FUZZINESS AND NOISE IN NUCLEOSOMAL ARCHITECTURE

Oscar Flores, Özgen Deniz, Montserrat Soler-López and Modesto Orozco

SUPPLEMENTARY TABLES

default	score_w	0.6		score_h	0.4		
	FcF	FoF	WcW	WoW	M-F	MW	+1_missing
R1 (2x)	226	89	1808	1674	106	605	42
R2 (2x)	183	59	1942	1606	86	464	20
As (2x)	277	167	1624	1419	171	658	34
Ov (2x)	204	205	1405	1285	314	840	56
Un (2x)	478	358	763	623	211	361	15
var1	score_w	0.5		score_h	0.5		
	FcF	FoF	WcW	WoW	M-F	MW	+1_missing
R1 (2x)	149	63	1785	1618	103	608	42
R2 (2x)	109	46	1916	1574	74	476	20
As (2x)	136	113	1722	1476	133	696	34
Ov (2x)	211	210	1261	1147	345	809	56
Un (2x)	360	273	853	677	174	398	15
var2	score_w	0.4		score_h	0.6		
	FcF	FoF	WcW	WoW	M-F	MW	+1_missing
R1 (2x)	287	152	1433	1362	149	562	42
R2 (2x)	187	79	1643	1415	104	446	20
As (2x)	238	185	1410	1259	194	635	34
Ov (2x)	341	354	1016	935	424	730	56
Un (2x)	431	335	726	596	198	374	15

Supplementary Table S1. Nucleosomes call evaluation based on nucleR TSS clustering by applying different thresholds. The number of genes clustered in the main nucleosome pattern annotations are displayed according to the default parameters score_w = 0.6 and score_h=0.4; score_w=0.5 and score_h=0.5 (*var1*); and score_w=0.4 and score_h=0.6 (*var2*). Key: **R1 (2x)** – replica 1 paired-end dataset; **R2** – replica 2; **As** – asynchronized; **Ov** – MNase-overdigested; **Un** – underdigested.

	-1 Nucleosome			NI	FR	+1 Nucleosome		
	М	F	W	Closed	Open	F	W	
R1 (1x)	648	2544	2992	2858	2207	2405	3779	
	9.68%	38.02%	44.71%	42.71%	32.98%	35.94%	56.47%	
R2 (1x)	239	2094	395	3726	1860	1390	4895	
	3.57%	31.29%	59.06%	55.68%	27.79%	20.77%	73.15%	
R1 (2x)	711	1508	4021	2939	2300	1029	5211	
	10.62%	22.53%	60.09%	43.92%	34.37%	15.38%	77.87%	
R2 (2x)	550	1070	3852	2742	2040	684	4788	
	8.22%	15.99%	57.56%	40.97%	30.48%	10.22%	71.55%	
As. (2x)	829	1733	3656	2794	2225	1302	4916	
	12.39%	25.9%	54.63%	41.75%	33.25%	19.46%	73.46%	
Ov. (2x)	1154	1886	3235	2559	2328	1321	4954	
	17.24%	28.18%	48.34%	38.24%	34.79%	19.74%	74.03%	
Un. (2x)	572	2530	2051	2302	1752	1846	3307	
	8.55%	37.81%	30.65%	34.4%	26.18%	27.59%	49.42%	

Supplementary Table S2. Distribution of -1/+1 nucleosomes and NFRs classification for each sample. -1 nucleosomes are classified as missing (M), fuzzy (F) or well-positioned (W) and +1 nucleosomes are either F or W. NFRs can have open or closed configuration depending on the NFR width. Key: 1x – Single End, 2x – Paired End, R1 – Replica 1, R2 – Replica2, As – Asynchronous, Ov – Overdigested, Un – Underdigested.

	Same classification					Variable classification				
vs.	Coverage	Cluster	-1 Nuc.	+1 Nuc.	NFR	Coverage	Cluster	-1 Nuc.	+1 Nuc.	NFR
R1 (1x)	6311	2552	4109	4261	4599	23	1513	489	448	390
R1 (2x)	(94.31%)	(38.14%)	(61.4%)	(63.67%)	(68.72%)	(0.34%)	(22.61%)	(7.31%)	(6.69%)	(5.83%)
R2 (1x)	5969	2399	3480	4301	3751	63	1514	791	335	591
R2 (2x)	(89.2%)	(35.85%)	(52%)	(64.27%)	(56.05%)	(0.94%)	(22.62%)	(11.82%)	(5.01%)	(8.83%)
R1 (1x)	5418	2014	3606	4205	4091	222	1994	1208	716	710
R2 (1x)	(80.96%)	(30.1%)	(53.89%)	(62.84%)	(61.13%)	(3.32%)	(29.8%)	(18.05%)	(10.7%)	(10.61%)
R1 (2x)	5980	3181	4068	4529	4260	93	992	433	470	231
R2 (2x)	(89.36%)	(47.53%)	(60.79%)	(67.68%)	(63.66%)	(1.39%)	(14.82%)	(6.47%)	(7.02%)	(3.45%)
R1 (2x)	5123	2964	4131	4758	4482	228	1563	858	819	322
As (2x)	(76.55%)	(44.29%)	(61.73%)	(71.1%)	(66.98%)	(3.41%)	(23.36%)	(12.82%)	(12.24%)	(4.81%)
R2 (2x)	5781	2927	3874	4393	4157	120	1144	616	611	212
As (2x)	(86.39%)	(43.74%)	(57.89%)	(65.65%)	(62.12%)	(1.79%)	(17.1%)	(9.21%)	(9.13%)	(3.17%)
R1 (2x)	5616	2881	3966	4808	4452	91	1649	840	857	322
Ov (2x)	(83.92%)	(43.05%)	(59.26%)	(71.85%)	(66.53%)	(1.36%)	(24.64%)	(12.55%)	(12.81%)	(4.81%)
R2 (2x)	5874	2754	3612	4443	4155	106	1181	680	670	217
Ov (2x)	(87.78%)	(41.15%)	(53.97%)	(66.39%)	(62.09%)	(1.58%)	(17.65%)	(10.16%)	(10.01%)	(3.24%)
R1 (2x)	4177	1377	2597	3426	2917	405	2111	1179	1090	705
Un (2x)	(62.42%)	(20.58%)	(38.81%)	(51.2%)	(43.59%)	(6.05%)	(31.55%)	(17.62%)	(16.29%)	(10.53%)
R2 (2x)	4971	1355	2376	3202	2767	221	1820	1184	1047	586
Un (2x)	(74.28%)	(20.25%)	(35.51%)	(47.85%)	(41.35%)	(3.3%)	(27.2%)	(17.69%)	(15.65%)	(8.76%)
Ov (2x)	6342	1915	3105	3737	3279	19	1661	721	731	547
Un (2x)	(94.77%)	(28.62%)	(46.4%)	(55.84%)	(49%)	(0.28%)	(24.82%)	(10.77%)	(10.92%)	(8.17%)
As (2x)	6421	3315	4381	5033	4776	14	1229	414	484	259
Ov (2x)	(95.95%)	(49.54%)	(65.47%)	(75.21%)	(71.37%)	(0.21%)	(18.37%)	(6.19%)	(7.23%)	(3.87%)
As (2x)	5890	1703	2876	3648	3065	79	1908	982	882	620
Un (2x)	(88.02%)	(25.45%)	(42.98%)	(54.51%)	(45.8%)	(1.18%)	(28.51%)	(14.67%)	(13.18%)	(9.26%)

Supplementary Table S3. Different pair-wise metrics of nucleosome similarity/dissimilarity. In order to obtain robust estimations of the similarity/dissimilarity of gene architectures between samples we defined the following metrics. *Coverage*: A gene is considered as stable if Pearson's correlation between two samples in the window -300:300 from the TSS is greater than 0.7; is considered as variable if correlation is smaller than 0.5. *Cluster*: We consider a gene stable if the cluster stays the same; we considered a significant variable architecture when 2 of the clustering dimensions (-1/NFR/+1) vary between samples. *+1/-1 Nucleosome*: We considered a gene variable if the absolute difference in nucleR's score is bigger than 0.25 points. *NFR*: we consider a gene stable if the classification of the NFR is the same (open/close/overlap/missing); we considered a change as significant if the change in distance between -1/+1 nucleosomes is more than 100bp. Genes which do not satisfy any of the two criteria are in considered out of the stability/variability threshold. Percentages are relative to the total number of genes in the SacCer3 genome. Key: **1x** – Single End, **2x** – Paired End, **R1** – Replica 1, **R2** – Replica2, **As** – Asynchronous, **Ov** – Overdigested, **Un** – Underdigested.

Fuzziness and Noise in Nucleosomal Architecture	/ Flores et al.
---	-----------------

	Sta	able classificat	ion	Variable classification			
vs.	Coverage	∆calls	∆score	Coverage	∆calls	∆score	
R1 (1x)	5688	3077	6010	169	446	33	
R1 (2x)	(85%)	(45.98%)	(89.81%)	(2.53%)	(6.66%)	(0.49%)	
R2 (1x)	5436	3142	5862	194	679	39	
R2 (2x)	(81.23%)	(46.95%)	(87.6%)	(2.9%)	(10.15%)	(0.58%)	
R1 (1x)	3776	2976	5634	486	386	59	
R2 (1x)	(56.43%)	(44.47%)	(84.19%)	(7.26%)	(5.77%)	(0.88%)	
R1 (2x)	5212	3261	5759	341	577	53	
R2 (2x)	(77.88%)	(48.73%)	(86.06%)	(5.1%)	(8.62%)	(0.79%)	
R1 (2x)	3190	2901	4958	869	461	96	
As (2x)	(47.67%)	(43.35%)	(74.09%)	(12.99%)	(6.89%)	(1.43%)	
R2 (2x)	4578	2971	5461	459	537	72	
As (2x)	(68.41%)	(44.4%)	(81.6%)	(6.86%)	(8.02%)	(1.08%)	
R1 (2x)	4297	3096	5129	463	417	114	
Ov (2x)	(64.21%)	(46.26%)	(76.64%)	(6.92%)	(6.23%)	(1.7%)	
R2 (2x)	5047	3448	5462	427	321	91	
Ov (2x)	(75.42%)	(51.52%)	(81.62%)	(6.38%)	(4.8%)	(1.36%)	
R1 (2x)	2550	2493	3938	1176	769	262	
Un (2x)	(38.11%)	(37.25%)	(58.85%)	(17.57%)	(11.49%)	(3.92%)	
R2 (2x)	3678	2647	4279	767	508	224	
Un (2x)	(54.96%)	(39.55%)	(63.94%)	(11.46%)	(7.59%)	(3.35%)	
Ov (2x)	6058	2786	5631	121	459	48	
Un (2x)	(90.53%)	(41.63%)	(84.15%)	(1.81%)	(6.86%)	(0.72%)	
As (2x)	6101	3014	6094	91	554	17	
Ov (2x)	(91.17%)	(45.04%)	(91.06%)	(1.36%)	(8.28%)	(0.25%)	
As (2x)	5280	2462	5294	237	828	101	
Un (2x)	(78.9%)	(36.79%)	(79.11%)	(3.54%)	(12.37%)	(1.51%)	

Supplementary Table S4. Different pair-wise metrics of nucleosome similarity/dissimilarity in gene body regions. *Coverage*: a particular gene is considered 'stable' when Pearson's correlation between the whole gene body of two samples is greater than 0.7; otherwise, it is considered 'variable' when correlation is smaller than 0.5. $\Delta calls$: a gene is considered 'stable' when it has the same number of nucleosome calls inside the gene body; otherwise, it is considered 'variable' when the difference of nucleosome calls between samples is more than 2 nucleosomes. $\Delta score$: a particular gene is considered to be the same between two samples when the equivalent nucleosome calls have a mean difference of nucleR score lower than 0.15; otherwise, the gene is assigned as variable when this difference is higher than 0.25. Genes which do not satisfy any of the two criteria are in considered out of the stability/variability threshold. Percentages are relative to the total number of genes in the SacCer3 genome. *Note: the present metrics differ from those presented in the previous Supplementary Table 3, in order to account for an arbitrary number of nucleosome calls in gene body regions.* Key: **1x** – Single End, **2x** – Paired End, **R1** – Replica **1**, **R2** – Replica2, **As** – Asynchronous, **Ov** – Overdigested, **Un** – Underdigested.

	Sta	able classificat	ion	Variable classification			
vs.	Coverage	∆calls	∆score	Coverage	∆calls	∆score	
R1 (1x)	6210	3965	5868	81	227	27	
R1 (2x)	(92.80%)	(59.25%)	(87.69%)	(1.21%)	(3.39%)	(0.4%)	
R2 (1x)	5944	2893	5729	118	830	50	
R2 (2x)	(88.82%)	(43.23%)	(85.61%)	(1.76%)	(12.4%)	(0.75%)	
R1 (1x)	5455	3411	5220	273	82	92	
R2 (1x)	(81.52%)	(50.97%)	(78%)	(4.08%)	(1.23%)	(1.37%)	
R1 (2x)	5929	4397	5614	174	281	76	
R2 (2x)	(88.60%)	(65.71%)	(83.89%)	(2.6%)	(4.2%)	(1.14%)	
R1 (2x)	5136	3907	4825	364	54	176	
As (2x)	(76.75%)	(58.38%)	(72.10%)	(5.44%)	(0.81%)	(2.63%)	
R2 (2x)	5738	4303	5366	242	92	108	
As (2x)	(85.74%)	(64.30%)	(80.19%)	(3.62%)	(1.37%)	(1.61%)	
R1 (2x)	5562	3885	4787	209	252	179	
Ov (2x)	(83.11%)	(58.05%)	(71.53%)	(3.12%)	(3.77%)	(2.67%)	
R2 (2x)	5820	4477	5109	223	87	118	
Ov (2x)	(86.97%)	(66.90%)	(76.34%)	(3.33%)	(1.3%)	(1.76%)	
R1 (2x)	4344	2890	3928	649	179	447	
Un (2x)	(64.91%)	(43.19%)	(58.70%)	(9.7%)	(2.67%)	(6.68%)	
R2 (2x)	4975	3000	3880	445	160	453	
Un (2x)	(74.34%)	(44.83%)	(57.98%)	(6.65%)	(2.39%)	(6.77%)	
Ov (2x)	6248	3248	5254	67	118	87	
Un (2x)	(93.37%)	(48.54%)	(78.51%)	(1%)	(1.76%)	(1.3%)	
As (2x)	6353	4059	5982	43	290	33	
Ov (2x)	(94.93%)	(60.65%)	(89.39%)	(0.64%)	(4.33%)	(0.49%)	
As (2x)	5837	3009	4858	163	149	170	
Un (2x)	(87.22%)	(44.96%)	(72.59%)	(2.44%)	(2.23%)	(2.54%)	

Supplementary Table S5. Different pair-wise metrics of nucleosome similarity/dissimilarity around TSSs (window -300:+300). Metrics used here are the same than in Supplementary Table S4.

SUPPLEMENTARY FIGURES

Supplementary Figure S1. Flow cytometry analysis and fluorescence microscope images of late G1 synchronized cells (upper panel) and asynchronous cells (lower panel) for *replicas* 1 (left) and 2 (right).

Supplementary Figure S2. MNase digestion profiles of replica 1 (top-left), replica 2 (top-rigth), over-digested sample (bottom-left) and under-digested sample (bottom-right). The left panels show the size distribution of digested DNA molecules as measured by Bioanalyzer and the right panels show the agarose gel analysis of digestion products.

Supplementary Figure S3. Gene clustering according to nucleosomal architecture at transcription start sites. Pie-chart shows the gene distribution for the most populated classes in the sample Replica 2 (2x). For every class, an example of the nucleosome coverage around the TSS of a representative gene is illustrated (window -300:300 from the TSS, marked in red). All plots show the coverage in 5'->3' direction, representing the +1 nucleosome as the peak overlapping or immediately downstream TSS and the -1 nucleosome as the peak right upstream of +1. In the case of SLC1, -1 nucleosome peak is not detected in the -300:300 window.

Supplementary Figure S4. Local and global energy variation. Despite local energy variation involves a strong periodicity of 10bp with small energy fluctuations (around 13.39 kcal/mol) (left), these don't act as a strong regulator of the nucleosome fuzziness. Global energy barriers with a larger mesoscopic effect (around 46.86 kcal/mol) could act as intrinsic regulator of the nucleosome phasing along different cells. On top, minimum (blue) and maximum (red) values in a window of +/- 5bp (left) and +/- 1000bp right of 100000 random loci. On the bottom, we show the raw energy (grey) and the 10bp average (purple) of single random region of the chromosome II (left: 400bp window, right:4000bp window).

Deformation energy (kcal/mol)

Supplementary Figure S5. Deformation energy of well-positioned and fuzzy nucleosomes. Deformation energy around +/-5bp around the peak summit has been calculated for annotated -1/+1 nucleosomes. Mean value of every 10 possible combinations was used to account for local periodicity. Fuzzy and well-positioned nucleosomes are taken from the common ones in *replicas* 1 and 2.

Supplementary Figure S6. Effect of cell-cycle periodic genes in nucleosome map. Coverage of cell-cycle periodic genes is shown for G1 related genes (top, 211 genes) and in other stages (bottom, 365 genes). Asynchronous sample (blue) shows a larger perturbation between the +1/-1 nucleosome peaks in both cases.

Supplementary Figure S7. Comparison of dyad deviations due to different digestion. Dyad distances of annotated -1/+1 nucleosomes (coverage peak summits) have been calculated between biological replicates and over-digested sample. Absolute mean deviation between Rep1 and Rep2 is 14.25 bp, compared with 18.75bp (+4.5bp) in the case of Rep1 with over-digested sample.