
Supplementary Text S1
Pau Formosa-Jordan1, Marta Ibañes1,∗
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1 Complex model formulation and analysis

In this section we use a more detailed model in which we take into account
the binding-unbinding dynamics of receptors and ligands, and the prote-
olytic cleavage of the ligand-receptor forming complex that gives rise to the
Notch signal. This model provides a biochemical-based interpretation for
some of the parameters used in the phenomenological model. It is also used
to verify that our main conclusions extracted with the phenomenological
model are not dependent on its approximations.

1.1 Multicellular system

Herein we set that both trans and cis-formed ligand-receptor complexes, Ci
and Bi, get proteolytically cleaved, giving rise to the Notch signal (Fig. 1A):
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We considered as well that these complexes degrade linearly with rates νc
and νb respectively, i.e

Ci
νc−→ φ, Bi

νb−→ φ . (S2)

We included basal production and linear degradation for the Notch receptor:

φ
βn−→ Ni, Ni

νn−→ φ . (S3)

For the ligand dynamics we set that ligand production is down-regulated
by the signal through the usual Hill function [1]. By considering fast mRNA
dynamics, the system of equations for all the dimensional variables takes
the following form:

dLi
dτ

= −kb〈Ni〉Li + k−b〈Ci〉 − k′bNiLi + k′−bBi +
βl

1 + bShi
−

−νlLi (S4a)

dNi

dτ
= −kbNi〈Li〉 − k′bNiLi + k−bCi + k′−bBi + βn − νnNi (S4b)

dCi
dτ

= kbNi〈Li〉 − k−bCi − ksCi − νcCi (S4c)

dBi
dτ

= k′bNiLi − k′−bBi − k′sBi − νbBi (S4d)

dSi
dτ

= ksCi + k′sBi − νsSi , (S4e)

where the binding and unbinding reactions are explicit in Eqs. S4a-S4d. τ is
the dimensional time. We did not perform any additional adiabatic approx-
imation nor nondimensionalization, since our intention is just to check that
our main conclusions are also found in a more realistic modeling framework
of the Notch signaling pathway.

1.2 Single cell system

We can write an equivalent model to Eqs. S4 for the single cell system (Fig.
1B) by assuming that Notch receptor turns into a modified form Ci in a
ligand-independent way, and its cleavage drives signaling:

Ni

µ0


µ−0

Ci
ks−→ Si . (S5)
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The corresponding system reads1

dLi
dτ

= −k′bNiLi + k′−bBi +
βl

1 + bShi
− νlLi (S6a)

dNi

dτ
= −µ0Ni − k′bNiLi + µ−0Ci + k′−bBi + βn − νnNi (S6b)

dCi
dτ

= µ0Ni − µ−0Ci − ksCi − νcCi (S6c)

dBi
dτ

= k′bNiLi − k′−bBi − k′sBi − νbBi (S6d)

dSi
dτ

= ksCi + k′sBi − νsSi . (S6e)

The stationary Notch signal in cell i in terms of the non-dimensional
amounts of ligand li reads (dNi/dτ = 0, dCi/dτ = 0, dBi/dτ = 0, dSi/dτ =
0):

Sst
i = Sst

0

µ+ εrcli
1 + µ+ rcli

, (S7)

with µ = µ0

νn
ks+νc

µ−0+ks+νc
L0 and ε, rc and Sst

0 being as defined in Methods

for the multicellular system (i.e. ε = k′s
ks
ks+νc
k′s+νb

, rc =
k′b
νn

k′s+νb
k′−b+k′s+νb

L0 and

Sst
0 = ksβn

νs(ks+νc) with L0 being a characteristic dimensional concentration of

ligand).
This model can be easily extended to primary signaling sources that are

ligand-dependent yet cell-autonomous.

1.3 Regulatory role of cis-interactions for the single cell sys-
tem

We quantified the regulatory role of cis-interactions for the single cell system.
Following the same procedure as for the multicellular system (described in
Methods), and according to Eq. S7, cis-inhibition takes place when

ε <
µ

1 + µ
, (S8)

with µ and ε as defined in the previous subsection. Notice the analogy with
the multicellular system (Fig. S11).

1.4 Bistability in the single-cell system

We computed the stationary states of the cell-autonomous dynamics (Eqs.
S6) by imposing dLi

dτ = 0, dNi
dτ = 0, dCi

dτ = 0, dBi
dτ = 0 and dSi

dτ = 0. This

1The subindex is kept, but it could be omitted.
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results in the following equalities:

Si = Sst
0

µ+ εKcLi
1 + µ+KcLi

(S9a)

Si =

(
(βl − νlLi)(1 + µ+KcLi)− βnKcLi
b (νlLi(1 + µ+KcLi) + βnKcLi)

) 1
h

, (S9b)

being Kc = rc
L0

=
k′b
νn

k′s+νb
k′−b+k′s+νb

. Analysis of these equations indicates that

more than one stable stationary solution arises for strong cis-interactions
(Fig. S13).

2 Spontaneous pattern formation

2.1 Detailed linear stability analysis (LSA)

Linear stability analysis (LSA) over the homogeneous state for the dynam-
ics of the simple model (Eqs. 1-4 and 6 in main text for µ = rt〈li〉) was
performed. On one side, LSA indicated in which regions of the parameter
space a state of equivalent precursor cells initially exhibiting small variabil-
ity between them evolves dynamically to a pattern state of several cell types
(spontaneous patterning). These regions are delimited by what we call LSA
critical lines. On the other side, LSA made a prediction on which is the
expected periodicity of the pattern that arises in these regions (what we
call the characteristic length of the pattern or pattern wavelength). Such
predicted pattern feature comes from the identification of the mode that has
the fastest growing rate when the homogeneous state is linearly unstable.
This is called the fastest growing mode2.

Herein we detail how standard LSA calculations apply to our discrete
dynamical equations for the multicellular system defined on a regular hexag-
onal array with periodic boundary conditions. This standard methodol-
ogy applied to similar kind of problems can be found in different resources
[1, 3–5].

First of all we found the homogeneous stationary solution (l0, s0) by
imposing li = lj = l0, si = sj = s0 ∀ i, j and dli/dt = 0 and dsi/dt = 0 ∀ i.
These conditions on Eqs. 1-4 and 6 drive the following algebraic relations

l0 =
1

1 + bsh0
(S10a)

s0 =
rtl0 + εrcl0

1 + (rt + rc)l0
, (S10b)

2The fastest growing mode can be a good predictor of the pattern wavelength when the
system is close to the critical line and the pattern formation transition is supercritical [2],
i.e. the pattern amplitude gradually grows at the critical line. However, even if these
conditions do not hold, LSA can be a good starting point to predict the pattern periodicity.
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which were solved numerically.
Perturbations l̃i and s̃i to the homogeneous stationary solution were

introduced as

li = l0 + l̃i (S11a)

si = s0 + s̃i , (S11b)

where l̃i and s̃i are small. By introducing Eqs. S11 into Eqs. 1-4 and 6, by
expanding them as a Taylor series and neglecting second and higher order
terms in the perturbations, the linear dynamics of the perturbations were
obtained as:

d

dt

(
l̃i
s̃i

)
' J0

(
l̃i
s̃i

)
+ J1

( ∑
i′ l̃i′∑
i′ s̃i′

)
, (S12)

where isotropy has been taken into account and J0 and J1 are the matrices

J0 =

(
∂
∂li

dli
dt

∂
∂si

dli
dt

∂
∂li

dsi
dt

∂
∂si

dsi
dt

)∣∣∣∣∣
l0,s0

, J1 =

(
∂
∂li′

dli
dt

∂
∂si′

dli
dt

∂
∂li′

dsi
dt

∂
∂si′

dsi
dt

)∣∣∣∣∣
l0,s0

, (S13)

where i′ refers to first neighbors to the cell i and all derivatives are computed
at the homogeneous state.

In the particular case of a hexagonal array of N ×M cells, the pertur-
bations l̃i and s̃i can be written as

l̃i ≡ l̃j,k =
∑
q̄

∑
p̄

σlq̄,p̄e
2πi(q̄j+p̄k)+αq̄,p̄t (S14a)

s̃i ≡ s̃j,k =
∑
q̄

∑
p̄

σsq̄,p̄e
2πi(q̄j+p̄k)+αq̄,p̄t , (S14b)

where now the two subindexes j, k are used to refer to the spatial position
of cell i within the two-dimensional hexagonal cell lattice (see Fig. S14). q̄
and p̄ are proportional to the wavenumbers along the natural axes in a two-
dimensional hexagonal lattice. These wave numbers are defined as q̄ = q/N ,
p̄ = p/M being q = 1, ..., N and p = 1, ...,M , so the first and second sums
are performed over q̄ = 1/N, 2/N, ..., 1 and q̄ = 1/M, 2/M, ..., 1. Note that
the ansatz solutions S14 contain an exponential growth in time of these
modes at rate αq̄,p̄. We referred to the couple of indices (q̄, p̄) as a particular
Fourier mode. The inverted transforms are

σlq̄,p̄ =
1

NM

∑
j

∑
k

l̃j,ke
−2πi(q̄j+p̄k)−αq̄,p̄t (S15a)

σsq̄,p̄ =
1

NM

∑
j

∑
k

s̃j,ke
−2πi(q̄j+p̄k)−αq̄,p̄t . (S15b)
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By introducing Eqs. S14 into the linearized system of differential equa-
tions S12, we obtain two coupled algebraic equations per each existing (q̄, p̄)-
mode that describe the mode dynamics:

αq̄,p̄σq̄,p̄ = Lσq̄,p̄ , (S16)

being σq̄,p̄ =

(
σlq̄,p̄
σsq̄,p̄

)
, and L is the matrix L = J0 + J1Ωq,p where

Ωq,p = 1
3 {cos(2πq) + cos(2πp) + cos(2π(p− q))} (S17)

is the function that takes into account the isotropic spatial coupling terms
within the hexagonal lattice. Given that our system is discrete and finite,
Ωq̄,p̄ takes discrete values within the interval [−0.5, 1].

By diagonalizing the L matrix, the eigenvalues αq̄,p̄ can be obtained. The
eigenvalue αq̄,p̄ gives the growth rate of the mode (q̄, p̄). When all modes
decrease over time (i.e. its real part is negative, so Re(αq̄,p̄) < 0 ∀ (q̄, p̄)),
the homogeneous state is linearly stable. In contrast, the homogeneous state
is linearly unstable when a single mode (or multiple modes) is able to grow
exponentially with time (i.e. Re(αq̄,p̄) > 0 for a mode (q̄, p̄)). Since the
expression of L depends only on the modes through function Ωq,p, a single
growth rate α(Ω) can be defined for all modes (q̄, p̄) with the same value Ω
of the function Ωq,p (Ωq,p = Ω).

For our system, the L = J0 + J1Ωq,p matrix reads:(
vB −v
−1 (C + A Ωq,p)

)
, (S18)

being A , B and C the following partial derivatives evaluated at the homo-
geneous stationary solution:

B =
1

v

∂

∂si

dli
dt

∣∣∣∣
s0,l0

= − hsh−1
0 b

(1 + bsh0)2
(S19)

C =
∂

∂li

dsi
dt

∣∣∣∣
s0,l0

=
rc(ε+ rtl0(ε− 1))

(1 + l0(rt + rc))2
(S20)

A = ω
∂

∂li′

dsi
dt

∣∣∣∣
s0,l0

=
rt(1 + rcl0(1− ε))
(1 + l0(rt + rc))2

, (S21)

where li′ is the ligand level in a neighboring cell to cell i. By diagonalizing
this L matrix, the eigenvalues α(Ω) that were obtained are:

α(Ω)± =
1

2

{
−(1 + v)±

(
(1 + v)2 − 4v(1−B(C + A Ω))

)1/2}
. (S22)

As indicated before, the homogeneous state is linearly unstable when there
is at least one mode that grows exponentially with time, i.e. Re(α(Ω)±) in
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Eq. S22 is positive for at least one mode. This will occur when the following
relation is fulfilled:

1 < B(C + A Ω) . (S23)

Given that B < 0 in all the parameter space and A > 0 for ε ≤ 1, which
is the case we are studying, the fastest growing modes are those ones corre-
sponding to Ω = −1/2 so (q, p) = (1/3, 2/3) and (2/3, 1/3). These are the
same fastest growing modes that destabilize the homogeneous state when
only trans-interactions are present (there are no cis-interactions) and that
drive the lateral inhibition pattern of Fig. 3A. This result indicates that
cis-interactions are not expected to change the characteristic wavelength of
the emerging pattern, specially in the regions of the parameter space where
the model behaves linearly. This is confirmed by our simulations (Fig. 4A).

According to condition S23 and the fastest growing mode Ω = −1/2, the
critical line enclosing the spontaneous pattern formation region (i.e. where
the homogeneous state is linearly unstable) is determined by

1 = B(C −A /2) , (S24)

which was solved numerically and is represented by solid lines in Figs. 3B-
D, 4C, 6D, S2B, S3, S4B-C, S7A, S8A, S9A and S16. These lines were
checked through numerical integration of the dynamics as detailed in the
next section.

2.2 Numerical integration of the dynamics to check LSA re-
sults

The regions where spontaneous patterning was occurring, from the amplifi-
cation of small initial differences between precursor cells, were determined
by Eq. S24. We checked some of these regions by performing numerical
integration of the dynamics (Eqs. 1-4 and 6) over a grid of parameter point
values in the rt–rc parameter space as follows:

• Numerical integration of the dynamics was done as described in Meth-
ods for a lattice of 30× 30 hexagonal cells.

• The initial conditions were set at the homogeneous state s0, l0 with
small random variability as described in Methods.

• A single simulation was performed for each parameter point value.

• To evaluate whether at each parameter point the pattern was formed,
we computed at the steady state a global function (order parameter)
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ηs which is zero for the homogeneous solution and for the x-species it
is defined as [5]:

ηx =
1

NM

∑
i

∣∣∣∣∣∣xi −
 1

ω

∑
j∈nn(i)

xj

∣∣∣∣∣∣ , (S25)

where the first sum in Eq. S25 is performed over the whole N ×M
cells in the tissue, and the second sum is performed only over the ω
nearest neighbor cells to cell i.

• By using our grid of parameter point values, we evaluated at which rt–
rc parameter values a change from ηs ≤ 10−5 to ηs > 10−5 occurred.
This change indicated the transition to spontaneous patterning. We
averaged every two subsequent rt values in our grid for each constant
rc in which this change in ηs was detected.

Fig. S16 exemplifies the agreement of the simulations with the lines
delimiting the spontaneous formation region.

3 Numerical evaluation of the stability of periodic
pattern solutions

As described in Methods, by solving Eqs. 16-18 we obtained whether a
specific periodic pattern composed of two cell types was a solution of the
dynamics defined by Eqs. 1-4 on a perfect hexagonal lattice. This method
gave also the exact periodic solution. In other words, it gave the levels of
each variable s and l for each cell type (A and B).

We evaluated the stability of this exact solution to small perturbations
through numerical integration of the dynamics given by Eqs. 1-4 as de-
scribed as follows:

• Numerical integration of the dynamics was done as described in Meth-
ods until reaching the stationary state. This integration was performed
on perfect hexagonal arrays of 3×3 cells for the P and I patterns, and
of 6×6 cells for the P2, I2 and S patterns (see Fig. S6 for a description
of each of these patterns).

• Initial conditions were set to be the exact pattern solution being found,
with a small random variability added as described in Methods.

• For each point of the parameter space being analyzed, ten simulations
were performed, which differed in the random numbers of the initial
conditions.
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• We defined a distance of the stationary state reached by the numerical
integration of the dynamics to the exact pattern solution, ∆η. For each
point in the parameter space, the exact pattern solution was taken as
stable when ∆η < 10−5 for each of the ten simulations performed in
such parameter space point.

The distance ∆η was defined as follows:

∆η ≡
∣∣∣(ηl − ηthl ) + (ηs − ηths )

∣∣∣ , (S26)

being ηx as defined in Eq. S25 for variable x and being ηthx the function ηx
evaluated for the exact periodic solution with cell types A and B:

ηthx = qAη
th
xA

+ qBη
th
xB
, (S27)

being qA,B the cell fraction adopting the A,B-type and where

ηthxA,B
= (1−mA,B)|xA − xB| (S28)

with mA,B as defined in Methods.

4 Characterization of the periodicity of the pat-
tern through the structure function

We made use of the structure function [6] to study the periodicity and
randomness in patterning when cis-interactions are present. This function
provides the amplitude spectrum of the spatial modes participating in a
pattern.

Provided that LSA indicated that all the spatial modes (q̄, p̄) with the
same value Ω of function Ωq,p (Eq. S17) grow at the same rate, we computed
the structure function of the pattern formed by variable x (e.g. the ligand) as
a function of Ω by doing the average over all the Ω corresponding modes [5]:

S(Ω) =
∑

(q̄,p̄)∈Ω

1

C(Ω)
S(q̄, p̄) , (S29)

with C(Ωq̄,p̄) being the number of q̄,p̄ modes that have the same Ω value
and

S(q̄, p̄) =
1

MN

∑
j,k

∑
j′,k′

xj,kxj′,k′e
−2πi(q̄(j−j′)+p̄(k−k′)),

(S30)

where we used the notation
∑

j,k =
∑N

j=1

∑M
k=1 for a lattice of M × N

cells. Herein we used as in LSA two indexes to label the spatial position
(j, k) of cell i. For having a better illustration of the contribution of the
non-homogeneous modes in the studied patterns, we did not represent the
homogeneous mode (Ω = 1) of the structure function in Fig. S10.
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