Supporting Information

$[Au_2(phen^{2Me})_2(\mu-O)_2](PF_6)_2$, a novel dinuclear gold(III) complex showing excellent antiproliferative properties.

Maria A. Cinellu,^{*,†} Laura Maiore,[†] Mario Manassero,[‡] Angela Casini,[§] Massimiliano Arca,^Π Heinz-Herbert Fiebig,[∫] Gerhard Kelter, [∫] Elena Michelucci,^β Giuseppe Pieraccini,^β Chiara Gabbiani,^π Luigi Messori^{*,π}

[†]Department of Chemistry, University of Sassari, Via Vienna 2, 07100 Sassari, Italy, [‡]Department of Structural Chemistry and Inorganic Stereochemistry, University of Milano, Via Venezian 21, 20133 Milano, Italy, [§]Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL) CH-1015 Lausanne, Switzerland, ^ПDepartment of Inorganic and Analytical Chemistry, University of Cagliari, S.S. 554 bivio per Sestu, 09042 Monserrato (CA), Italy, ^ÎInstitute for Experimental Oncology, Oncotest GmbH, Am Flughafen 12-14, D-79108 Freiburg, Germany, ^BMass Spectrometry Centre (CISM), University of Florence, Via U. Schiff 6, 50019 Sesto Fiorentino, Firenze, Italy and University of Florence, [®]Department of Chemistry "Ugo Schiff", university of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Firenze, Italy.

Experimental Section

General experimental details

Solvents were purchased from Carlo Erba Reagenti and distilled prior to use, while MeCN was used as received. Elemental analyses were performed with a Perkin-Elmer Elemental Analyzer 240B by Mr. A. Canu (Dipartimento di Chimica, Università di Sassari). Conductivity measurements were performed with a Philips PW 9505 conductimeter. Infrared spectra were recorded with a Jasco FTIR-480 Plus spectrophotometer using Nujol mulls; ¹H NMR spectra were recorded at 293 K with a Varian VXR 300 spectrometer operating at 300.0 MHz, chemical shifts are given in ppm relative to internal tetramethylsilane.

Synthesis of $[Au(phen^{2Me})(\mu-O)]_2[PF_6]_2$, **1-(PF_6)**₂. To a stirred solution of $[Au(phen^{2Me})Cl_3]$ (511.7 mg, 1.0 mmol) in CH₃CN (3 ml) were added an aqueous solution of AcONa (164.9 mg, 2.0 mmol, 100 ml) and KPF₆ (552.2 mg, 3.0 mmol). The resulting suspension was refluxed for about 3 hours until the colour

of the solid changed from orange to light pink. After cooling, the solid was collected by filtration and washed with H₂O, EtOH, Et₂O. The crude product was extracted with several portions of chloroform to remove some unreacted starting adduct. Recrystallization of the residue from CH₃CN/Et₂O afforded the analytical sample (368.3 mg, 65%). Mp 203°-204 °C. Elemental analysis (%) calcd for C₂₈H₂₄Au₂F₁₂N₄O₂P₂: C 29.70, H 2.14, N 4.95; found C 29.84. H 1.89, N 4.98. Λ_{MAX} (5x10⁻⁴ mol·L⁻¹, CH₃CN) 246.6 Ω^{-1} cm²mol⁻¹. Selected IR bands (n_{max}/cm⁻¹): 842 s, 557 s, 687 m, 669 m. ¹H NMR (CD₃CN) δ : 3.22 (s, 6H, Me), 7.97 (d, *J* = 8.2 Hz, 2H, CH-3 and CH-8), 8.18 (s, 2H, CH-5 and CH-6), 8.82 (d, *J* = 8.2 Hz, 2H, CH-4 and CH-7).

Synthesis of 1-(BAr₄')₂. This could be obtained by methathesis reaction of **1**-(PF₆)₂ and Na[BAr'₄]. To a stirred suspension of **1**-(PF₆)₂ (100.7 mg, 0.09 mmol) in 50 ml of CH₂Cl₂ a dichloromethane solution of NaBAr₄' (157.8 mg, 0.18 mmol, 20 ml) was added. The resulting suspension was stirred at room temperature for about 30 minutes until most of the solid was solubilized. After this period, the suspension was filtered through Celite and the filtered solution concentred to a small volume. Addition of diethyl ether to the concentrated solution gave 1-(Bar₄')₂ (171.1 mg, 74%). Mp 142 °C. Elemental analysis (%) calcd for C₉₂H₄₈Au₂B₂F₄₈N₄O₂: C 43.01, H 1.88, N 2.18; found C 42.94. H 1.69, N 2.34. Λ_{MAX} (5x10⁻⁴ mol·L⁻¹, acetone) 169.9 Ω^{-1} cm²mol⁻¹. Selected IR bands (n_{max}/cm⁻¹): 682 m, 670 m, 550 s. ¹H NMR (CD₃COCD₃) δ : 3.43 (s, 6H, Me), 7.67 (s, 8H, CH-4 BAr₄'), 7.79 (t, 16H, CH-2 and CH-5 BAr₄'), 8.25 (d, *J* = 8.4 Hz, 2H, CH-3 and CH-8), 8.41 (s, 2H, CH-5 and CH-6), 9.13 (d, *J* = 8.4 Hz, 2H, CH-4 and CH-7). X-ray quality crystals of **1**-(BAr₄')₂ were grown from slow diffusion of diethyl ether into a saturated dichloromethane solution of the complex.

X-ray Data Collection and Structure Determination: Crystal data are summarized in Ref. 16 in the published paper, and in the full Crystallographic Table **S1**. The diffraction experiment was carried out on a Bruker APEX II CCD area-detector diffractometer at 150 K, using Mo_{Ka} radiation (I = 0.71073), with a graphite crystal monochromator in the incident beam. No crystal decay was observed, so that no time-decay correction was needed. The collected frames were processed with the software SAINT,¹ and an empirical absorption correction was applied (SADABS)² to the collected reflections. The calculations were performed using the Personal Structure Determination Package³ and the physical constants tabulated therein.⁴ The structure was solved by direct methods (SHELXS)⁵ and refined by full-matrix least

¹ SAINT Reference manual, Siemens Energy and Automation, Madison, W1, **1994-1996**

 ² G.M. Sheldrick, SADABS, Empirical Absorption Correction Program, University of Gottingen, 1997
 ³ B.A. Frenz, *Comput. Phys.* 1988, 2, 42

⁴ Crystallographic Computing 5, Oxford University Press: Oxford, U.K., **1991**; Chapter 11, 126

⁵ G.M. Sheldrick, (1985) SHELXS 86. Program for the solution of crystal structures. University

squares using all reflections and minimizing the function $Sw(F_o^2 - kF_c^2)^2$ (refinement on F^2). In the anion three out of the eight CF₃ moieties are disordered (as often happens with this anion) in their nine F atoms, each of which appears to be split into two half F atoms, with occupancy factors of 0.50 each. This disorder has been fully rationalized. All the non-hydrogen atoms, including the F atoms with occupancy 0.50, were refined with anisotropic thermal parameters. The three hydrogen atoms bonded to the methylic atom C(13) of the cation, and the three hydrogen atoms bonded to the corresponding methylic atom C(14), were detected in the final Fourier maps and not refined. All the other hydrogen atoms were placed in their ideal positions (C-H = 0.97 Å), with the thermal parameter U being 1.10 times that of the carbon atom to which they are attached, and not refined. In the final Fourier map the maximum and minimum residuals were +1.48(11) e Å⁻³ at 0.44 Å from Au, and -1.22(11) e Å⁻³.

 Table S1. Full crystallographic data.

Compound Formula M Colour Crystal system Space group a/Å b/Å c/Å a/° \tilde{b}° \tilde{g}° $V/Å^{3}$ Z F(000) $D_{c}/g \text{ cm}^{-3}$ T/K I(Mo Ka) Crystal dimensions (mm) $m(Mo Ka) / \text{ cm}^{-1}$ Min. and max. transmiss.	$\begin{array}{l} 1-[B\{C_{6}H_{3}(CF_{3})_{2}\}_{4}]_{2}\\ C_{92}H_{48}Au_{2}B_{2}F_{48}N_{4}O_{4}\\ 2568.91\\ yellow\\ triclinic\\ P-1\\ 13.0530(6)\\ 13.5091(6)\\ 15.1301(7)\\ 63.879(1)\\ 8255_{1}\\ 76795_{1}\\ 2330.8(2)\\ 1\\ 1244\\ 1.830\\ 150\\ 0.71073\\ 0.17 \times 0.22 \times 0.34\\ 32.80\\ \end{array}$
factors	0.805-1.000
Scan mode	W
Time per frame / sec	0.30
No. of frames	3060
Detector-sample distance / cm	6.00
q-range	3.00-27.00
Reciprocal space explored	full sphere
(total; independent) R_{int}	36769, 11918 0.022

of Gottingen, Germany.

Final R_2 and R_{2w} indices ^a		
$(F^2, \text{ all reflections})$	0.037,	0.057
Conventional R ₁ index		
[<i>l</i> >2s(<i>l</i>)]	0.021	
Reflections with I>2s(I)		11058
No. of variables		758
Goodness of fit ^b	0.943	

^(a) R_{2} = [S(| $F_{o}^{2}-kF_{c}^{2}$ |/S F_{o}^{2}], R_{2w} = [S $w(F_{o}^{2}-kF_{c}^{2})^{2}$ /S $w(F_{o}^{2})^{2}$]^{1/2} ^(b) [S $w(F_{o}^{2}-kF_{c}^{2})^{2}/(N_{o}-N_{v})$]^{1/2}, where w=4 $F_{o}^{2}/s(F_{o}^{2})^{2}$, s(F_{o}^{2})=[s²(F_{o}^{2})+(0.04 F_{o}^{2})²]^{1/2}, N_{o} is the number of observations and N_{v} the number of variables.

Description of the interionic hydrogen bonds in the packing of $1[B{C_6H_3(CF_3)_2}_4]_2$

In the packing of $1 \cdot [B\{C_6H_3(CF_3)_2\}_4]_2$ there are two interionic H^{...}F hydrogen bonds, involving two different anionic fluorine atoms belonging to the same, ordered, CF₃ moiety (in the anion three out of eight CF₃ moieties are disordered), one cationic hydrogen atom, and one anionic hydrogen atom. Fig. S1 shows an isolated cation, including all its hydrogen atoms, with a label for each atom, including hydrogens. Fig. S2 shows an isolated anion, including all its hydrogen atoms, but only two fluorine atoms, those involved in the two hydrogen bonds. The other fluorine atoms have been omitted for clarity. Also in Fig. S2 each shown atom carries its label, including hydrogens. The stronger hydrogen bond is formed by cationic hydrogen atom H(3), bonded to C(8), and fluorine atom F(19), bonded to C(147) (see Figures). Bond and non-bond parameters for this interaction are:

Figure S1

Figure S2

C(8)-H(3) = 0.970 Å (hydrogen atom placed in its ideal position) H(3)^{...}F(19) = 2.312 Å $C(8)^{...}F(19) = 3.259(3)$ Å angle $C(8)-H(3)^{...}F(19) = 165.2(2)^{\circ}$

The second hydrogen bond is formed by anionic hydrogen atom H(14), bonded to C(134), and fluorine atom F(20), bonded to C(147) (see Fig. S2). Bond and non-bond parameters for this interaction are:

C(134)-H(14) = 0.970 Å (hydrogen atom placed in its ideal position) H(14)^{...}F(20) = 2.498 Å $C(134)^{...}F(20) = 3.457(2)$ Å angle $C(134)-H(14)^{...}F(20) = 169.7(1)^{\circ}$

UV-visible spectrophotometry. UV-vis absorption spectra $1-(PF_6)_2$ were recorded on a Varian Cary 50 UV-Vis spectrophotometer. Solutions of $1-(PF_6)_2$ (10^{-5} M) in 50 mM phosphate buffer pH = 7.4 were monitored collecting the electronic spectra over 24 h at room temperature.

ESI Mass Spectrometry. Horse heart cytochrome c, red blood cell ubiquitin and bovine erythrocytes superoxide dismutase were purchased from Sigma (C7752, U6253 and S2515, respectively) and used as received. The sample was prepared by mixing equivalent amounts of the three proteins (100 μ M) in 25 mM tetramethylammonium acetate buffer (TMeAmAc) (pH 7.4). Then **1**-(PF₆)₂ was added (3:1 metal/protein ratio) to the solution and incubated at 37 °C for 24h. After a 20-fold dilution with HCOOH 0.1%, ESI-MS spectrum was recorded by direct introduction at 5 μ l/min flow rate in an LTQ-Orbitrap

high-resolution mass spectrometer (Thermo, San Jose, CA, USA), equipped with a conventional ESI source. The working conditions were the following: spray voltage 3.1 kV, capillary voltage 45 V and capillary temperature 220 °C. The sheath and the auxiliary gases were set, respectively, at 17 (arbitrary units) and 1 (arbitrary units). For acquisition, Xcalibur 2.0. software (Thermo) was used and monoisotopic and average deconvoluted masses were obtained by using the integrated Xtract tool. For spectrum acquisition a nominal resolution (at m/z 400) of 100,000 was used.

Tumor Cell Lines. Twenty-four out of the 36 cell lines were established from patient-derived tumor xenografts passaged subcutaneously in nude mice.⁶ The origin of the donor xenografts has been already described.^{7,8} The other 12 cell lines were commercially available and purchased from ATCC (Rockville, MD) or DSMZ (Braunschweig, Germany) or were kindly provided by the NCI (Bethesda. MD). The 36 cell line panel included 14 different tumor histotypes, each represented by 1-6 cell lines (see supplementary material). All cells were grown at 37 °C in a humidified atmosphere (95% air, 5% CO₂) in RPMI 1640 medium (PAA, Cölbe, Germany) supplemented with 10% fetal calf serum (PAA) and 0.1 mg/ml gentamicin (PAA).

Cytotoxicity Assays (Monolayer Assay) and Compare Analysis. A modified propidium iodide assay ⁹ was used to assess the effects of compounds. Tumor derived cell lines were incubated in 96 multi-well plates. After one day, the compounds under test were added to the plates at 5 concentrations in the range from 0.01 μ g/ml to 100 μ g/ml and left for further four days. The inhibition of proliferation was determined by measuring the DNA content using an aqueous propidium iodide solution (7 μ g/ml). Fluorescence was measured using the Cytofluor 4000. All compounds were tested in 2 to 4 independent experiments. In each experiment, all data points were determined in triplicate.

The Compare Algorithm uses *in vitro* activity data to obtain clues as to the mechanism of action of a test compound.¹⁰ The individual IC_{50} and IC_{70} -values of the test compounds in 36 test cell lines obtained in the monolayer assay were correlated to the corresponding IC_{50}/IC_{70} -values for 110 standard agents determined in exactly these 36 cell lines. A list of these standard agents is available in the supplementary material (Table 1S). These standard agents represent the main mechanisms of action of

⁶ Roth T, Burger, A. M., Dengler, W., Willmann, H., Fiebig, H.H. (1999) In: Fiebig HH, Burger, A. M. (ed) Contrib. Oncol., pp. 145-156

⁷ Fiebig HH, Dengler, W.A., Roth, T. (1999) In: Fiebig HH, Burger, A. M. (ed) Contrib. Oncol., pp. 29-50

⁸ Fiebig HH, Berger D. P., Dengler, W. A., Wallbrecher, E., Winterhalter, B. R. (1992) In: Fiebig HH, Berger, D. P. (ed) Relevance of Tumor Models for Anticancer Drug Development. Karger, Basel, pp. 321-351

⁹ Dengler WA, Schulte J, Berger DP, Mertelsmann R, Fiebig HH (1995) Anti-Cancer Drug 6:522-532

¹⁰ Paull KD, Shoemaker RH, Hodes L, Monks A, Scudiero DA, Rubinstein L, Plowman J, Boyd MR (1989) J Natl Cancer I 81:1088-1092; Huang RL, Wallqvist A, Covell DG (2005) Biochem, Pharmacol 69:1009.

current anti-cancer drugs. Similarities between the sensitivity pattern of a test compound and those of standard drugs are expressed quantitatively as Spearman correlation coefficients.¹¹ High correlations (ρ >0.6) between the sensitivity patterns of two compounds (referred to as Compare-positive) are indicative of similar mechanism of action. Low correlations between the sensitivity profile of a test compound and the profiles of all standard compounds (referred to as Compare-negative) indicate that the mechanism of action of the test compound is not represented by the selected standard compounds.

Figure S3. UV-visible absorption spectra of $1-(PF_6)_2 = 10^{-5}M$ in 50 mM phosphate buffer (pH=7.4) recorded over 24 h at 25 °C.

¹¹ Fang XL, Shao L, Zhang H, Wang SM (2004) J Chem Inf Comp Sci 44:249-257

Figure S4. Anticancer activity profile of compound $1-(PF_6)_2$ in a panel of 36 cell lines (IC₇₀ mean graph).

TUMORY EXP.	CTRL	D	istribution of M	IC7 related to Mean		IC50	IC70
NO.	UNITS #0	.01 °0.1	log.aca	10 MO	~100	ug/mi	ug/ml
		· · ·		an			
BXF					1		
1218L * (3) T24 * (3)	2296				1	0.013	0.562
124 (3)	2020		1	1	i i	0.002	0200
CNXF ACRNI + (2)	2217	· ·			i	0.022	0.087
SF268 * (3)	1335	· ·		1		0.024	0.064
CVE			1	1	i		
HCT116 ÷ (3)	3248	I I		I	i	0.052	0.100
нт29 ∗(3)́	3499	1 1		I	1	0.040	0.077
GXF				I.	i		
251 L 🔹 (3)	1889	· ·			i	0.036	0.562
HNXE				I	i		
536L * (3)	1607	I		I	ŗ	0.046	0.083
LXF				I	i		
1121 L 🔹 (3)	3119			I	i	0.003	0.006
289L * (3)	1854				i	0.072	0.428
520L ≊(3) 520L ±(3)	1347 2204			I		0.042	0.080
629L * (3)	2780			1		0.053	0.237
H460 * (3)	5044		-	I I	1	0.066	0.200
MAXE				I			
401 NL * (3)	2052			I I	1	0.023	0.087
MCF7 * (3)	3757		_	I I	1	0.043	0.080
MEXF			Í	.L			
276L * (2)	1369				⇒	0.042	>10.000
462NL ≜ (3)	2899				÷	0.060	3.162
514L * (3)	2239				ŕ	0.039	0.070
520L * (3)	819				i	0.010	0.045
OVXE		1 · ·	i	1	i		
1619L * (3)	2834				1	0.007	0.025
800L * (3) DVCAR3 *(3)	2019	· ·			i	0.117	1,333
B.VE	2010	1	ī		i	01040	
PAXE 16571 * (2)	2059			I	i	0.077	4,328
PANC1 *(3)	2486				1	0.044	2511
PRXE				1	Í		
2257V1 * (3)	3111			, I	k	0.020	0.050
DU145 * (3)	1677			I I	÷	0.017	0.044
LNCAP ≊(3) PC3II ⇒(3)	2821	. —		· 1	i	0.006	0.022
roam njaj	4032	1 I		I	i	0.044	0.074
PXF	25.00	1 I		1	i	0.400	2,020
1752E * (5)	200	i I		1	-	0.400	3.050
FXF 47541 + 100	2076	, I		1		0.002	40.000
1781L ≊ (3) 393NL ≛ (3)	4082					0.062	0.533
486L ∞ (3)	2571					0.068	3,433
944 L * (3)	2332				→ '	0.062	>10.000
UXF		r r			i		
1138L * (3)	2467				i	0.015	0.040
Mean		n=36	0.2	3 45	•	0.036	0.245

Table S2. Reference compounds used for Compare Analysis as available in the Oncotest Database.

#	designation 1 Intern	designation 2	MoA 1	MoA 2	#	designation 1 Intern	designation 2	MoA 1	MoA 2
1	BCNU	Carmustin	Alkylating Agent	Nitrosourea	56	IRESSA	Gefitinib	EGF/HER2 Inh.	
2	HECNU	Chloroethyl-nitroso-hydroxyethyl-urea	Alkylating Agent	Nitrosourea	57	LAPAT	Lapatinib	EGF/HER2 Inh.	
3	CCNU	Lomustin	Alkylating Agent	Nitrosourea	58	PD168393	PD 168393	EGF/HER2 Inh.	
4	MCCNU	Semustine, Methyl-CCNU	Alkylating Agent	Nitrosourea	59	MANUA	Manumycin A	Farnesyl Transf. Inh.	
5	CARBOPLA	Carboplatin	Alkylating Agent	Platin	60	ACDINAL	Acetyldinaline, CI-994	HDAC inh.	Benzamide
6	PLAT	Cisplatin	Alkylating Agent	Platin	61	MS275	MS-275	HDAC inh.	Benzamide
7	OXPLAT	Oxaliplatin	Alkylating Agent	Platin	62	APICID	Apicidin	HDAC inh.	Cyclic Peptide
8	TETPLAT	Tetraplatin	Alkylating Agent	Platin	63	N630176	Depsipeptide	HDAC inh.	Cyclic Peptide
9	CHLORAMB	Chlorambuzil	Alkylating Agent		64	M344	M344	HDAC inh.	Hydroxamate
10	CYACT	Cyclophosphamid (act. metabolite)	Alkylating Agent		65	SBHA	Suberic Bishydroxamat	HDAC inh.	Hydroxamate
11	AZQ	Diaziquone	Alkylating Agent		66	SAHA	Suberoylanilide hydroxamic acid	HDAC inh.	Hydroxamate
12	NCI17	Hepsulfam	Alkylating Agent		67	TRISTAT	Trichostatin A	HDAC inh.	Hydroxamate
13	MITO	Mitomycin C	Alkylating Agent		68	NM07	17AAG	HSP90 inh	
14	TEX	Teroxirone, Triglycidylisocyanurate	Alkylating Agent		69	NM10	17DMAG	HSP90 inh	
15	THT	Thio-tepa	Alkylating Agent		70	NCI1	Rapamycin	mTOR-Inh	
16	TREO	Treosulfan	Alkylating Agent		71	LY294002	LY-294,002	PI3K/AKT Inh.	
17	MTX	Methotrexat	Antimetabolite	Folic acid activation	72	MGAG	Mitoguazone, Guanylhydrazone	Polyaminsyn. Inh.	SAMD Inh.
18	TOMUDEX	Raltitrexed	Antimetabolite	Folic acid activation	73	VELCADE	Bortezomib, PS-341	Proteasome	
19	DON	6-Diazo-5-oxo-L-norleucine	Antimetabolite	GMP Synth. Inh.	74	EPM	Epoxomicin	Proteasome	
20	ACV	Acivicin, Antibiotic AT-125	Antimetabolite	GMP Synth. Inh.	75	MG132	MG-132	Proteasome	
21	MP	6-Mercaptopurin	Antimetabolite	Purin-Analoga	76	TPA	Tyropeptin A	Proteasome	
22	THG	6-Thioguanin, 6-TG	Antimetabolite	Purin-Analoga	77	DAS	Anguidine	Protein-Syn. Inh.	
23	CDA	Cladribin	Antimetabolite	Purin-Analoga	78	HHT	Homoharringtonine	Protein-Syn. Inh.	
24	FUDR	5-Fluoro-2'-deoxyuridine, Floxurine	Antimetabolite	Pyrimidin-Analoga	79	ML1	Mistellektin 1	Protein-Syn. Inh.	
25	5FU	5-Fuorouracil (s.a. N88)	Antimetabolite	Pyrimidin-Analoga	80	PSPA	Pentyl-Sparsomycin	Protein-Syn. Inh.	
26	FTF	Ftorafur, Fluorofur	Antimetabolite	Pyrimidin-Analoga	81	NCI2	Phyllanthoside	Protein-Syn. Inh.	
27	GEMZAR	Gemcitabine	Antimetabolite	Pyrimidin-Analoga	82	SPA	Sparsomycin	Protein-Syn. Inh.	
28	CCD	Cyclocytidine, Ancitabine HCI	Antimetabolite		83	HYPHRE	Fenretinide, H-(4-Hydroxyphenyl)retinamide	Retinoic acid analog	
29	NCI14	Cyclopentenylcytosine	Antimetabolite		84	RIFA	Rifamycin SV	RNA Synth.	RNA-Polym. Inh.
30	ARAC	Cytarabin, ara-C	Antimetabolite		85	HU	Hydroxyharnstoff	RNA Synth.	RNR Inh.
31	DUP785	DUP785, Brequinar sodium	Antimetabolite		86	CMA3	Chromomycin A3	RNA Synth.	
32	N224131	PALA, L-Aspartic acid	Antimetabolite		87	APIGENIN	Apigenin	Serin/Threonin Kinase Inh.	
33	ALIMIA	Pemetrexed, LY231514	Antimetabolite		88	SB202190	SB-202190	Serin/Threonin Kinase Inh.	
34	DASATNB	Dasatinib	Bcl/Abl Kinhase Inh.		89	MST312	MS1-312	Telomerase Inh	
35	GLEEVEG	Imatinib Mesylat, S11571	BCI/ADI KINNASE INN.		90	CAMPTO		Topolsomerase Linh.	
36	FLI 3IZ	Bisinolatderivative	Broad-spectrum Kinase Inn.	FL I 3-Inhibitor	91	5038	Irinotecan	Topolsomerase Linh.	
37		Vatalinio	Broad-spectrum Kinase inh	Nultikingge inh	92	DACT	Actinemusin D	Topoisomerase II Inh	
20		Subitinib, Nexaval	Broad-spectrum Kinase inh	Multikingse inh	93	AMSA	Actinomycin-D Amegoria	Topoisomerase II Inh	
40	STALIBOSP	Staurosporine	Broad-spectrum Kinase inh	PKC	95	BLEO	Bleomycin Sulfat	Topoisomerase II Inh	
40	UCN01	UCN-01 (N638850)	Broad-spectrum Kinase inh	PKC	96		Dauporubicin	Topoisomerase II Inh	
42	TRD	Tetrandrine	Ca2+-channel blocker	110	97	ADR	Davarubicin	Topoisomerase II Inh	
43	API	Alsternaulione	CDK Inh		98	VP16	Etoposide	Topoisomerase II Inh	
44	CYC202	CXCS05	CDK Inh		99	IDA	Idarubicin	Topoisomerase II Inh	
45	FCI	Eascaplysin	CDK Inh		100	MITOXANT	Mitoxantron Hydrochlorid	Topoisomerase II Inh	
46	N101	Flavopiridol	CDK Inh		101	NCI15	Pyrazolo-acridine-propanamine	Topoisomerase II Inh.	
47	PURA	Purvalanol A	CDK Inh		102	VM26	Teniposid	Topoisomerase II Inh.	
48	SU9516	SU9516	CDK Inh		103	TXT	Docetaxel	Tubulin interactin	Taxoid
49	NIME	Nimesulide	COX II Inh.		104	TAXOL	Paclitaxel, Taxol	Tubulin interactin	Taxoid
50	APHIDICO	Aphidicolin	DNA-Synth. Inh.		105	VELBE	Vinblastin Sulfat	Tubulin interactin	Vincaalcaloid
51	W020	Aphidicolin glycinate	DNA-Synth. Inh.		106	VCR	Vincristin Sulfat	Tubulin interactin	Vincaalcaloid
52	ECH	Echinomycin A	DNA-Synth. Inh.		107	VIND	Vindesin Sulfat	Tubulin interactin	Vincaalcaloid
53	MTM	Mitramycin	DNA-Synth. Inh.		108	NAVELBIN	Vinorelbin	Tubulin interactin	Vincaalcaloid
54	DTB	Decitabine	DNMT inh.		109	STC	S-trityl-L-cysteine	Eg5 inhibitor	
55	TARCEVA	Erlotinib, OSI-774	EGF/HER2 Inh.		110	NCI6	Pancratistatin		

checkCIF/PLATON report

No syntax errors found. CIF dictionary Interpreting this report

Datablock: compound_1.B{C6H3CF324}2

Bond precision: C-C = 0.0030 A Wavelength=0.71073 a=13.0530(6) b=13.5091(6) c=15.1301(7) Cell: alpha=63.879(1) beta=82.550(1) gamma=76.795(1) Temperature: 150 K Calculated Reported Volume 2330.84(19) 2330.8(2)Space group P -1 P -1 Hall group -P 1 ? C32 H12 B F24, 0.5(C28 H24 Moiety formula Au2 N4 O2) Sum formula C46 H24 Au B F24 N2 O C92 H48 AU2 B2 F48 N4 O2 1284.45 2568.91 Mr 1.830 1.830 Dx,g cm-3 \mathbf{Z} 2 1 Mu (mm-1) 3.291 3.280 F000 1244.0 1244.0 F000' 1241.06 h,k,lmax 16,17,19 Nref 10179 Tmin,Tmax 0.425,0.573 0.805,1.000 Tmin' 0.325 Correction method= EMPIRICAL Data completeness= 0.000 Theta(max)= R(reflections) = 0.0370(*****) wR2(reflections) = ******(11918) S = 0.943Npar= 758

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level. Click on the hyperlinks for more details of the test.

🗳 Alert level A

PLAT022_ALERT_3_A Ratio Unique / Expected Reflections too Low	0.00
PLAT026_ALERT_3_A Ratio Observed / Unique Reflections too Low	0 Perc.
PLAT215_ALERT_3_A Disordered F10A has ADP max/min Ratio	5.10
PLAT242_ALERT_2_A Check Low Ueq as Compared to Neighbor	s for C128
<code>PLAT224_ALERT_1_A Ueq(Rep)</code> and <code>Ueq(Calc)</code> differ by -0.007 Ang	**2. F11A

🛒 Alert level	В		
PLAT215_ALERT_3_B	Disordered F12B	has ADP max/min Ratio	4.50
PLAT215_ALERT_3_B	Disordered F22A	has ADP max/min Ratio	4.40
PLAT215_ALERT_3_B	Disordered F22B	has ADP max/min Ratio	4.10
PLAT215_ALERT_3_B	Disordered F24A	has ADP max/min Ratio	4.30
PLAT242_ALERT_2_B	Check Low	Ueq as Compared to Neighbors for	C138
PLAT242_ALERT_2_B	Check Low	Ueq as Compared to Neighbors for	C148
PLAT731_ALERT_1_B	Bond Calc 3	3.0187(2), Rep 3.0190(10)	5.00 su-Ra
AU	-AU 1.555	2.566	

Alert level C

PLAT029_ALERT_3_C	_diffrn_measured_fraction	on_theta_full	Low	0.96	
PLAT215_ALERT_3_C	Disordered F10B has	s ADP max/min	Ratio	3.50	
PLAT215_ALERT_3_C	Disordered F11A has	s ADP max/min	Ratio	3.80	
PLAT215_ALERT_3_C	Disordered F12A has	s ADP max/min	Ratio	3.40	
PLAT215_ALERT_3_C	Disordered F16A has	s ADP max/min	Ratio	3.80	
PLAT215_ALERT_3_C	Disordered F16B has	s ADP max/min	Ratio	4.00	
PLAT215_ALERT_3_C	Disordered F18A has	s ADP max/min	Ratio	3.30	
PLAT215_ALERT_3_C	Disordered F23A has	s ADP max/min	Ratio	3.40	
PLAT215_ALERT_3_C	Disordered F23B has	s ADP max/min	Ratio	3.50	
PLAT215_ALERT_3_C	Disordered F24B has	s ADP max/min	Ratio	3.20	
PLAT220_ALERT_2_C	Large Non-Solvent F	Ueq(max)/U	Jeq(min)	3.46	Ratio
PLAT242_ALERT_2_C	Check Low Ueq as (Compared to Ne	eighbors for	C117	
PLAT242_ALERT_2_C	Check Low Ueq as (Compared to Ne	eighbors for	C147	
PLAT041_ALERT_1_C	Calc. and Reported SumFo	ormula Stri	ngs Differ	?	
PLAT045_ALERT_1_C	Calculated and Reported	Z Differ by .		2.00	Ratio
PLAT701_ALERT_1_C	Bond Calc 3.0187(2), Rep 3.0190)(10), Dev	1.50	Sigma
AU	-AU 1.555 2.566				
PLAT751_ALERT_4_C	Bond Calc 0.9700	0, Rep 0.97	70(2)	Senseless	su
C3	-H2 1.555 1.555				
PLAT790_ALERT_4_C	Centre of Gravity not W:	ithin Unit Cel	l: Resd. #	1	
C32	H12 B F24				

Alert level G

```
GOODF01_ALERT_1_G __refine_ls_goodness_of_fit_obs is an old dataname which has
           been superceded by _refine_ls_goodness_of_fit_ref
RFACG01_ALERT_3_G _refine_ls_R_factor_obs is an old dataname which has been
           superceded by _refine_ls_R_factor_gt
RFACR01_ALERT_3_G __refine_ls_wR_factor_obs is an old dataname which has been
           superceded by _refine_ls_wR_factor_ref
SHFSU01_ALERT_2_G _refine_ls_shift/esd_max is an old dataname which has been
           superceded by _refine_ls_shift/su_max
PLAT301_ALERT_3_G Note: Main Residue Disorder .....
                                                                     9.00 Perc.
PLAT154_ALERT_1_G The su's on the Cell Angles are Equal (x 10000)
                                                                      100 Deg.
PLAT779_ALERT_4_G Suspect or Irrelevant (Bond) Angle in CIF .....
                                                                    15.40 Deg.
             F10A -C128 -F10B 1.555
                                      1.555 1.555
PLAT779_ALERT_4_G Suspect or Irrelevant (Bond) Angle in CIF .....
                                                                    27.50 Deg.
             F11A -C128 -F11B 1.555
                                      1.555
                                               1.555
PLAT779_ALERT_4_G Suspect or Irrelevant (Bond) Angle in CIF .....
                                                                    28.90 Deg.
             F12A -C128 -F12B 1.555 1.555
                                               1.555
PLAT779_ALERT_4_G Suspect or Irrelevant (Bond) Angle in CIF .....
                                                                    30.10 Deg.
             F16A -C138 -F16B 1.555 1.555
                                               1.555
PLAT779_ALERT_4_G Suspect or Irrelevant (Bond) Angle in CIF .....
                                                                    39.80 Deg.
             F17A -C138 -F17B 1.555 1.555
                                              1.555
PLAT779_ALERT_4_G Suspect or Irrelevant (Bond) Angle in CIF .....
                                                                    41.70 Deg.
             F18A -C138 -F18B 1.555 1.555
                                              1.555
PLAT779_ALERT_4_G Suspect or Irrelevant (Bond) Angle in CIF .....
                                                                    33.80 Deg.
             F22A -C148 -F22B 1.555
                                      1.555
                                              1.555
PLAT808_ALERT_5_G No Parsable SHELXL style Weighting Scheme Found
                                                                        !
```

```
5 ALERT level A = In general: serious problem
7 ALERT level B = Potentially serious problem
18 ALERT level C = Check and explain
14 ALERT level G = General alerts; check
7 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
7 ALERT type 2 Indicator that the structure model may be wrong or deficient
20 ALERT type 3 Indicator that the structure quality may be low
9 ALERT type 4 Improvement, methodology, query or suggestion
1 ALERT type 5 Informative message, check
```

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIF's submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C or E*, you should make sure that full publication checks are run on the final version of your CIF prior to submission. Publication of your CIF in other journals

Please refer to the Notes for Authors of the relevant journal for any special instructions relating to CIF submission

PLATON version of 13/08/2009; check.def file version of 12/08/2009

Datablock compound_1.B{C6H3CF324}2 - ellipsoid plot

