2	4.47	4.0
Ac-GPKT(OPO ₃ Et ₂)PPGY-NH ₂	8.29	8.3	4.60	4.60	8.50	7.3	4.36	7.97	7.3	4.49	6.5
$\label{eq:ac-GPKT} \text{Ac-GPKT}(\text{OGlcNAc})\text{PPGY-NH}_2$	7.96	6.7	4.53	4.06	8.49	7.1	4.33	7.97	7.2	4.48	4.0
Ac-GPKT(OGIcNAc)PPGY-NH2	7.98	6.5	4.55	4.07	8.50	6.8	4.34	7.99	n.d.	4.49	6.5

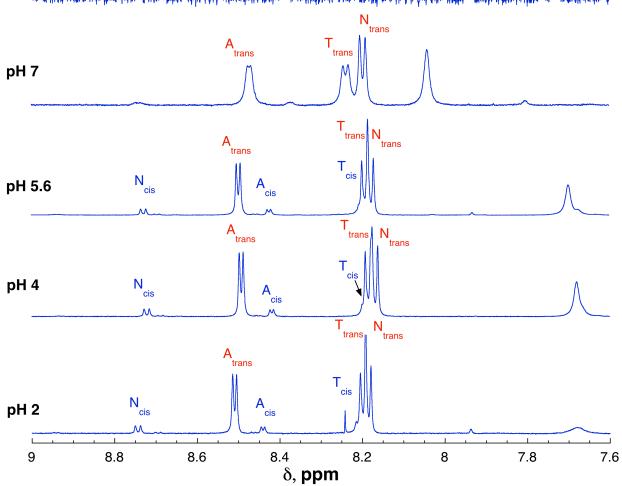

Table S34. ¹H NMR data (${}^{3}J_{\alpha N}$ values and key proton chemical shifts) for peptides Ac-GPK*Tx*PPGY-NH₂ at 298 K. n.d. = not determined due to spectral overlap or fast amide exchange.

Analysis of steric vs stereoelectronic effects in Ac-TYProxN-NH₂ and Ac-TAProxN-NH₂ peptides

To understand the conformational effects of phosphorylation via model peptides used to quantify steric and stereoelectronic effects of substituents², the peptides Ac-TYProxN-NH₂ were synthesized (Prox = 4-substituted prolines). Peptides were post-synthetically modified via proline editing to introduce 4R-phosphate, 4S-phosphate, 4R-diethylphosphate, and 4Sdiethylphosphate on 4-hydroxyproline. To eliminate the effects on structure due to potential interactions with the hydrophobic tyrosine residue, the peptides Ac-TAProxN-NH₂ were also synthesized and post-synthetically modified to generate peptides with modified prolines with 4Rphosphate, 4S-phosphate, 4R-diethylphosphate, and 4S-diethylphosphate substitutions. All peptides thus synthesized were analyzed via ¹H NMR spectroscopy for their conformational effects based upon steric and stereoelectronic effects.² The phosphorylated peptides were also analyzed as a function of pH to interrogate the effects as a function of phosphate protonation state. The data from ref. 2 on Ac-TYProxN-NH₂ peptides and Ac-TAProxN-NH₂ peptides, other than pH-dependent Ac-TAProxN-NH₂ phosphorylated hydroxyprolines, which were not reported, indicate a smaller magnitude of stereoelectronic effect for diethylphosphates than observed in hydroxyprolines or phosphorylated hydroxyprolines. This result is in contrast to the expectation that the hydroxyproline diethylphosphates should be the most electron-withdrawing, and thus have the largest stereoelectronic effects. Indeed, the diethylphosphorylated serine and threonine residues had the most downfield-shift HB chemical shifts of all peptides examined, consistent with the expected greater electron-withdrawing effect of the diethylphosphates. These data support the concept that the diethylphosphate functions significantly sterically, with the steric effect at least partially counterbalancing the stereoelectronic effect in these peptides, as was also seen in the larger ${}^{3}J_{eN}$ for serine and threonine diethylphosphates (Table 1).

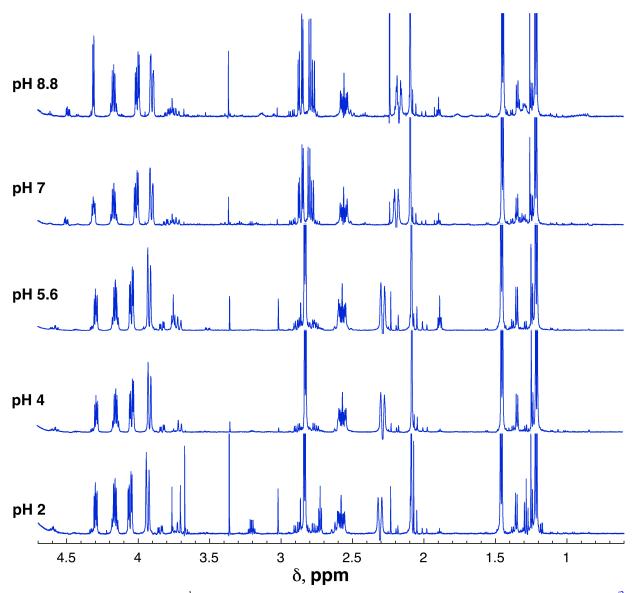

pH-dependent NMR data on Ac-TA*Prox*N-NH₂ phosphorylated hydroxyprolines (below) were consistent with data on Ac-TY*Prox*N-NH₂ phosphorylated hydroxyprolines (ref. 2), indicating that the stereoelectronic effects of phosphorylation, whether as a monoanionic phosphate or a dianionic phosphate, are relatively similar to those of a hydroxy group. Thus, the structural effects observed due to phosphorylation are not likely to be due to a change in the stereoelectronic effect of a hydroxyl group versus a phosphate.

The diastereotopic β -protons of proline (H_{β}) are more dispersed in the 4*R* configuration relative to 4*S* configuration. A characteristic splitting pattern is observed for the two diastereotopic β -protons (H_{β}). A reversal in the splitting pattern based upon the 4*R* or 4*S* configuration on the C γ of proline indicated reversal in ring pucker preferences. Similar observations based upon sterics and stereoelectronics were described recently on a large series of 4-substituted prolines in Ac-TY*Prox*N-NH₂ and Ac-TA*Prox*N-NH₂ peptide context.²



pH-dependent ¹H NMR analysis for peptides Ac-TAP(4*R*-OPO₃^{-/2-})N-NH₂ and Ac-TAP(4*S*-OPO₃^{-/2-})N-NH₂

Figure S96. pH-dependent ¹H NMR spectra (amide region) of peptide Ac-TAP($\frac{4R-OPO_{3}^{-/2-}}{N+NH_{2}}$.


Figure S97. pH-dependent ¹H NMR spectra (aliphatic region) of peptide Ac-TAP(4R-OPO₃^{-/2-})N-NH₂.

and the stade the plan phenomenable the second state and the phenomenable the second state and the

рН 8.8

Figure S98. pH-dependent ¹H NMR spectra (amide region) of peptide Ac-TAP(4S-OPO₃^{-/2-})N-NH₂.

Figure S99. pH-dependent ¹H NMR spectra (aliphatic region) of peptide Ac-TAP(4S-OPO₃^{-/2-})N-NH₂.

Ac-TAP(4-X)N-NH ₂	K _{trans/cis}	$\Delta G_{\rm trans/cis}$,	³ <i>J</i> αΝ	³ <i>J</i> αΝ	δ,H^N	δ,H^N	δ, H^N	pН	
X =		kcal mol ⁻¹ kcal mol ⁻¹		Ala _{cis} A	Ala _{trans}	Alacis	Asn _{trans}	·	
4 <i>R</i> -OPO₃H [−]	21.1	-1.80	-0.40	6.1	5.7	8.31	8.44	8.68	2.0
4 <i>S</i> -OPO₃H⁻	8.2	-1.25	0.15	5.0	5.6	8.44	8.51	8.18	2.0
4 <i>R</i> -OPO₃H [−]	18.2	-1.72	-0.32	5.9	5.7	8.32	8.45	8.69	4.0
4 <i>S</i> -OPO₃H⁻	8.5	-1.27	0.13	4.8	6.0	8.42	8.49	8.17	4.0
4 <i>R</i> -OPO ₃ ^{-/2-}	21.0	-1.80	-0.40	6.1	5.7	8.31	8.45	8.68	5.6
4 <i>S</i> -OPO ₃ ^{-/2-}	8.6	-1.27	0.13	4.9	5.6	8.42	8.49	8.17	5.6
4 <i>R</i> -OPO ₃ ^{-/2-}	18.5	-1.73	-0.33	n.a. ^b	4.9	8.53	8.43	8.73	7.0
4 <i>S</i> -OPO ₃ ^{-/2-}	8.9	-1.29	0.11	n.a.	n.a.	8.37	8.47	8.19	7.0
4 <i>R</i> -OPO ₃ ²⁻	n.d. ^a	n.d.	n.d.	n.a.	n.a.	n.a.	n.a.	n.a.	8.8
4 <i>S</i> -OPO ₃ ²⁻	7.5	-1.19	0.21	n.a.	n.a.	n.a.	n.a.	n.a.	8.8

Table S35. Summary of pH-dependent ¹H NMR data of peptides Ac-TAP(4S-OPO₃^{-/2-})N-NH₂ and Ac-TAP(4S-OPO₃^{-/2-})N-NH₂. ^{*a*} n.d. = not determined due to spectral overlap. ^{*b*} n.a. = not applicable.

Summary of serine and threonine NMR chemical shift data across all peptides as a function of residue and post-translational modification

peptide tau ₁₇₄₋₁₈₃ tau ₁₇₄₋₁₈₃	ThrOPO ₃ ²⁻ 9.73 9.68	ThrOPO ₃ ²⁻ 7 9.08 8.96	ThrOPO₃H ⁻ 8.45 8.38	SerOPO ₃ ²⁻	SerOPO ₃ ^{-/2-}	SerOPO₃H⁻	Thr 8.29 8.22	Ser 1	hrOGlcNAc 7.97 7.96	SerOGIcNAc	ThrOPO₃Et ₂ 8.42 8.28	SerOPO ₃ Et ₂
tau ₁₉₆₋₂₀₉ tau ₁₉₆₋₂₀₉ tau ₂₁₁₋₂₁₉	9.67 9.66	8.50 8.62	8.58	8.78 8.69 9.17	8.49 8.45 8.62	8.58	8.07 8.34	8.23 8.18 8.41	8.19 8.03	8.28 8.18 8.15	8.43 8.29	8.48 8.36 8.48
tau ₂₁₁₋₂₁₉ tau ₂₁₁₋₂₁₉ tau ₂₂₉₋₂₃₈ tau ₂₂₉₋₂₃₈	9.39 9.49	8.42 8.80	8.40 8.38	9.21 9.05	8.96 8.74	8.75 8.59	8.21 8.23	8.40 8.25	7.93 8.02	8.42 8.40	8.19 8.37	8.69 8.59
KTPP KSPP GPPTPPGY	9.73 9.64	9.50	8.46 8.40	9.05		8.54	8.30 8.29	8.42	8.01 8.01	8.43	8.47 8.22	8.64
GPKTPPGY mean standard dev	9.72 9.63 0.12	8.95	8.35 8.43 0.07	8.99 0.21	8.65 0.21	8.62	8.14 8.23 0.09	8.32 0.11	7.98 8.01 0.07	8.31 0.12	8.29 8.33 0.10	8.54 0.12

Table S36. Summary of serine and threonine amide NMR chemical shift data for all peptides.

peptide tau ₁₇₄₋₁₈₃ tau ₁₇₄₋₁₈₃	ThrOPO ₃ ²⁻ 4.39 4.37	ThrOPO ₃ - ^{-2−} T I 4.55 4.51	hrOPO₃H ⁻ 4.67 4.64	SerOPO ₃ ²⁻	SerOPO₃ ^{-/2-}	SerOPO₃H⁻	Thr 4.59 4.58	Ser	ThrOGIcNAc 4.58 4.58	SerOGIcNAc	ThrOPO₃Et ₂ 4.87 4.87	SerOPO ₃ Et ₂
tau ₁₉₆₋₂₀₉ tau ₁₉₆₋₂₀₉		4.53			4.90 4.69		4.63	4.45 4.43	4.70	4.59 4.57	4.91	5.04 4.99
tau ₂₁₁₋₂₁₉ tau ₂₁₁₋₂₁₉	4.41 4.30		4.65 4.53	4.42	4.53		4.55 4.48	4.44	4.53 4.34	4.54	4.82 4.74	4.62
tau ₂₂₉₋₂₃₈ tau ₂₂₉₋₂₃₈	4.37	4.56	4.67	4.74 4.46	4.85 4.52		4.57	4.48 4.45	4.56	4.85 4.61	4.86	5.01 4.71
KTPP KSPP GPPTPPGY	4.27 4.33	4.42	4.63 4.63	4.73		4.85	4.58 4.51	4.75	4.59 4.51	4.78	4.88 4.65	4.99
GPKTPPGY mean standard dev	4.34 4.35 0.05	4.50	4.63 4.63 0.10	4.59 0.17	4.70 0.18		4.52 4.56 0.05	4.50 0.12	4.55 4.55 0.09	4.66 0.13	4.60 4.80 0.11	4.89 0.18

Table S37. Summary of serine and threonine H_{α} NMR chemical shift data for all peptides.

peptide tau,74-183 tau,14-183 tau,196-209 tau,196-209 tau,196-209 tau,196-209 tau,212-219 tau,229-238 tau,229-238 tau,229-238	ThrOPO ₃ - 4.26 4.26 4.30 4.30 4.28 4.29	ThrOPO ₃ ⁻⁴⁻ T 4.37 4.38 4.53 4.53 4.46	hrOPO₃H ⁻ 4.48 4.47 4.42 4.11 4.57	4.09 3.97 4.13 4.07 4.08 3.98	4.22 4.11 4.22 4.10 4.14 4.20 4.12 4.12 4.14	4.11 4.11 4.24 4.15 4.15	Thr 4.11 4.13 4.19 4.15 4.11 4.12	Ser Th 3.85 3.79 3.88 3.87 3.85 3.94 3.94 3.93 3.93 3.88	4.13 4.10 4.27 4.11 4.06 4.10	3.72 3.57 3.64 3.55 3.54 3.43 4.12 4.01 4.02 3.96	ThrOPO_3Et ₂ 4.66 4.66 4.66 4.70 4.47 4.66	SerOPO ₃ Et ₂ 4.40 4.24 4.39 4.26 4.35 4.41 4.41 4.42 4.23
KTPP KSPP KSPP GPPTPPGY GPKTPPGY	4.26 4.25 4.24	4.31 4.30 4.23	4.45 4.47 4.45	4.07 3.97		4.12 4.05	4.12 4.05 4.05	3.89 3.76	4.13 4.07 4.07	4.00 3.92	4.67 4.65 4.60	4.39 4.19
mean standard dev	4.27 0.02	4.39 0.11	4.43 0.14	4.05 0.06	4.15 0.05		4.11 0.04	3.87 0.05	4.12 0.06	3.79 0.24	4.63 0.07	4.34 0.09

Table S38. Summary of serine and threonine H_β NMR chemical shift data for all peptides.

peptide tau ₁₇₄₋₁₈₃ tau ₁₇₄₋₁₈₃ tau ₁₉₆₋₂₀₉ tau ₁₉₆₋₂₀₉	ThrOPO ₃²⁻ 125.1 125.6	ThrOPO₃⁻²⁻ ThrOPO₃H ⁻ 118.5 119.0	SerOPO ₃ ²⁻	SerOPO₃ ^{-,2-} SerOPO₃H ⁻	Thr 118.2 118.3	Ser ThrOGIcNAc 118.8 118.8
tau ₂₁₁₋₂₁₉ tau ₂₁₁₋₂₁₉ tau ₂₂₉₋₂₃₈ tau ₂₂₉₋₂₃₈	121.8 125.7 124.0	117.4 120.9 122.4	119.4 122.2	116.6 118.2 115.9	117.8 118.6 118.4	116.5 115.6 118.9 121.7
KTPP KSPP GPPTPPGY GPKTPPGY	124.8 123.4	119.4 117.3			118.3 117.2	121.7
mean standard dev	124.3 1.4	119.3 1.8	120.8 2.0	116.9 1.2	118.1 0.5	118.2118.82.70.0

Table S39. Summary of serine and threonine ¹⁵N NMR chemical shift data for all peptides.

δ, Ser/Thr	¹³ C Thra	¹³ C Thrβ	¹³ C Thry	¹³ C ThrC=O	¹³ C Sera	¹³ C Serβ	¹³ C Thre ¹	³ C Thrβ ¹³ C	C Thry	¹³ C ThrC=O	¹³ C Sera	¹³ C Serβ
peptide tau ₁₇₄₋₁₈₃ tau ₁₇₄₋₁₈₃ tau ₁₉₆₋₂₀₉	ThrOPO ₃ ^{2−} 58.1 58.4	70.0	17.8	169.7	SerOPO ₃ ²₋	SerOPO₃²⁻	Thr 57.0 57.0	Thr 66.9 66.9	Thr 18.7 18.7	169.6		Ser
tau ₁₉₆₋₂₀₉ tau ₂₁₁₋₂₁₉ tau ₂₁₁₋₂₁₉ tau ₂₂₉₋₂₃₈ tau ₂₂₉₋₂₃₈	58.8 58.5 57.7	69.9	17.9		52.2 53.1	63.0 63.2 62.5	57.3 57.0	66.8 67.0 66.9	18.7 18.7 18.8		52.5 53.6 53.6	60.9 60.7 61.0
ktpp KSPP GPPtppgy GPKtppgy	58.8	69.8	18.0	169.7	53.6	61.6	57.1	66.9	18.7	169.5	53.6	60.2
mean standard dev	58.4 0.4			169.7 0.0	53.0 0.7	62.6 0.7		66.9 0.1	18.7 0.0		53.3 0.6	60.7 0.4

Table S40. Summary of serine and threonine ¹³C NMR chemical shift data for all peptides.

References

- 1. Thomas, K. M.; Naduthambi, D.; Tririya, G.; Zondlo, N. J. Org. Lett. 2005, 7, 2397–2400.
- 2. Pandey, A. K.; Naduthambi, D.; Thomas, K. M.; Zondlo, N. J. J. Am. Chem. Soc. **2013**, *135*, 4333–4363.
- 3. Waddell, W. J. J. Lab. Clin. Med 1956, 48, 311-314.
- 4. Arsequell, G.; Kripper, L.; Dwek, R. A.; Wong, S.Y.C. J. Chem. Soc., Chem. Commun. 1994, 20, 2283–2284.
- 5. Bielska, A. A.; Zondlo, N. J. Biochemistry 2006, 45, 5527–5537.
- 6. Vuister, G. W.; Delaglio, F.; Bax, A. J. Am. Chem. Soc. 1992, 114, 9674–9675.
- 7. Schmidt, J. M. J. Biomol. NMR 2007, 37, 287-301.
- 8. Lankhorst, P. P.; Haasnoot, C. A. G.; Erkelens, C.; Altona, C. J. Biomol. Struct. Dynam. **1984**, *1*, 1387–1405.