
1

Appendix S1

Classification Algorithms

Voxel-level lesion segmentation is a binary classification problem with two classes, voxels either contain
lesion or do not contain lesion. We use the notation yv ∈ {0, 1} to be a class label indicating whether or
not voxel v of a brain image from MRI study contains a lesion. Here we provide a brief summary of each
classification algorithm used in our analysis and the tuning parameters associated with the algorithm.
A complete overview of these algorithms can be found in The Elements of Statistical Learning: Data
Mining, Inference and Prediction [?]. For each classification algorithm, Table ?? in the Methods section
shows the R package used to fit the algorithm and the values for the tuning parameters. In fitting each
of the algorithms on the training set, 10-fold cross validation was used to optimize all tuning parameters.

Logistic Regression

Logistic regression is a special case of the generalized linear model, with a logistic link function. The
generalized linear model with logistic link function, t, is t{P (yv = 1|X = x)} = β0 + βTx, where
t(s) = log(s

1−s). The resulting decision boundary for logistic regression is linear.

Linear Discriminant Analysis

Linear discriminant analysis models each class as a multivariate Gaussian with probability distribution
functions f0(v) and f1(v) with means µ0 and µ1 respectively. Linear discriminant analysis makes the
assumption that both classes have a common covariance matrix Σ. Prior probabilities of belonging to a
class are calculated from the training data and are denoted as π0 and π1. Then, the probability of voxel

being part of a lesion is defined as P (yv = 1|X = x) = f1(x)π1

f0(x)π0
. The resulting decision boundary is linear.

Quadratic Discriminant Analysis

Quadratic discriminant analysis is similar to linear discriminant analysis, but allows for the two classes
to have different covariance matrices, Σ0 and Σ1. The resulting decision boundary is a quadratic surface.

Gaussian Mixture Model

In a Gaussian mixture model, each class k is modeled as a mixture of normal distributions with density
P (X = x|yv = k) =

∑Rk

r=1 ψkrφ(X;µkr,Σ), k = 0, 1. The mixing proportions for each class, ψkr, must

sum to one. Then, P (yv = 1|X = x) = P (X=x|yv=1)π1

P (X=x|yv=1)π1+P (X=x|yv=0)π0
, where π0 and π1 are the prior

probabilities of belonging to each class, calculated from the training data. The decision boundary for the
Gaussian mixture model is multi-modal

Support Vector Machine with Linear Kernel

In a support vector machine with linear kernel, we aim to find the hyperplane that separates the two classes
with the largest margin. The hyperplane that separates the two class is defined as, {x : f(x) = β0 +βtx}.
A cost C is assigned to voxels v that are classified incorrectly, and

∑
ψi ≤ C, where ψi is the amount

which the voxel is on the incorrect side of the margin. We search over the C = 1/8, 1/4, 1/2, 1, 2, 4,
and 8. The decision boundary for the support vector machine is linear in the implicit kernel space, but
nonlinear in the original space.

2

Random Forest

A random forest combines multiple classification trees and these classification trees vote on which class a
new voxel should be classified as. In the implementation of the random forest, we use 500 classification
trees. The parameter we tune the algorithm over is the mtry parameter, the number of variables sampled
at each split of the decision tree. We search over mtry = 1 to the dimension of the feature space. The
decision boundary for each tree is piecewise linear.

k-Nearest Neighbors

In k-nearest neighbors to classify a new voxel, v, with features X = x, we calculate the distance of its
features from the features of the voxels in the labeled training set, using Euclidean distance. The k voxels
in the training set with the smallest distance to the new voxel vote on the class of the new voxel. The
tuning parameter for the k-nearest neighbor algorithm is the number of voxels to be used. We search
over k =1, 10, and 100 neighbors.

Neural Network

In a single hidden layer neural network, derived features, Z, are created from linear combinations of the
input features, X : Zp = σ(αop + αTpX), p ∈ {1, ..., P}. These derived features Z are called hidden units.

We elected to use a sigmoid activation function σ, σ(s) = 1
(1+exp (−s)) , as this is typical. The outcome,

yv, is then modeled as a function of the hidden units: yv = t(β0 + βT z). We use a single hidden layer
neural network with sigmoid activation function; 10-fold cross validation is used to select the number of
hidden units in the algorithm and search over P = 1, 5, and 10.

Super Learner

The super learner is a method for combining class estimations from different classification algorithms,by
weighting the classifiers according to their prediction performance using a cross-validation loss function.
We use the super leaner algorithm with 10-fold cross validation with mean squared error loss, but any
other cross validation or loss function may be used. The super learner requires a library of K supervised
classification algorithms. To train the super learner with 10-fold cross validation, the training set, T , of
size n voxels is partitioned into 10 equal samples. For each of these 10 samples, the K algorithms are
trained on the remaining data in the training set. A prediction for each voxel v in the reserved sample
is then made for the kth classification algorithm, hk, denoted as ϕk(v), k ∈ {1, . . . ,K}. After this is
performed for all 10 samples, a coefficient αk for each classification algorithm is selected, to minimize the
mean square error: 1

n

∑
v∈T [yv −

∑
k αkϕk(v)]2, under the constraint

∑
k αk = 1. The fitted classifiers

with the coefficients αk can then used to make predictions for new samples. We use the SuperLearner
R package based on all of the other supervised classification algorithms and tuning parameters used in
this analysis. To decrease prediction time for new data, algorithms with αk coefficients close to zero are
dropped during the prediction phase (the onlySL parameter is set to TRUE when making predictions;
the default for this parameter is FALSE) .

