Supporting Information

Synthesis of Fluorosurfactants for Emulsion-Based Biological Applications

Ya-Ling Chiu^{1,†}, Hon Fai Chan¹, Kyle K. L. Phua^{1,2}, Ying Zhang¹, Sissel Juul¹, Birgitta R. Knudsen^{3,4}, Yi-Ping Ho^{4,*}, and Kam W. Leong^{1,*}

¹Department of Biomedical Engineering, Duke University, North Carolina 27708, USA

²Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore 117576, Singapore

³Department of Molecular Biology and Genetics, Aarhus University, Aarhus 8000, Denmark

⁴Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus 8000, Denmark

[†] Present Address: Department of Chemical Engineering, National Tsing Hua University,

Hsinchu, 30013, Taiwan

*Address correspondence to megan.ypho@inano.au.dk and kam.leong@duke.edu

Supplementary Figures

Figure S1. (a) Photograph of the synthesized PFPE-Tris surfactants with increasing the feed molar ratio of Tris to PFPE from 0.3, 0.5, 0.8 to 1.0 and (b) their full-scale FT-IR spectra. (c) Comparison of FT-IR spectra of the synthesized PFPE-Tris surfactants at Tris/PFPE feed molar ratios of 1.0 (PFPE₁-Tris_{1.0}) and 1.2 (PFPE₁-Tris_{1.2}) showed no major difference, indicating a complete conversion of PFPE-Tris occurred at the feed molar ratio of 1.0.

Figure S2. Amount of DNA recovered from w/o emulsion after disrupting the droplets by a droplet breaking agent.

Figure S3. Luciferase activities of the transfected cells. Cells were transfected *in vitro* using jetPEITM/DNA complexes synthesized in w/o emulsion droplets stabilized with different test surfactants. The jetPEITM/DNA polyplexes formulated without emulsion treatment was used as a positive control.

Figure S4. Survival rate of hMSCs cultured in the emulsion droplets. hMSCs maintained their viability (>85%) in the w/o/w droplets for at least 4 days.