Phillipi, Xie, et al: Supplemental Material

1	Phenotypes and animals	4
	1.1 Nomenclature, descriptions and transformations	4
	1.2 Gating procedure	5
	1.3 Mice used in the study	0
2	Summary of Results	7
	2.1 Sex and strain effects in the CC founders	7
	2.2 Diallel analysis	7
3	Observed Relationships between Immunophenotypes	8
	3.1 Trait correlations within populations: inbreds, F1 hybrids and the PreCC	8
4	plusAPCs.Pct: Total myeloid cells (+APCs)	9
	4.1 Data collected on plusAPCs.Pct	9
	4.2 Raw and Transformed Data	9
	4.3 Diallel analysis	10
_		10
5	minusAPUs.Pct: Total lymphoid cells (-APUs)	12
	5.1 Data collected on minusAPUS.Pct	12
	5.2 Raw and Hanstormed Data	12
		10
6	B.to.T: Ratio of B-cells to T-cells	15
	6.1 Data collected on B.to.T	15
	6.2 Raw and Transformed Data	15
	6.3 Diallel analysis	16
7	CD11cplus.Pct: CD11c+/CD11b- dendritic cells	18
•	7.1 Data collected on CD11cplus.Pct	18
	7.2 Raw and Transformed Data	18
	7.3 Diallel analysis	19
8	CD19.Pct: Total B-cells (CD19+)	21
	8.1 Data collected on CD19.Pct	21
	8.2 Raw and Transformed Data	21
	8.3 Diallel analysis	22
9	CD23.MFI: CD23 antigen density on all B-cells	24
	9.1 Data collected on CD23.MFI	24
	9.2 Raw and Transformed Data	24
	9.3 Diallel analysis	25
10	CD25 Det CD4. Regulatory T colla	97
10	10 1 Data collected on CD25 Pet CD4	21 97
	10.2 Baw and Transformed Data	$\frac{21}{97}$
	10.3 Diallel analysis	28

11	CD4.Pct.H57: Helper and regulatory T-cells	30
	11.1 Data collected on CD4.Pct.H57	30
	11.2 Raw and Transformed Data	30 21
		31
12	CD4.to.CD8: Ratio of helper T-cells to cytotoxic T-cells	33
	12.1 Data collected on CD4.to.CD8	33
	12.2 Raw and Transformed Data	33
	12.3 Diallel analysis	34
13	CD8.Pct.H57: Cytotoxic T-cells	36
	13.1 Data collected on CD8.Pct.H57	36
	13.2 Raw and Transformed Data	36
	13.3 Diallel analysis	37
14	DCs CD11b MFI: CD11b antigen density on dendritic cells	39
11	14.1 Data collected on DCs.CD11b.MFI	39
	14.2 Raw and Transformed Data	39
	14.3 Diallel analysis	40
		40
15	DCs.CD11c.MFI: CD11c antigen density on dendritic cells	42
	15.2 Baw and Transformed Data	42
	15.3 Diallel analysis	43
16	DCs.Pct: Classical dendritic cells	45
	16.1 Data collected on DCs.Pct	45
	16.2 Kaw and Transformed Data	45 46
		40
17	FoB.Pct.CD19: Follicular B-cells (CD19+)	48
	17.1 Data collected on FoB.Pct.CD19	48
	17.2 Raw and Transformed Data	48
	17.3 Diallel analysis	49
18	Granulocytes.Pct: Granulocytes	51
	18.1 Data collected on Granulocytes.Pct	51
	18.2 Raw and Transformed Data	51
	18.3 Diallel analysis	52
10	H57 Pet: Total T_cells (H57 \perp)	54
10	19.1 Data collected on H57.Pct	54 54
	19.2 Raw and Transformed Data	54
	19.3 Diallel analysis	55
20	Macrophages.Pct: Macrophages	57 57
	20.1 Data confected on Macrophages. Pct	57 57
	20.3 Diallel analysis	58
21	Monocytes.Pct: Monocytes	60
	21.1 Data collected on Monocytes.Pct	60
	21.2 Kaw and Transformed Data	60 61
	21.9 Diamer analysis	01

22 Phagocytes.Pct: Phagocytes (CD11b Hi) 22.1 Data collected on Phagocytes.Pct 22.2 Raw and Transformed Data 22.3 Diallel analysis	63 63 63 64
23 MZB.Pct.CD19: Marginal Zone B-cells 23.1 Data collected on MZB.Pct.CD19 23.2 Raw and Transformed Data 23.3 Diallel analysis	66 66 66 67
24 TransB.Pct.CD19: Transitional B-cells 24.1 Data collected on TransB.Pct.CD19 24.2 Raw and Transformed Data 24.3 Diallel analysis	69 69 69 70

Phenotypes and animals

1.1 Nomenclature, descriptions and transformations

Name in analysis	Name in manuscript	Description	Transformation
plusAPCs.Pct	+APCs	Total myeloid cells (+APCs)	logit
minusAPCs.Pct	-APCs	Total lymphoid cells (-APCs)	logit
B.to.T	B/T	Ratio of B-cells to T-cells	$\log 10$
CD11cplus.Pct	CD11c+	CD11c+/CD11b- dendritic cells	logit
CD19.Pct	CD19+	Total B-cells (CD19+)	logit
CD23.MFI	CD23 MFI	CD23 antigen density on all B-cells	$\log 10$
CD25.Pct.CD4	CD25+	Regulatory T-cells	logit
CD4.Pct.H57	CD4+	Helper and regulatory T-cells	logit
CD4.to.CD8	CD4+/CD8+	Ratio of helper T-cells to cytotoxic T-cells	$\log 10$
CD8.Pct.H57	CD8+	Cytotoxic T-cells	logit
DCs.CD11b.MFI	CD11b MFI	CD11b antigen density on dendritic cells	$\log 10$
DCs.CD11c.MFI	CD11c MFI	CD11c antigen density on dendritic cells	$\log 10$
DCs.Pct	DCs	Classical dendritic cells	logit
FoB.Pct.CD19	FoB	Follicular B-cells (CD19+)	INT
Granulocytes.Pct	Granulocytes	Granulocytes	logit
H57.Pct	H57+	Total T-cells (H57+)	logit
Macrophages.Pct	Macrophages	Macrophages	logit
Monocytes.Pct	Monocytes	Monocytes	logit
Phagocytes.Pct	CD11b Hi	Phagocytes (CD11b Hi)	logit
MZB.Pct.CD19	MZB	Marginal Zone B-cells	INT
TransB.Pct.CD19	TransB	Transitional B-cells	INT

Table 1.1: Phenotype names and transformations used in this document.

1.2 Gating procedure

Figure 1.1: Example gating scheme on B6 control spleen

1.3 Mice used in the study

Table 1.2: Number of mice measured. Each strain columns show the number of females, males, and (where applicable) mice for which sex data was unavailable.

Phenotype	AJ	B6	129	NOD	NZO	CAST	PWK	WSB	F1	PreCC
plusAPCs.Pct	4, 2	4, 6, 62	4, 2	0, 6	0, 10	0, 2	3, 6	2, 8	51, 81	0, 66
minusAPCs.Pct	4, 2	4, 6, 62	4, 2	0, 6	0, 10	0, 2	3, 6	2, 8	51, 81	0, 66
B.to.T	4, 2	4, 6, 62	4, 2	0, 6	0, 10	0, 2	3, 6	2, 8	51, 81	0,66
CD11cplus.Pct	4, 2	4, 6, 61	4, 2	0, 6	0, 10	0, 2	3, 6	2, 8	51, 81	0, 54
CD19.Pct	4, 2	4, 6, 62	4, 2	0, 6	0, 10	0, 2	3, 6	2, 8	51, 81	0, 66
CD23.MFI	4, 2	4, 6, 62	4, 2	0, 6	0, 10	0, 2	3, 6	2, 8	51, 81	0,66
CD25.Pct.CD4	4, 2	4, 6, 58	4, 2	0, 6	0, 10	0, 2	3, 6	2, 8	51, 81	0, 66
CD4.Pct.H57	4, 2	4, 6, 62	4, 2	0, 6	0, 10	0, 2	3, 6	2, 8	51, 81	0, 66
CD4.to.CD8	4, 2	4, 6, 62	4, 2	0, 6	0, 10	0, 2	3, 6	2, 8	51, 81	0, 66
CD8.Pct.H57	4, 2	4, 6, 62	4, 2	0, 6	0, 10	0, 2	3, 6	2, 8	51, 81	0, 66
DCs.CD11b.MFI	4, 2	4, 6, 61	4, 2	0, 6	0, 10	0, 2	3, 6	2, 8	51, 81	0, 54
DCs.CD11c.MFI	4, 2	4, 6, 61	4, 2	0, 6	0, 10	0, 2	3, 6	2, 8	51, 81	0, 54
DCs.Pct	4, 2	4, 6, 61	4, 2	0, 6	0, 10	0, 2	3, 6	2, 8	51, 81	0, 54
FoB.Pct.CD19	4, 2	4, 6, 58	4, 2	0, 6	0, 10	0, 2	3, 6	2, 8	51, 81	0, 40
Granulocytes.Pct	4, 2	4, 6, 61	4, 2	0, 6	0, 10	0, 2	3, 6	2, 8	51, 81	0, 54
H57.Pct	4, 2	4, 6, 62	4, 2	0, 6	0, 10	0, 2	3, 6	2, 8	51, 81	0, 66
Macrophages.Pct	4, 2	4, 6, 61	4, 2	0, 6	0, 10	0, 2	3, 6	2, 8	51, 81	0, 54
Monocytes.Pct	4, 2	4, 6, 61	4, 2	0, 6	0, 10	0, 2	3, 6	2, 8	51, 81	0, 54
Phagocytes.Pct	4, 2	4, 6, 61	4, 2	0, 6	0, 10	0, 2	3, 6	2, 8	51, 81	0, 54
MZB.Pct.CD19	4, 2	4, 6, 58	4, 2	0, 6	0, 10	0, 2	3, 6	2, 8	51, 81	0, 40
TransB.Pct.CD19	4, 2	4, 6, 58	4, 2	0, 6	0, 10	0, 2	3, 6	2, 8	51, 81	0, 40

Summary of Results

2.1 Sex and strain effects in the CC founders

Table 2.1: Significance of sex and strain effects on 21 phenotypes in the CC founders. These are calculated using a mixed model that controls for batch as a random effect.

Phenotype	Sex.Effect.Pval	Strain.Effect.Pval
plusAPCs.Pct	3.63e-07	9.58e-05
minusAPCs.Pct	0.00131	0.00144
B.to.T	0.000121	3.44e-05
CD11cplus.Pct	0.595	0.0785
CD19.Pct	0.0137	0.00179
CD23.MFI	0.0108	6.1e-09
CD25.Pct.CD4	2.73e-05	8.15e-06
CD4.Pct.H57	0.588	1.97e-06
CD4.to.CD8	2.34e-05	4.91e-05
CD8.Pct.H57	5.56e-08	0.000242
DCs.CD11b.MFI	0.166	0.00024
DCs.CD11c.MFI	0.00204	1.13e-11
DCs.Pct	0.0846	1.31e-09
FoB.Pct.CD19	0.127	7.88e-07
Granulocytes.Pct	7.23e-05	0.0381
H57.Pct	1.91e-07	0.000195
Macrophages.Pct	0.579	4.63e-05
Monocytes.Pct	0.00971	1.6e-07
Phagocytes.Pct	0.0373	0.00275
MZB.Pct.CD19	0.444	2.56e-10
TransB.Pct.CD19	0.443	4.45e-05

2.2 Diallel analysis

The diallel analysis was confounded by batch effects. Examination of individual phenotypes reveals that, when accounting for uncertainty due to batch, posteriors for most effects in most phenotypes are extremely vague and cover zero.

Observed Relationships between Immunophenotypes

3.1 Trait correlations within populations: inbreds, F1 hybrids and the PreCC

Figure 3.1: Correlations among phenotypes. Each block represents the correlation between two (transformed) phenotypes, with the top-left to bottom-right diagonal of black blocks depicting correlation of +1 (ie, a phenotype with itself). Shading indicates strength of correlation; white diagonal lines indicate positive vs negative correlation. Black crosses indicate missing data.

plusAPCs.Pct: Total myeloid cells (+APCs)

4.1 Data collected on plusAPCs.Pct

Description: Total myeloid cells (+APCs)

Transformation: logit. Rationale for transformation: Natural range is a proportion between 0 and 1, so logit transformation provides an interpretable scale for effects.

	AJ	B6	129S1	NOD	NZO	CAST	PWK	WSB	F1	PreCC	Total
Female	4	4	4	0	0	0	3	2	51	0	68
Male	2	6	2	6	10	2	6	8	81	66	189
Unsexed	0	62	0	0	0	0	0	0	0	0	62
Total	6	72	6	6	10	2	9	10	132	66	319

Table 4.1: Number of mice phenotyped for plusAPCs.Pct

Figure 4.1: Phenotype values: raw and transformed for analysis for founder, F1 hybrid and PreCC mice. Colors distinguish females (red), males (blue), and unsexed (gray) mice.

Table 4.2: Point estimates. Upper table portion: mean and range statistics for raw phenotype values. Lower table portion: strain means and 95% CI on the transformed scale, as estimated from a linear model that includes a random intercept modeling the effects of 57 batches.

	AJ	B6	129S1	NOD	NZO	CAST	PWK	WSB	F1	PreCC
Mean	0.236	0.111	0.0975	0.0971	0.261	0.0672	0.207	0.0895	0.127	0.105
SE of Mean	0.0567	0.00348	0.00962	0.00681	0.0444	0.00205	0.0357	0.00708	0.00536	0.00771
Min	0.141	0.0753	0.0806	0.0669	0.143	0.0652	0.0889	0.0691	0.065	0.0364
Max	0.486	0.247	0.142	0.112	0.438	0.0693	0.385	0.135	0.498	0.48
Modeled 95%CI Lower	-1.56	-2.22	-2.34	-2.5	-1.45	-2.98	-1.9	-2.62	-2.05	-2.41
Modeled Mean	-1.23	-2.11	-2.01	-2.1	-1.17	-2.42	-1.58	-2.36	-1.95	-2.24
Modeled 95%CI Upper	-0.892	-2	-1.69	-1.71	-0.891	-1.86	-1.26	-2.09	-1.85	-2.07

Table 4.3: Sequential ANOVA table of strain and sex effects, controlling for batch, in the sexed subset of tested inbred strains.

	numerator df	denominator df	F-value	p-value
Sex	1	38	37.7	3.63e-07
Inbred Strain	7	38	5.99	9.58e-05

4.3 Diallel analysis

Diallel analysis including batch effects and Bayesian imputation of missing sex assignments was performed as described in Methods. This diallel arose as a byproduct of another experiment, and suboptimal pairing of batches with F1 hybrid groups in the experimental design means that incorporating batch effects greatly increases uncertainty about estimated genetic parameters.

Logit +APCs of total

Figure 4.2: Diallel effects based on the normal model **without** accounting for batch effects on the phenotype under a logit transformation.

Logit +APCs of total

Figure 4.3: Diallel effects based on the normal model **accounting for batch** effects on the phenotype under a logit transformation.

minusAPCs.Pct: Total lymphoid cells (-APCs)

5.1 Data collected on minusAPCs.Pct

Description: Total lymphoid cells (-APCs)

Transformation: logit. Rationale for transformation: Natural range is a proportion between 0 and 1, so logit transformation provides an interpretable scale for effects.

	AJ	B6	129S1	NOD	NZO	CAST	PWK	WSB	F1	PreCC	Total
Female	4	4	4	0	0	0	3	2	51	0	68
Male	2	6	2	6	10	2	6	8	81	66	189
Unsexed	0	62	0	0	0	0	0	0	0	0	62
Total	6	72	6	6	10	2	9	10	132	66	319

Table 5.1: Number of mice phenotyped for minusAPCs.Pct

Figure 5.1: Phenotype values: raw and transformed for analysis for founder, F1 hybrid and PreCC mice. Colors distinguish females (red), males (blue), and unsexed (gray) mice.

Table 5.2: Point estimates. Upper table portion: mean and range statistics for raw phenotype values. Lower table portion: strain means and 95% CI on the transformed scale, as estimated from a linear model that includes a random intercept modeling the effects of 57 batches.

	AJ	B6	129S1	NOD	NZO	CAST	PWK	WSB	F1	PreCC
Mean	0.913	0.93	0.945	0.948	0.879	0.931	0.92	0.935	0.926	0.936
SE of Mean	0.0221	0.00307	0.00591	0.0139	0.00876	0.00075	0.00564	0.00485	0.00206	0.00564
Min	0.817	0.8	0.921	0.896	0.842	0.93	0.892	0.915	0.827	0.664
Max	0.956	0.972	0.959	0.971	0.925	0.932	0.947	0.951	0.959	0.981
Modeled 95%CI Lower	2.11	2.52	2.36	2.58	2.02	1.95	2.21	2.59	2.47	2.67
Modeled Mean	2.42	2.62	2.66	2.94	2.28	2.47	2.51	2.84	2.56	2.83
Modeled 95%CI Upper	2.73	2.72	2.96	3.3	2.53	2.99	2.8	3.08	2.66	2.98

Table 5.3: Sequential ANOVA table of strain and sex effects, controlling for batch, in the sexed subset of tested inbred strains.

	numerator df	denominator df	F-value	p-value
Sex	1	38	12	0.00131
Inbred Strain	7	38	4.28	0.00144

5.3 Diallel analysis

Diallel analysis including batch effects and Bayesian imputation of missing sex assignments was performed as described in Methods. This diallel arose as a byproduct of another experiment, and suboptimal pairing of batches with F1 hybrid groups in the experimental design means that incorporating batch effects greatly increases uncertainty about estimated genetic parameters.

Logit –APCs %

Figure 5.2: Diallel effects based on the normal model **without** accounting for batch effects on the phenotype under a logit transformation.

Logit –APCs %

Figure 5.3: Diallel effects based on the normal model **accounting for batch** effects on the phenotype under a logit transformation.

B.to.T: Ratio of B-cells to T-cells

6.1 Data collected on B.to.T

Description: Ratio of B-cells to T-cells

Transformation: log10. Rationale for transformation: Ratio quantity and therefore highly skewed. Logarithmic transformation brings it onto an additive, symmetric scale. Log to base 10 (log10) is used to provide a more interpretable scale for the effects.

Table 6.1: Number of mice phenotyped for B.to.T

	AJ	B6	129S1	NOD	NZO	CAST	PWK	WSB	F1	PreCC	Total
Female	4	4	4	0	0	0	3	2	51	0	68
Male	2	6	2	6	10	2	6	8	81	66	189
Unsexed	0	62	0	0	0	0	0	0	0	0	62
Total	6	72	6	6	10	2	9	10	132	66	319

Figure 6.1: Phenotype values: raw and transformed for analysis for founder, F1 hybrid and PreCC mice. Colors distinguish females (red), males (blue), and unsexed (gray) mice.

Table 6.2: Point estimates. Upper table portion: mean and range statistics for raw phenotype values. Lower table portion: strain means and 95% CI on the transformed scale, as estimated from a linear model that includes a random intercept modeling the effects of 57 batches.

	AJ	B6	129S1	NOD	NZO	CAST	PWK	WSB	F1	PreCC
Mean	3.24	1.55	2.04	0.762	1.81	1.26	2.31	1.42	1.97	1.83
SE of Mean	0.258	0.043	0.245	0.143	0.109	0.19	0.33	0.111	0.0665	0.288
Min	2.4	0.531	1.24	0.46	1.16	1.07	0.75	0.93	1	0.26
Max	4.16	2.17	2.69	1.25	2.34	1.45	3.65	1.93	6	17.8
Modeled 95%CI Lower	0.378	0.127	0.228	-0.315	0.0791	0.00443	0.182	0.0449	0.235	0.0995
Modeled Mean	0.522	0.171	0.371	-0.155	0.197	0.248	0.313	0.158	0.273	0.165
Modeled 95%CI Upper	0.667	0.214	0.514	0.00497	0.315	0.492	0.443	0.271	0.312	0.23

Table 6.3: Sequential ANOVA table of strain and sex effects, controlling for batch, in the sexed subset of tested inbred strains.

	numerator df	denominator df	F-value	p-value
Sex	1	38	18.3	0.000121
Inbred Strain	7	38	6.7	3.44e-05

6.3 Diallel analysis

Diallel analysis including batch effects and Bayesian imputation of missing sex assignments was performed as described in Methods. This diallel arose as a byproduct of another experiment, and suboptimal pairing of batches with F1 hybrid groups in the experimental design means that incorporating batch effects greatly increases uncertainty about estimated genetic parameters.

Log10 B to T

Figure 6.2: Diallel effects based on the normal model **without** accounting for batch effects on the phenotype under a log10 transformation.

Log10 B to T

Figure 6.3: Diallel effects based on the normal model **accounting for batch** effects on the phenotype under a log10 transformation.

CD11cplus.Pct: CD11c+/CD11b- dendritic cells

7.1 Data collected on CD11cplus.Pct

Description: CD11c+/CD11b- dendritic cells

Transformation: logit. Rationale for transformation: Natural range is a proportion between 0 and 1, so logit transformation provides an interpretable scale for effects.

	AJ	B6	129S1	NOD	NZO	CAST	PWK	WSB	F1	PreCC	Total
Female	4	4	4	0	0	0	3	2	51	0	68
Male	2	6	2	6	10	2	6	8	81	54	177
Unsexed	0	61	0	0	0	0	0	0	0	0	61
Total	6	71	6	6	10	2	9	10	132	54	306

Table 7.1: Number of mice phenotyped for CD11cplus.Pct

Figure 7.1: Phenotype values: raw and transformed for analysis for founder, F1 hybrid and PreCC mice. Colors distinguish females (red), males (blue), and unsexed (gray) mice.

Table 7.2: Point estimates. Upper table portion: mean and range statistics for raw phenotype values. Lower table portion: strain means and 95% CI on the transformed scale, as estimated from a linear model that includes a random intercept modeling the effects of 57 batches.

	AJ	B6	129S1	NOD	NZO	CAST	PWK	WSB	F1	PreCC
Mean	0	0.000255	1e-04	0.000583	6e-04	1e-04	0.000111	0.00104	5.38e-05	0.000572
SE of Mean	0	6.91e-05	6.32e-05	0.000306	0.00017	0	7.72e-05	0.000431	1.37e-05	0.000142
Min	0	0	0	1e-04	0	1e-04	0	0	0	5.62 e- 05
Max	0	0.00439	3e-04	0.0016	0.0012	1e-04	7e-04	0.0037	0.0015	0.00592
Modeled 95%CI Lower	-11.2	-10.2	-11.1	-10.4	-11	-12.2	-11	-9.9	-11.1	-10.4
Modeled Mean	-10.3	-9.72	-10.2	-9.29	-10.2	-10.8	-9.99	-9.13	-10.6	-9.71
Modeled 95%CI Upper	-9.37	-9.25	-9.34	-8.13	-9.43	-9.35	-8.99	-8.36	-10.1	-9.05

Table 7.3: Sequential ANOVA table of strain and sex effects, controlling for batch, in the sexed subset of tested inbred strains.

	numerator df	denominator df	F-value	p-value
Sex	1	38	0.287	0.595
Inbred Strain	7	38	2.01	0.0785

7.3 Diallel analysis

Diallel analysis including batch effects and Bayesian imputation of missing sex assignments was performed as described in Methods. This diallel arose as a byproduct of another experiment, and suboptimal pairing of batches with F1 hybrid groups in the experimental design means that incorporating batch effects greatly increases uncertainty about estimated genetic parameters.

Logit CD11C+ %

Figure 7.2: Diallel effects based on the normal model **without** accounting for batch effects on the phenotype under a logit transformation.

Logit CD11C+ %

Figure 7.3: Diallel effects based on the normal model **accounting for batch** effects on the phenotype under a logit transformation.

CD19.Pct: Total B-cells (CD19+)

8.1 Data collected on CD19.Pct

Description: Total B-cells (CD19+)

Transformation: logit. Rationale for transformation: Natural range is a proportion between 0 and 1, so logit transformation provides an interpretable scale for effects.

	AJ	B6	129S1	NOD	NZO	CAST	PWK	WSB	F1	PreCC	Total
Female	4	4	4	0	0	0	3	2	51	0	68
Male	2	6	2	6	10	2	6	8	81	66	189
Unsexed	0	62	0	0	0	0	0	0	0	0	62
Total	6	72	6	6	10	2	9	10	132	66	319

Table 8.1: Number of mice phenotyped for CD19.Pct

Figure 8.1: Phenotype values: raw and transformed for analysis for founder, F1 hybrid and PreCC mice. Colors distinguish females (red), males (blue), and unsexed (gray) mice.

Table 8.2: Point estimates. Upper table portion: mean and range statistics for raw phenotype values. Lower table portion: strain means and 95% CI on the transformed scale, as estimated from a linear model that includes a random intercept modeling the effects of 57 batches.

	AJ	B6	129S1	NOD	NZO	CAST	PWK	WSB	F1	PreCC
Mean	0.569	0.526	0.58	0.363	0.442	0.494	0.516	0.514	0.553	0.493
SE of Mean	0.0347	0.00723	0.0231	0.0322	0.0202	0.0347	0.0231	0.0181	0.00571	0.013
Min	0.412	0.292	0.498	0.281	0.359	0.46	0.384	0.415	0.355	0.188
Max	0.634	0.614	0.64	0.467	0.524	0.529	0.584	0.596	0.698	0.767
Modeled 95%CI Lower	0.041	0.016	0.132	-0.891	-0.502	-0.243	-0.144	-0.101	0.142	-0.0969
Modeled Mean	0.297	0.0927	0.386	-0.608	-0.293	0.19	0.0868	0.0993	0.21	0.0185
Modeled 95%CI Upper	0.554	0.169	0.639	-0.325	-0.0832	0.623	0.318	0.299	0.277	0.134

Table 8.3: Sequential ANOVA table of strain and sex effects, controlling for batch, in the sexed subset of tested inbred strains.

	numerator df	denominator df	F-value	p-value
Sex	1	38	6.68	0.0137
Inbred Strain	7	38	4.14	0.00179

8.3 Diallel analysis

Diallel analysis including batch effects and Bayesian imputation of missing sex assignments was performed as described in Methods. This diallel arose as a byproduct of another experiment, and suboptimal pairing of batches with F1 hybrid groups in the experimental design means that incorporating batch effects greatly increases uncertainty about estimated genetic parameters.

Logit CD19 %

Figure 8.2: Diallel effects based on the normal model **without** accounting for batch effects on the phenotype under a logit transformation.

Logit CD19 %

Figure 8.3: Diallel effects based on the normal model **accounting for batch** effects on the phenotype under a logit transformation.

CD23.MFI: CD23 antigen density on all B-cells

9.1 Data collected on CD23.MFI

Description: CD23 antigen density on all B-cells

Transformation: log10. Rationale for transformation: Dimensionless quantity, but Box-Cox suggests a logarithmic transformation. Log to base 10 (log10) is used to provide a more interpretable scale.

Table 9.1: Number of mice phenotyped for CD23.MFI

	AJ	B6	129S1	NOD	NZO	CAST	PWK	WSB	F1	PreCC	Total
Female	4	4	4	0	0	0	3	2	51	0	68
Male	2	6	2	6	10	2	6	8	81	66	189
Unsexed	0	62	0	0	0	0	0	0	0	0	62
Total	6	72	6	6	10	2	9	10	132	66	319

Figure 9.1: Phenotype values: raw and transformed for analysis for founder, F1 hybrid and PreCC mice. Colors distinguish females (red), males (blue), and unsexed (gray) mice.

Table 9.2: Point estimates. Upper table portion: mean and range statistics for raw phenotype values. Lower table portion: strain means and 95% CI on the transformed scale, as estimated from a linear model that includes a random intercept modeling the effects of 57 batches.

	AJ	B6	129S1	NOD	NZO	CAST	PWK	WSB	F1	PreCC
Mean	28.9	30.5	9.19	34.8	29.3	8.71	7.76	37	26.8	23.6
SE of Mean	7.46	1.84	0.597	9.44	4.51	0.0845	0.528	3.36	1.35	2.28
Min	15.6	2.92	7.27	17.9	13.2	8.62	5.66	19.3	10.6	3.13
Max	52.6	76.9	11	65.2	45.3	8.79	10	50.3	90.1	96.9
Modeled 95%CI Lower	1.2	1.38	0.878	1.23	1.24	0.767	0.742	1.28	1.29	1.21
Modeled Mean	1.37	1.44	1.04	1.44	1.39	1.05	0.917	1.42	1.35	1.31
Modeled 95%CI Upper	1.54	1.51	1.21	1.65	1.53	1.33	1.09	1.56	1.41	1.41

Table 9.3: Sequential ANOVA table of strain and sex effects, controlling for batch, in the sexed subset of tested inbred strains.

	numerator df	denominator df	F-value	p-value
Sex	1	38	7.19	0.0108
Inbred Strain	7	38	14.3	6.1e-09

9.3 Diallel analysis

Diallel analysis including batch effects and Bayesian imputation of missing sex assignments was performed as described in Methods. This diallel arose as a byproduct of another experiment, and suboptimal pairing of batches with F1 hybrid groups in the experimental design means that incorporating batch effects greatly increases uncertainty about estimated genetic parameters.

Int CD23 MFI

Figure 9.2: Diallel effects based on the normal model **without** accounting for batch effects on the phenotype under a log10 transformation.

Int Log_10 of CD23 MFI

Figure 9.3: Diallel effects based on the normal model **accounting for batch** effects on the phenotype under a log10 transformation.

CD25.Pct.CD4: Regulatory T-cells

10.1 Data collected on CD25.Pct.CD4

Description: Regulatory T-cells

Transformation: logit. Rationale for transformation: Natural range is a proportion between 0 and 1, so logit transformation provides an interpretable scale for effects.

	AJ	B6	129S1	NOD	NZO	CAST	PWK	WSB	F1	PreCC	Total
Female	4	4	4	0	0	0	3	2	51	0	68
Male	2	6	2	6	10	2	6	8	81	66	189
Unsexed	0	58	0	0	0	0	0	0	0	0	58
Total	6	68	6	6	10	2	9	10	132	66	315

Table 10.1: Number of mice phenotyped for CD25.Pct.CD4

Figure 10.1: Phenotype values: raw and transformed for analysis for founder, F1 hybrid and PreCC mice. Colors distinguish females (red), males (blue), and unsexed (gray) mice.

Table 10.2: Point estimates. Upper table portion: mean and range statistics for raw phenotype values. Lower table portion: strain means and 95% CI on the transformed scale, as estimated from a linear model that includes a random intercept modeling the effects of 55 batches.

	AJ	B6	129S1	NOD	NZO	CAST	PWK	WSB	F1	PreCC
Mean	0.066	0.0633	0.091	0.0813	0.0743	0.102	0.0837	0.0372	0.0645	0.0914
SE of Mean	0.00595	0.00188	0.0112	0.00531	0.0117	0.0116	0.00222	0.00411	0.00119	0.00481
Min	0.0528	0.0415	0.0691	0.0673	0.039	0.0906	0.0729	0.0205	0.0374	0.0287
Max	0.0895	0.112	0.13	0.0983	0.155	0.114	0.092	0.0591	0.0972	0.219
Modeled 95%CI Lower	-2.84	-2.8	-2.53	-2.74	-2.8	-2.69	-2.64	-3.53	-2.73	-2.51
Modeled Mean	-2.59	-2.72	-2.27	-2.47	-2.6	-2.26	-2.42	-3.33	-2.67	-2.41
Modeled 95%CI Upper	-2.34	-2.64	-2.02	-2.2	-2.39	-1.83	-2.19	-3.13	-2.61	-2.3

Table 10.3: Sequential ANOVA table of strain and sex effects, controlling for batch, in the sexed subset of tested inbred strains.

	numerator df	denominator df	F-value	p-value
Sex	1	38	22.7	2.73e-05
Inbred Strain	7	38	7.75	8.15e-06

10.3 Diallel analysis

Diallel analysis including batch effects and Bayesian imputation of missing sex assignments was performed as described in Methods. This diallel arose as a byproduct of another experiment, and suboptimal pairing of batches with F1 hybrid groups in the experimental design means that incorporating batch effects greatly increases uncertainty about estimated genetic parameters.

Logit CD25 % CD4

Figure 10.2: Diallel effects based on the normal model **without** accounting for batch effects on the phenotype under a logit transformation.

Logit CD25 % CD4

Figure 10.3: Diallel effects based on the normal model **accounting for batch** effects on the phenotype under a logit transformation.

CD4.Pct.H57: Helper and regulatory T-cells

11.1 Data collected on CD4.Pct.H57

Description: Helper and regulatory T-cells

Transformation: logit. Rationale for transformation: Natural range is a proportion between 0 and 1, so logit transformation provides an interpretable scale for effects.

	AJ	B6	129S1	NOD	NZO	CAST	PWK	WSB	F1	PreCC	Total
Female	4	4	4	0	0	0	3	2	51	0	68
Male	2	6	2	6	10	2	6	8	81	66	189
Unsexed	0	62	0	0	0	0	0	0	0	0	62
Total	6	72	6	6	10	2	9	10	132	66	319

Table 11.1: Number of mice phenotyped for CD4.Pct.H57

Figure 11.1: Phenotype values: raw and transformed for analysis for founder, F1 hybrid and PreCC mice. Colors distinguish females (red), males (blue), and unsexed (gray) mice.

Table 11.2: Point estimates. Upper table portion: mean and range statistics for raw phenotype values. Lower table portion: strain means and 95% CI on the transformed scale, as estimated from a linear model that includes a random intercept modeling the effects of 57 batches.

	AJ	B6	129S1	NOD	NZO	CAST	PWK	WSB	F1	PreCC
Mean	0.526	0.551	0.628	0.679	0.677	0.677	0.515	0.627	0.561	0.651
SE of Mean	0.0217	0.00424	0.0152	0.00866	0.0129	0.0121	0.0231	0.0194	0.0065	0.0108
Min	0.439	0.479	0.588	0.652	0.62	0.665	0.414	0.53	0.389	0.331
Max	0.585	0.669	0.682	0.7	0.732	0.689	0.63	0.709	0.696	0.889
Modeled 95%CI Lower	-0.202	0.129	0.123	0.428	0.612	0.161	-0.148	0.27	0.182	0.435
Modeled Mean	0.0339	0.202	0.354	0.697	0.806	0.557	0.0717	0.455	0.249	0.549
Modeled 95%CI Upper	0.27	0.274	0.586	0.965	1	0.953	0.292	0.64	0.316	0.663

Table 11.3: Sequential ANOVA table of strain and sex effects, controlling for batch, in the sexed subset of tested inbred strains.

	numerator df	denominator df	F-value	p-value
Sex	1	38	0.298	0.588
Inbred Strain	7	38	8.87	1.97e-06

11.3 Diallel analysis

Diallel analysis including batch effects and Bayesian imputation of missing sex assignments was performed as described in Methods. This diallel arose as a byproduct of another experiment, and suboptimal pairing of batches with F1 hybrid groups in the experimental design means that incorporating batch effects greatly increases uncertainty about estimated genetic parameters.

Logit CD4 %

Figure 11.2: Diallel effects based on the normal model **without** accounting for batch effects on the phenotype under a logit transformation.

Logit CD4 %

Figure 11.3: Diallel effects based on the normal model **accounting for batch** effects on the phenotype under a logit transformation.

CD4.to.CD8: Ratio of helper T-cells to cytotoxic T-cells

12.1 Data collected on CD4.to.CD8

Description: Ratio of helper T-cells to cytotoxic T-cells

Transformation: log10. Rationale for transformation: Ratio quantity and therefore highly skewed. Logarithmic transformation brings it onto an additive, symmetric scale. Log to base 10 (log10) is used to provide a more interpretable scale for the effects.

	AJ	B6	129S1	NOD	NZO	CAST	PWK	WSB	F1	PreCC	Total
Female	4	4	4	0	0	0	3	2	51	0	68
Male	2	6	2	6	10	2	6	8	81	66	189
Unsexed	0	62	0	0	0	0	0	0	0	0	62
Total	6	72	6	6	10	2	9	10	132	66	319

Table 12.1: Number of mice phenotyped for CD4.to.CD8

Figure 12.1: Phenotype values: raw and transformed for analysis for founder, F1 hybrid and PreCC mice. Colors distinguish females (red), males (blue), and unsexed (gray) mice.

Table 12.2: Point estimates. Upper table portion: mean and range statistics for raw phenotype values. Lower table portion: strain means and 95% CI on the transformed scale, as estimated from a linear model that includes a random intercept modeling the effects of 57 batches.

	AJ	B6	129S1	NOD	NZO	CAST	PWK	WSB	F1	PreCC
Mean	1.63	1.4	1.85	2.3	2.37	2.16	1.34	1.89	1.53	2.31
SE of Mean	0.128	0.0225	0.104	0.0856	0.128	0.13	0.0835	0.126	0.038	0.147
Min	1.18	1.06	1.66	2.02	1.85	2.03	1.05	1.34	0.68	0.5
Max	2	2.23	2.24	2.59	2.96	2.29	1.78	2.56	2.52	8.65
Modeled 95%CI Lower	0.069	0.111	0.117	0.231	0.312	0.114	0.0304	0.151	0.138	0.244
Modeled Mean	0.173	0.142	0.22	0.346	0.397	0.29	0.124	0.233	0.165	0.29
Modeled 95%CI Upper	0.277	0.173	0.323	0.46	0.482	0.466	0.217	0.314	0.192	0.337

Table 12.3: Sequential ANOVA table of strain and sex effects, controlling for batch, in the sexed subset of tested inbred strains.

	numerator df	denominator df	F-value	p-value
Sex	1	38	23.2	2.34e-05
Inbred Strain	7	38	6.45	4.91e-05

12.3 Diallel analysis

Diallel analysis including batch effects and Bayesian imputation of missing sex assignments was performed as described in Methods. This diallel arose as a byproduct of another experiment, and suboptimal pairing of batches with F1 hybrid groups in the experimental design means that incorporating batch effects greatly increases uncertainty about estimated genetic parameters.

Log10 CD4 to CD8

Figure 12.2: Diallel effects based on the normal model **without** accounting for batch effects on the phenotype under a log10 transformation.

Log10 CD4 to CD8

Figure 12.3: Diallel effects based on the normal model **accounting for batch** effects on the phenotype under a log10 transformation.

CD8.Pct.H57: Cytotoxic T-cells

13.1 Data collected on CD8.Pct.H57

Description: Cytotoxic T-cells

Transformation: logit. Rationale for transformation: Natural range is a proportion between 0 and 1, so logit transformation provides an interpretable scale for effects.

	AJ	B6	129S1	NOD	NZO	CAST	PWK	WSB	F1	PreCC	Total
Female	4	4	4	0	0	0	3	2	51	0	68
Male	2	6	2	6	10	2	6	8	81	66	189
Unsexed	0	62	0	0	0	0	0	0	0	0	62
Total	6	72	6	6	10	2	9	10	132	66	319

Table 13.1: Number of mice phenotyped for CD8.Pct.H57

Figure 13.1: Phenotype values: raw and transformed for analysis for founder, F1 hybrid and PreCC mice. Colors distinguish females (red), males (blue), and unsexed (gray) mice.

Table 13.2: Point estimates. Upper table portion: mean and range statistics for raw phenotype values. Lower table portion: strain means and 95% CI on the transformed scale, as estimated from a linear model that includes a random intercept modeling the effects of 57 batches.

	AJ	B6	129S1	NOD	NZO	CAST	PWK	WSB	F1	PreCC
Mean	0.336	0.396	0.342	0.297	0.29	0.314	0.388	0.339	0.385	0.318
SE of Mean	0.0341	0.00315	0.0103	0.0074	0.0101	0.0134	0.0095	0.0126	0.00594	0.0107
Min	0.219	0.3	0.304	0.271	0.247	0.301	0.354	0.277	0.274	0.103
Max	0.439	0.453	0.364	0.323	0.336	0.328	0.44	0.395	0.585	0.655
Modeled 95%CI Lower	-0.876	-0.49	-0.833	-1.09	-1.15	-1.13	-0.667	-0.775	-0.534	-0.832
Modeled Mean	-0.642	-0.421	-0.602	-0.843	-0.96	-0.729	-0.462	-0.593	-0.475	-0.732
Modeled 95%CI Upper	-0.409	-0.353	-0.37	-0.591	-0.771	-0.334	-0.257	-0.411	-0.416	-0.633

Table 13.3: Sequential ANOVA table of strain and sex effects, controlling for batch, in the sexed subset of tested inbred strains.

	numerator df	denominator df	F-value	p-value
Sex	1	38	45.4	5.56e-08
Inbred Strain	7	38	5.38	0.000242

13.3 Diallel analysis

Diallel analysis including batch effects and Bayesian imputation of missing sex assignments was performed as described in Methods. This diallel arose as a byproduct of another experiment, and suboptimal pairing of batches with F1 hybrid groups in the experimental design means that incorporating batch effects greatly increases uncertainty about estimated genetic parameters.

Logit CD8 % H57

Figure 13.2: Diallel effects based on the normal model **without** accounting for batch effects on the phenotype under a logit transformation.

Logit CD8 % H57

Figure 13.3: Diallel effects based on the normal model **accounting for batch** effects on the phenotype under a logit transformation.

DCs.CD11b.MFI: CD11b antigen density on dendritic cells

14.1 Data collected on DCs.CD11b.MFI

Description: CD11b antigen density on dendritic cells

Transformation: log10. Rationale for transformation: Dimensionless quantity, but Box-Cox suggests a logarithmic transformation. Log to base 10 (log10) is used to provide a more interpretable scale.

Table 14.1: Number of mice phenotyped for DCs.CD11b.MFI

	AJ	B6	129S1	NOD	NZO	CAST	PWK	WSB	F1	PreCC	Total
Female	4	4	4	0	0	0	3	2	51	0	68
Male	2	6	2	6	10	2	6	8	81	54	177
Unsexed	0	61	0	0	0	0	0	0	0	0	61
Total	6	71	6	6	10	2	9	10	132	54	306

Figure 14.1: Phenotype values: raw and transformed for analysis for founder, F1 hybrid and PreCC mice. Colors distinguish females (red), males (blue), and unsexed (gray) mice.

Table 14.2: Point estimates. Upper table portion: mean and range statistics for raw phenotype values. Lower table portion: strain means and 95% CI on the transformed scale, as estimated from a linear model that includes a random intercept modeling the effects of 57 batches.

	AJ	B6	129S1	NOD	NZO	CAST	PWK	WSB	F1	PreCC
Mean	350	467	753	541	1030	2370	583	977	451	1360
SE of Mean	123	45.4	397	253	249	134	173	119	35.7	111
Min	148	101	114	131	145	2240	255	377	134	491
Max	747	1830	2030	1440	2030	2510	1570	1500	2480	4990
Modeled 95%CI Lower	2.52	2.5	2.54	2.27	2.45	2.74	2.48	2.57	2.57	2.7
Modeled Mean	2.67	2.58	2.69	2.45	2.57	2.97	2.64	2.69	2.65	2.81
Modeled 95%CI Upper	2.81	2.66	2.83	2.64	2.7	3.19	2.8	2.81	2.73	2.92

Table 14.3: Sequential ANOVA table of strain and sex effects, controlling for batch, in the sexed subset of tested inbred strains.

	numerator df	denominator df	F-value	p-value
Sex	1	38	1.99	0.166
Inbred Strain	7	38	5.39	0.00024

14.3 Diallel analysis

Diallel analysis including batch effects and Bayesian imputation of missing sex assignments was performed as described in Methods. This diallel arose as a byproduct of another experiment, and suboptimal pairing of batches with F1 hybrid groups in the experimental design means that incorporating batch effects greatly increases uncertainty about estimated genetic parameters.

Log10 DCs CD11b MFI

Figure 14.2: Diallel effects based on the normal model **without** accounting for batch effects on the phenotype under a log10 transformation.

Log10 DCs CD11b MFI

Figure 14.3: Diallel effects based on the normal model **accounting for batch** effects on the phenotype under a log10 transformation.

DCs.CD11c.MFI: CD11c antigen density on dendritic cells

15.1 Data collected on DCs.CD11c.MFI

Description: CD11c antigen density on dendritic cells

Transformation: log10. Rationale for transformation: Dimensionless quantity, but Box-Cox suggests a logarithmic transformation. Log to base 10 (log10) is used to provide a more interpretable scale.

Table 15.1: Number of mice phenotyped for DCs.CD11c.MFI

	AJ	B6	129S1	NOD	NZO	CAST	PWK	WSB	F1	PreCC	Total
Female	4	4	4	0	0	0	3	2	51	0	68
Male	2	6	2	6	10	2	6	8	81	54	177
Unsexed	0	61	0	0	0	0	0	0	0	0	61
Total	6	71	6	6	10	2	9	10	132	54	306

Figure 15.1: Phenotype values: raw and transformed for analysis for founder, F1 hybrid and PreCC mice. Colors distinguish females (red), males (blue), and unsexed (gray) mice.

Table 15.2: Point estimates. Upper table portion: mean and range statistics for raw phenotype values. Lower table portion: strain means and 95% CI on the transformed scale, as estimated from a linear model that includes a random intercept modeling the effects of 57 batches.

	AJ	B6	129S1	NOD	NZO	CAST	PWK	WSB	F1	PreCC
Mean	400	248	331	181	196	54.9	337	454	484	119
SE of Mean	98.3	17.7	92.5	21	16.9	9.92	40.8	115	20.5	5.48
Min	228	61	47.6	114	123	45	123	97.6	129	52.7
Max	719	712	590	249	253	64.9	440	1080	1200	211
Modeled 95%CI Lower	2.41	2.28	2.54	2.05	2.26	2.12	2.39	2.39	2.47	2.25
Modeled Mean	2.54	2.35	2.68	2.22	2.38	2.34	2.55	2.51	2.54	2.35
Modeled 95% CI Upper	2.68	2.42	2.81	2.4	2.5	2.56	2.7	2.62	2.61	2.45

Table 15.3: Sequential ANOVA table of strain and sex effects, controlling for batch, in the sexed subset of tested inbred strains.

	numerator df	denominator df	F-value	p-value
Sex	1	38	11	0.00204
Inbred Strain	7	38	22.4	1.13e-11

15.3 Diallel analysis

Diallel analysis including batch effects and Bayesian imputation of missing sex assignments was performed as described in Methods. This diallel arose as a byproduct of another experiment, and suboptimal pairing of batches with F1 hybrid groups in the experimental design means that incorporating batch effects greatly increases uncertainty about estimated genetic parameters.

Log10 DCs CD11c MFI

Figure 15.2: Diallel effects based on the normal model **without** accounting for batch effects on the phenotype under a log10 transformation.

Log10 DCs CD11c MFI

Figure 15.3: Diallel effects based on the normal model **accounting for batch** effects on the phenotype under a log10 transformation.

DCs.Pct: Classical dendritic cells

16.1 Data collected on DCs.Pct

Description: Classical dendritic cells

Transformation: logit. Rationale for transformation: Natural range is a proportion between 0 and 1, so logit transformation provides an interpretable scale for effects.

	AJ	B6	129S1	NOD	NZO	CAST	PWK	WSB	F1	PreCC	Total
Female	4	4	4	0	0	0	3	2	51	0	68
Male	2	6	2	6	10	2	6	8	81	54	177
Unsexed	0	61	0	0	0	0	0	0	0	0	61
Total	6	71	6	6	10	2	9	10	132	54	306

Table 16.1: Number of mice phenotyped for DCs.Pct

Figure 16.1: Phenotype values: raw and transformed for analysis for founder, F1 hybrid and PreCC mice. Colors distinguish females (red), males (blue), and unsexed (gray) mice.

Table 16.2: Point estimates. Upper table portion: mean and range statistics for raw phenotype values. Lower table portion: strain means and 95% CI on the transformed scale, as estimated from a linear model that includes a random intercept modeling the effects of 57 batches.

	AJ	B6	129S1	NOD	NZO	CAST	PWK	WSB	F1	PreCC
Mean	0.00757	0.00773	0.00813	0.00832	0.0054	0.0022	0.00321	0.00317	0.0091	0.00445
SE of Mean	0.000549	0.000265	0.000914	0.000564	0.000445	0.0014	0.000255	0.000382	0.000312	0.000369
Min	0.0056	0.00381	0.0049	0.0069	0.004	8e-04	0.002	0.0019	0.0019	0.00075
Max	0.0093	0.0146	0.0115	0.0108	0.0081	0.0036	0.004	0.0055	0.0209	0.0117
Modeled 95%CI Lower	-5.4	-5	-5.19	-5.18	-5.38	-6.66	-6.08	-5.96	-4.9	-5.7
Modeled Mean	-5.06	-4.89	-4.86	-4.79	-5.1	-6.09	-5.76	-5.69	-4.8	-5.51
Modeled 95%CI Upper	-4.72	-4.78	-4.53	-4.39	-4.82	-5.52	-5.43	-5.43	-4.7	-5.33

Table 16.3: Sequential ANOVA table of strain and sex effects, controlling for batch, in the sexed subset of tested inbred strains.

	numerator df	denominator df	F-value	p-value
Sex	1	38	3.14	0.0846
Inbred Strain	7	38	16.1	1.31e-09

16.3 Diallel analysis

Diallel analysis including batch effects and Bayesian imputation of missing sex assignments was performed as described in Methods. This diallel arose as a byproduct of another experiment, and suboptimal pairing of batches with F1 hybrid groups in the experimental design means that incorporating batch effects greatly increases uncertainty about estimated genetic parameters.

Logit DCs %

Figure 16.2: Diallel effects based on the normal model **without** accounting for batch effects on the phenotype under a logit transformation.

Logit DCs %

Figure 16.3: Diallel effects based on the normal model **accounting for batch** effects on the phenotype under a logit transformation.

FoB.Pct.CD19: Follicular B-cells (CD19+)

17.1 Data collected on FoB.Pct.CD19

Description: Follicular B-cells (CD19+)

Transformation: INT. Rationale for transformation: Although natural range is between 0 and 1, outliers and small sample size make a logit transformation unstable for subsequent Gaussian-based analysis. Therefore, the inverse normal transformation using the Bliss correction is used instead.

Table 17.1: Number of mice phenotyped for FoB.Pct.CD19

	AJ	B6	129S1	NOD	NZO	CAST	PWK	WSB	F1	PreCC	Total
Female	4	4	4	0	0	0	3	2	51	0	68
Male	2	6	2	6	10	2	6	8	81	40	163
Unsexed	0	58	0	0	0	0	0	0	0	0	58
Total	6	68	6	6	10	2	9	10	132	40	289

Figure 17.1: Phenotype values: raw and transformed for analysis for founder, F1 hybrid and PreCC mice. Colors distinguish females (red), males (blue), and unsexed (gray) mice.

Table 17.2: Point estimates. Upper table portion: mean and range statistics for raw phenotype values. Lower table portion: strain means and 95% CI on the transformed scale, as estimated from a linear model that includes a random intercept modeling the effects of 56 batches.

	AJ	B6	129S1	NOD	NZO	CAST	PWK	WSB	F1	PreCC
Mean	0.765	0.759	0.689	0.75	0.571	0.551	0.59	0.617	0.736	0.707
SE of Mean	0.034	0.0127	0.0103	0.0141	0.035	0.00605	0.00708	0.0546	0.00562	0.0257
Min	0.648	0	0.656	0.718	0.44	0.544	0.557	0.226	0.559	0.00416
Max	0.838	0.843	0.723	0.8	0.728	0.557	0.62	0.832	0.848	0.906
Modeled 95%CI Lower	-0.22	0.125	-1.36	-0.738	-1.43	-2.19	-1.67	-1.03	-0.21	-0.47
Modeled Mean	0.394	0.325	-0.753	-0.0249	-0.918	-1.16	-1.08	-0.518	-0.0269	-0.1
Modeled 95% CI Upper	1.01	0.526	-0.152	0.688	-0.409	-0.132	-0.497	-0.000574	0.157	0.269

Table 17.3: Sequential ANOVA table of strain and sex effects, controlling for batch, in the sexed subset of tested inbred strains.

	numerator df	denominator df	F-value	p-value
Sex	1	38	2.44	0.127
Inbred Strain	7	38	9.63	7.88e-07

17.3 Diallel analysis

Diallel analysis including batch effects and Bayesian imputation of missing sex assignments was performed as described in Methods. This diallel arose as a byproduct of another experiment, and suboptimal pairing of batches with F1 hybrid groups in the experimental design means that incorporating batch effects greatly increases uncertainty about estimated genetic parameters.

Int FoB % CD19

Figure 17.2: Diallel effects based on the normal model **without** accounting for batch effects on the phenotype under a INT transformation.

Int FoB % CD19

Figure 17.3: Diallel effects based on the normal model **accounting for batch** effects on the phenotype under a INT transformation.

Granulocytes.Pct: Granulocytes

18.1 Data collected on Granulocytes.Pct

Description: Granulocytes

Transformation: logit. Rationale for transformation: Natural range is a proportion between 0 and 1, so logit transformation provides an interpretable scale for effects.

	AJ	B6	129S1	NOD	NZO	CAST	PWK	WSB	F1	PreCC	Total
Female	4	4	4	0	0	0	3	2	51	0	68
Male	2	6	2	6	10	2	6	8	81	54	177
Unsexed	0	61	0	0	0	0	0	0	0	0	61
Total	6	71	6	6	10	2	9	10	132	54	306

Table 18.1: Number of mice phenotyped for Granulocytes.Pct

Figure 18.1: Phenotype values: raw and transformed for analysis for founder, F1 hybrid and PreCC mice. Colors distinguish females (red), males (blue), and unsexed (gray) mice.

Table 18.2: Point estimates. Upper table portion: mean and range statistics for raw phenotype values. Lower table portion: strain means and 95% CI on the transformed scale, as estimated from a linear model that includes a random intercept modeling the effects of 57 batches.

	AJ	B6	129S1	NOD	NZO	CAST	PWK	WSB	F1	PreCC
Mean	0.0254	0.0109	0.01	0.0105	0.0369	0.00415	0.0208	0.00864	0.0154	0.0106
SE of Mean	0.0057	0.00121	0.00284	0.00282	0.0123	5e-05	0.00301	0.00129	0.00101	0.00282
Min	0.0096	0.00073	0.0021	0.0054	0.0017	0.0041	0.0049	0.0045	0.0018	0.000251
Max	0.0505	0.0708	0.0199	0.0194	0.0825	0.0042	0.0307	0.0155	0.0613	0.14
Modeled 95%CI Lower	-4.36	-5.04	-5.28	-5.55	-4.99	-6.3	-4.82	-5.31	-4.57	-5.71
Modeled Mean	-3.64	-4.81	-4.58	-4.73	-4.4	-5.1	-4.14	-4.75	-4.36	-5.33
Modeled 95% CI Upper	-2.93	-4.59	-3.88	-3.9	-3.81	-3.9	-3.46	-4.18	-4.15	-4.95

Table 18.3: Sequential ANOVA table of strain and sex effects, controlling for batch, in the sexed subset of tested inbred strains.

	numerator df	denominator df	F-value	p-value
Sex	1	38	19.8	7.23e-05
Inbred Strain	7	38	2.41	0.0381

18.3 Diallel analysis

Diallel analysis including batch effects and Bayesian imputation of missing sex assignments was performed as described in Methods. This diallel arose as a byproduct of another experiment, and suboptimal pairing of batches with F1 hybrid groups in the experimental design means that incorporating batch effects greatly increases uncertainty about estimated genetic parameters.

Logit Granulocytes %

Figure 18.2: Diallel effects based on the normal model **without** accounting for batch effects on the phenotype under a logit transformation.

Logit Granulocytes %

Figure 18.3: Diallel effects based on the normal model **accounting for batch** effects on the phenotype under a logit transformation.

H57.Pct: Total T-cells (H57+)

19.1 Data collected on H57.Pct

Description: Total T-cells (H57+)

Transformation: logit. Rationale for transformation: Natural range is a proportion between 0 and 1, so logit transformation provides an interpretable scale for effects.

	AJ	B6	129S1	NOD	NZO	CAST	PWK	WSB	F1	PreCC	Total
Female	4	4	4	0	0	0	3	2	51	0	68
Male	2	6	2	6	10	2	6	8	81	66	189
Unsexed	0	62	0	0	0	0	0	0	0	0	62
Total	6	72	6	6	10	2	9	10	132	66	319

Table 19.1: Number of mice phenotyped for H57.Pct

Figure 19.1: Phenotype values: raw and transformed for analysis for founder, F1 hybrid and PreCC mice. Colors distinguish females (red), males (blue), and unsexed (gray) mice.

Table 19.2: Point estimates. Upper table portion: mean and range statistics for raw phenotype values. Lower table portion: strain means and 95% CI on the transformed scale, as estimated from a linear model that includes a random intercept modeling the effects of 57 batches.

	AJ	B6	129S1	NOD	NZO	CAST	PWK	WSB	F1	PreCC
Mean	0.185	0.353	0.301	0.519	0.254	0.397	0.272	0.373	0.306	0.376
SE of Mean	0.0224	0.00683	0.0282	0.0437	0.0211	0.0331	0.0434	0.017	0.00629	0.0149
Min	0.099	0.25	0.228	0.374	0.172	0.364	0.136	0.3	0.114	0.043
Max	0.25	0.549	0.402	0.615	0.354	0.43	0.512	0.456	0.436	0.724
Modeled 95%CI Lower	-1.92	-0.709	-1.42	-0.333	-1.23	-1.39	-1.35	-0.818	-0.961	-0.775
Modeled Mean	-1.58	-0.605	-1.09	0.0498	-0.954	-0.813	-1.03	-0.551	-0.867	-0.615
Modeled 95%CI Upper	-1.24	-0.501	-0.751	0.433	-0.673	-0.238	-0.72	-0.283	-0.774	-0.456

Table 19.3: Sequential ANOVA table of strain and sex effects, controlling for batch, in the sexed subset of tested inbred strains.

	numerator df	denominator df	F-value	p-value
Sex	1	38	40.3	1.91e-07
Inbred Strain	7	38	5.52	0.000195

19.3 Diallel analysis

Diallel analysis including batch effects and Bayesian imputation of missing sex assignments was performed as described in Methods. This diallel arose as a byproduct of another experiment, and suboptimal pairing of batches with F1 hybrid groups in the experimental design means that incorporating batch effects greatly increases uncertainty about estimated genetic parameters.

Logit H57 %

Figure 19.2: Diallel effects based on the normal model **without** accounting for batch effects on the phenotype under a logit transformation.

Logit H57 %

Figure 19.3: Diallel effects based on the normal model **accounting for batch** effects on the phenotype under a logit transformation.

Macrophages.Pct: Macrophages

20.1 Data collected on Macrophages.Pct

Description: Macrophages

Transformation: logit. Rationale for transformation: Natural range is a proportion between 0 and 1, so logit transformation provides an interpretable scale for effects.

	AJ	B6	129S1	NOD	NZO	CAST	PWK	WSB	F1	PreCC	Total
Female	4	4	4	0	0	0	3	2	51	0	68
Male	2	6	2	6	10	2	6	8	81	54	177
Unsexed	0	61	0	0	0	0	0	0	0	0	61
Total	6	71	6	6	10	2	9	10	132	54	306

Table 20.1: Number of mice phenotyped for Macrophages.Pct

Figure 20.1: Phenotype values: raw and transformed for analysis for founder, F1 hybrid and PreCC mice. Colors distinguish females (red), males (blue), and unsexed (gray) mice.

Table 20.2: Point estimates. Upper table portion: mean and range statistics for raw phenotype values. Lower table portion: strain means and 95% CI on the transformed scale, as estimated from a linear model that includes a random intercept modeling the effects of 57 batches.

	AJ	B6	129S1	NOD	NZO	CAST	PWK	WSB	F1	PreCC
Mean	0.0167	0.0125	0.0101	0.00653	0.00882	0.013	0.0318	0.0182	0.0164	0.0125
SE of Mean	0.00353	0.00095	0.00209	0.00127	0.00126	0.0024	0.00397	0.00243	0.000748	0.00282
Min	0.0091	0.00258	0.0034	0.0034	0.0042	0.0106	0.0122	0.0103	0.0043	0.0011
Max	0.0289	0.0412	0.0175	0.0112	0.0139	0.0154	0.0516	0.0299	0.0567	0.151
Modeled 95%CI Lower	-4.72	-4.68	-5.01	-5.69	-5.05	-4.85	-3.86	-4.56	-4.36	-5.08
Modeled Mean	-4.23	-4.53	-4.53	-5.13	-4.65	-4.03	-3.4	-4.18	-4.22	-4.82
Modeled 95%CI Upper	-3.74	-4.37	-4.05	-4.58	-4.25	-3.21	-2.94	-3.8	-4.08	-4.56

Table 20.3: Sequential ANOVA table of strain and sex effects, controlling for batch, in the sexed subset of tested inbred strains.

	numerator df	denominator df	F-value	p-value
Sex	1	38	0.313	0.579
Inbred Strain	7	38	6.49	4.63e-05

20.3 Diallel analysis

Diallel analysis including batch effects and Bayesian imputation of missing sex assignments was performed as described in Methods. This diallel arose as a byproduct of another experiment, and suboptimal pairing of batches with F1 hybrid groups in the experimental design means that incorporating batch effects greatly increases uncertainty about estimated genetic parameters.

Logit Macrophages %

Figure 20.2: Diallel effects based on the normal model **without** accounting for batch effects on the phenotype under a logit transformation.

Logit Macrophages %

Figure 20.3: Diallel effects based on the normal model **accounting for batch** effects on the phenotype under a logit transformation.

Monocytes.Pct: Monocytes

21.1 Data collected on Monocytes.Pct

Description: Monocytes

Transformation: logit. Rationale for transformation: Natural range is a proportion between 0 and 1, so logit transformation provides an interpretable scale for effects.

	AJ	B6	129S1	NOD	NZO	CAST	PWK	WSB	F1	PreCC	Total
Female	4	4	4	0	0	0	3	2	51	0	68
Male	2	6	2	6	10	2	6	8	81	54	177
Unsexed	0	61	0	0	0	0	0	0	0	0	61
Total	6	71	6	6	10	2	9	10	132	54	306

Table 21.1: Number of mice phenotyped for Monocytes.Pct

Figure 21.1: Phenotype values: raw and transformed for analysis for founder, F1 hybrid and PreCC mice. Colors distinguish females (red), males (blue), and unsexed (gray) mice.

Table 21.2: Point estimates. Upper table portion: mean and range statistics for raw phenotype values. Lower table portion: strain means and 95% CI on the transformed scale, as estimated from a linear model that includes a random intercept modeling the effects of 57 batches.

	AJ	B6	129S1	NOD	NZO	CAST	PWK	WSB	F1	PreCC
Mean	0.034	0.0288	0.0163	0.0136	0.039	0.0116	0.0162	0.0174	0.0275	0.0226
SE of Mean	0.0117	0.000895	0.00236	0.00178	0.00286	0.00105	0.00227	0.00233	0.00117	0.00219
Min	0.0148	0.0124	0.0107	0.0056	0.0248	0.0105	0.0073	0.0067	0.0096	0.00452
Max	0.0856	0.0654	0.0241	0.0176	0.0499	0.0126	0.027	0.0321	0.0865	0.0825
Modeled 95%CI Lower	-3.95	-3.65	-4.31	-4.71	-3.58	-4.89	-4.59	-4.5	-3.74	-4.13
Modeled Mean	-3.59	-3.54	-3.96	-4.3	-3.28	-4.27	-4.26	-4.21	-3.64	-3.94
Modeled 95%CI Upper	-3.22	-3.43	-3.6	-3.89	-2.98	-3.66	-3.92	-3.92	-3.54	-3.76

Table 21.3: Sequential ANOVA table of strain and sex effects, controlling for batch, in the sexed subset of tested inbred strains.

	numerator df	denominator df	F-value	p-value
Sex	1	38	7.42	0.00971
Inbred Strain	7	38	11	1.6e-07

21.3 Diallel analysis

Diallel analysis including batch effects and Bayesian imputation of missing sex assignments was performed as described in Methods. This diallel arose as a byproduct of another experiment, and suboptimal pairing of batches with F1 hybrid groups in the experimental design means that incorporating batch effects greatly increases uncertainty about estimated genetic parameters.

Logit Monocytes %

Figure 21.2: Diallel effects based on the normal model **without** accounting for batch effects on the phenotype under a logit transformation.

Logit Monocytes %

Figure 21.3: Diallel effects based on the normal model **accounting for batch** effects on the phenotype under a logit transformation.

Phagocytes.Pct: Phagocytes (CD11b Hi)

22.1 Data collected on Phagocytes.Pct

Description: Phagocytes (CD11b Hi)

Transformation: logit. Rationale for transformation: Natural range is a proportion between 0 and 1, so logit transformation provides an interpretable scale for effects.

	AJ	B6	129S1	NOD	NZO	CAST	PWK	WSB	F1	PreCC	Total
Female	4	4	4	0	0	0	3	2	51	0	68
Male	2	6	2	6	10	2	6	8	81	54	177
Unsexed	0	61	0	0	0	0	0	0	0	0	61
Total	6	71	6	6	10	2	9	10	132	54	306

Table 22.1: Number of mice phenotyped for Phagocytes.Pct

Figure 22.1: Phenotype values: raw and transformed for analysis for founder, F1 hybrid and PreCC mice. Colors distinguish females (red), males (blue), and unsexed (gray) mice.

Table 22.2: Point estimates. Upper table portion: mean and range statistics for raw phenotype values. Lower table portion: strain means and 95% CI on the transformed scale, as estimated from a linear model that includes a random intercept modeling the effects of 57 batches.

	AJ	B6	129S1	NOD	NZO	CAST	PWK	WSB	F1	PreCC
Mean	0.042	0.0235	0.0201	0.0171	0.0458	0.0172	0.0527	0.0269	0.0318	0.0239
SE of Mean	0.009	0.00184	0.00481	0.00404	0.0115	0.00245	0.00655	0.00288	0.00142	0.00556
Min	0.0187	0.00407	0.0056	0.0088	0.008	0.0147	0.0171	0.0181	0.0122	0.00151
Max	0.0793	0.109	0.0374	0.0306	0.0882	0.0196	0.0807	0.044	0.117	0.29
Modeled 95%CI Lower	-3.69	-4.04	-4.32	-4.73	-3.92	-4.59	-3.51	-4.05	-3.66	-4.47
Modeled Mean	-3.17	-3.88	-3.81	-4.14	-3.49	-3.73	-3.03	-3.64	-3.51	-4.2
Modeled 95%CI Upper	-2.66	-3.72	-3.31	-3.55	-3.07	-2.86	-2.55	-3.23	-3.36	-3.93

Table 22.3: Sequential ANOVA table of strain and sex effects, controlling for batch, in the sexed subset of tested inbred strains.

	numerator df	denominator df	F-value	p-value
Sex	1	38	4.66	0.0373
Inbred Strain	7	38	3.89	0.00275

22.3 Diallel analysis

Diallel analysis including batch effects and Bayesian imputation of missing sex assignments was performed as described in Methods. This diallel arose as a byproduct of another experiment, and suboptimal pairing of batches with F1 hybrid groups in the experimental design means that incorporating batch effects greatly increases uncertainty about estimated genetic parameters.

Logit Phagocytes %

Figure 22.2: Diallel effects based on the normal model **without** accounting for batch effects on the phenotype under a logit transformation.

Logit Phagocytes %

Figure 22.3: Diallel effects based on the normal model **accounting for batch** effects on the phenotype under a logit transformation.

MZB.Pct.CD19: Marginal Zone B-cells

23.1 Data collected on MZB.Pct.CD19

Description: Marginal Zone B-cells

Transformation: INT. Rationale for transformation: Although natural range is between 0 and 1, outliers and small sample size make a logit transformation unstable for subsequent Gaussian-based analysis. Therefore, the inverse normal transformation using the Bliss correction is used instead.

Table 23.1: Number of mice phenotyped for MZB.Pct.CD19

	AJ	B6	129S1	NOD	NZO	CAST	PWK	WSB	F1	PreCC	Total
Female	4	4	4	0	0	0	3	2	51	0	68
Male	2	6	2	6	10	2	6	8	81	40	163
Unsexed	0	58	0	0	0	0	0	0	0	0	58
Total	6	68	6	6	10	2	9	10	132	40	289

Figure 23.1: Phenotype values: raw and transformed for analysis for founder, F1 hybrid and PreCC mice. Colors distinguish females (red), males (blue), and unsexed (gray) mice.

Table 23.2: Point estimates. Upper table portion: mean and range statistics for raw phenotype values. Lower table portion: strain means and 95% CI on the transformed scale, as estimated from a linear model that includes a random intercept modeling the effects of 56 batches.

	AJ	B6	129S1	NOD	NZO	CAST	PWK	WSB	F1	PreCC
Mean	0.0908	0.0978	0.24	0.187	0.0916	0.375	0.239	0.147	0.126	0.185
SE of Mean	0.00686	0.0034	0.0206	0.0181	0.00972	0.0019	0.0253	0.0147	0.00372	0.0156
Min	0.0744	0	0.193	0.122	0.0264	0.373	0.165	0.0627	0.0578	0.00234
Max	0.122	0.188	0.307	0.233	0.139	0.376	0.416	0.189	0.297	0.472
Modeled 95%CI Lower	-1.18	-0.686	0.535	0.16	-1.05	0.557	0.564	-0.29	-0.191	0.17
Modeled Mean	-0.604	-0.512	1.1	0.78	-0.584	1.53	1.07	0.173	-0.045	0.46
Modeled 95% CI Upper	-0.0305	-0.338	1.67	1.4	-0.119	2.5	1.57	0.636	0.101	0.751

Table 23.3: Sequential ANOVA table of strain and sex effects, controlling for batch, in the sexed subset of tested inbred strains.

	numerator df	denominator df	F-value	p-value
Sex	1	38	0.598	0.444
Inbred Strain	7	38	18.1	2.56e-10

23.3 Diallel analysis

Diallel analysis including batch effects and Bayesian imputation of missing sex assignments was performed as described in Methods. This diallel arose as a byproduct of another experiment, and suboptimal pairing of batches with F1 hybrid groups in the experimental design means that incorporating batch effects greatly increases uncertainty about estimated genetic parameters.

Int MZB % CD19

Figure 23.2: Diallel effects based on the normal model **without** accounting for batch effects on the phenotype under a INT transformation.

Int MZB % CD19

Figure 23.3: Diallel effects based on the normal model **accounting for batch** effects on the phenotype under a INT transformation.

TransB.Pct.CD19: Transitional B-cells

24.1 Data collected on TransB.Pct.CD19

Description: Transitional B-cells

Transformation: INT. Rationale for transformation: Although natural range is between 0 and 1, outliers and small sample size make a logit transformation unstable for subsequent Gaussian-based analysis. Therefore, the inverse normal transformation using the Bliss correction is used instead.

Table 24.1: Number of mice phenotyped for TransB.Pct.CD19

	AJ	B6	129S1	NOD	NZO	CAST	PWK	WSB	F1	PreCC	Total
Female	4	4	4	0	0	0	3	2	51	0	68
Male	2	6	2	6	10	2	6	8	81	40	163
Unsexed	0	58	0	0	0	0	0	0	0	0	58
Total	6	68	6	6	10	2	9	10	132	40	289

Figure 24.1: Phenotype values: raw and transformed for analysis for founder, F1 hybrid and PreCC mice. Colors distinguish females (red), males (blue), and unsexed (gray) mice.

Table 24.2: Point estimates. Upper table portion: mean and range statistics for raw phenotype values. Lower table portion: strain means and 95% CI on the transformed scale, as estimated from a linear model that includes a random intercept modeling the effects of 56 batches.

	AJ	B6	129S1	NOD	NZO	CAST	PWK	WSB	F1	PreCC
Mean	0.134	0.123	0.0646	0.0574	0.328	0.0721	0.166	0.229	0.133	0.1
SE of Mean	0.0384	0.00556	0.0145	0.00468	0.0382	0.0053	0.0215	0.0625	0.00546	0.0246
Min	0.0676	0	0.0204	0.0443	0.186	0.0668	0.0219	0.0778	0.0503	0.0169
Max	0.259	0.361	0.122	0.0749	0.478	0.0774	0.249	0.702	0.339	0.986
Modeled 95%CI Lower	-0.577	0.00469	-1.07	-2.04	0.781	-0.953	-0.0623	0.0552	0.0236	-0.781
Modeled Mean	0.0156	0.212	-0.492	-1.32	1.28	0.0365	0.531	0.566	0.221	-0.39
Modeled 95% CI Upper	0.608	0.419	0.0862	-0.604	1.78	1.03	1.12	1.08	0.419	0.00156

Table 24.3: Sequential ANOVA table of strain and sex effects, controlling for batch, in the sexed subset of tested inbred strains.

	numerator df	denominator df	F-value	p-value
Sex	1	38	0.602	0.443
Inbred Strain	7	38	6.52	4.45e-05

24.3 Diallel analysis

Diallel analysis including batch effects and Bayesian imputation of missing sex assignments was performed as described in Methods. This diallel arose as a byproduct of another experiment, and suboptimal pairing of batches with F1 hybrid groups in the experimental design means that incorporating batch effects greatly increases uncertainty about estimated genetic parameters.

Int Trans B % CD19

Figure 24.2: Diallel effects based on the normal model **without** accounting for batch effects on the phenotype under a INT transformation.

Int Trans B % CD19

Figure 24.3: Diallel effects based on the normal model **accounting for batch** effects on the phenotype under a INT transformation.