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1 Numerical estimates of model parameters

Here we determine numerical estimates of the parameters appearing in
the model, namely, the reaction rates and the total concentrations of the
reagents. The rates are determined from the microscopic theory of facili-
tated diffusion developed by Berg and coworkers (1–3). Our estimates are
made assuming dilute conditions (nuclear crowder volume fraction φ = 0).
We do not concern ourselves with the rates of the irreversible reactions fol-
lowing pre-mRNA production, such as splicing and mRNA export, since
they do not influence the steady-state results.

Assuming that non-specific binding of TF and RNAp to DNA is diffusion-
limited, we use the following expression (1–3) for the forward rates k1 and
k3:

knst =
2πDTFl

ln(ξ/2b)
knsf =

2πDRNApl

ln(ξ/2b)
(1)

Here DTF and DRNAp are the diffusion coefficients of TF and RNAp, given
by the Stokes-Einstein formula

DTF =
kBT

6πηrTF
DRNAp =

kBT

6πηrRNAp

We assume a temperature of 37◦ C = 310 K, at which the dynamic viscosity
of water is η = 6.5 × 10−4 J · s/m3. We are modeling the RNA polymerase
as a sphere of radius rRNAp = 5.4 nm and the TF as a sphere of radius
rTF = 4 nm, giving DTF = 8.7×10−11 m2/s and DRNAp = 6.4 × 10−11 m2/s.

The definitions of the variables ξ, b, and l are as follows. ξ is the corre-
lation length for the DNA, that is, the typical distance between neighboring
DNA segments. This correlation length will vary depending on the physical
arrangement of the DNA into loops, chromatin territories, etc. We choose
ξ = 20 nm, keeping in mind that these rates will vary weakly with ξ; we have
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checked that varying ξ in either direction by a factor of 4 does not affect our
qualitative results. Two more lengths appear in Eq. 1: the radius b of the
DNA molecule, about 1 nm, and the length l along the DNA of one base
pair, namely 0.34 nm. Using these values, we have non-specific association
rate constants in the absence of crowding:

knst = 4.9× 104 mM−1s−1 knsf = 3.6× 104 mM−1s−1

The nonspecific dissociation rates follow from the dissociation constants for
non-specific binding, called Kn.s.

D,TF and Kn.s.
D,RNAp. We take these to be both

equal to 1 mM in the absence of crowding, giving

knso = Kn.s.
D,TF · knst = 4.9× 104 s−1 knsb = Kn.s.

D,RNAp · knsf = 3.6× 104 s−1

The association rate constants for specific binding of TF and RNAp are
given by the expression derived by Berg et al. (2) for specific protein-DNA
binding by facilitated diffusion:

kt = V · (D1,TF · knso )1/2/L kf = V · (D1,RNAp · knsb )1/2/L (2)

The factor of V representing the volume of the nucleus does not appear
in the expression of Berg et al. (2). This is due to the fact that in the
reaction equations Eqs. 4 and 5 we take the forward rates to multiply
the product of the volume densities (concentrations) of both reagents, in
such a way that the association rate constants have the usual dimensions
of concentration−1×time−1. We use a typical volume for a HeLa cell of
V = 500µm3 (4, 5). The length L is one-half of the total length of ge-
nomic DNA. A diploid human cell (before S phase) contains 6 × 109 bp.
This corresponds to L = 1 m. The quantities D1,TF and D1,RNAp are the
one-dimensional diffusion coefficients for motion of TF and RNAp along
DNA. Elf et al. (6) report a value of D1 = 0.046µm2/s for a transcription
factor, which is about 100 times smaller than the TF’s three-dimensional
diffusion coefficient. Assuming that the protein follows a helical path wind-
ing around the DNA as has been found experimentally (7), Bagchi et al. (8)
derived a formula for the one-dimensional diffusion coefficient of a protein
non-specifically bound to DNA:

D1 =
kBT

ζtotaltrans

,

where

ζtotaltrans = 6πηR+

(
2π

10l

)2 [
8πηR3 + 6πηR(ROC)2

]
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Here R is the radius of the spherical protein while ROC is the distance
between the centers of mass of the protein and DNA. The integer 10 appears
because this is the number of base pairs (of length l = 0.34 nm) per turn of
DNA. Using the radii of the TF and RNAp we find

D1,TF =
D3,TF

157.3
D1,RNAp =

D3,RNAp

270.4

Using these numerical values, we obtain

kt = 0.05 nM−1s−1 kf = 0.03 nM−1s−1 (3)

The backward rates for specific binding are determined from (2)

ko
kt

= [D]tot ·
KD,TF

Kns
D,TF

kb
kf

= [D]tot ·
KD,RNAp

Kns
D,RNAp

(4)

The human genome has about 3 ×109 bp. In a diploid cell, there are there-
fore about 6 ×109 ≈ 10−14 moles of base pairs in a volume of about 500µm3

= 5 × 10−13 L. This gives a concentration of [D]tot = 0.02 M= 20 mM.
Protein-DNA dissociation constants have been found to range widely, with
reported values for transcription factor-DNA binding ranging from micro-
molar to picomolar (9, 10) or even stronger (11), with nanomolar values
being common. We have been using dissociation constants of 1 nM for spe-
cific binding of TF or RNAp. The resulting values of the dissociation rates
are

ko = (0.05 nM−1s−1) · (20 mM) · 1 nM

1 mM
= 1.0 s−1 (5)

kb = (0.03 nM−1s−1) · (20 mM) · 1 nM

1 mM
= 0.6 s−1 (6)

The inverse of the rate km represents the time taken by the polymerase
(once already bound to the promoter) to initiate transcription, as well as to
produce the pre-mRNA transcript. An average initiation time of one minute
(12) gives

km,0 = 0.02 s−1

In the model, the step in which nuclear mRNA becomes cytoplasmic mRNA
(with rate γ) includes nucleocytoplasmic diffusion to a nuclear pore in addi-
tion to directed transport across the nuclear pore. The transport and export
of mRNAs has been studied at the single-molecule level in Drosophila by
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Mor et al. (13) who report that nucleocytoplasmic diffusion to a nuclear pore
complex (NPC) occurs on a timescale of 5–40 minutes, while directed trans-
port across the NPC occurs much more rapidly. Assuming a mean time scale
of 20 minutes for an mRNA to exit the nucleus from the site of splicing, we
have

γ0 = 8× 10−4 s−1

The rate of degradation of mRNA in the cytoplasm varies from one tran-
script to another(14, 15); we use a typical time scale of about one hour to
arrive at

ν0 = 3× 10−4 s−1

We now must estimate the total concentration (bound as well as free)
of promoters, RNA polymerases, and transcription factors. Here a question
arises as to how to interpret our model: are we describing a single gene and
its specific transcription factors, as did Morelli et al.(16), or rather describing
in a coarse-grained way all of the genes at once? In the former case the
concentration of promoters in a diploid cell is 2/V where V is the volume
of the nucleus, while in the latter case we must take into account the total
number of active genes. We choose to include all of the active genes at once,
to include the possibility that changes in binding affinities (for example, as
the level of crowding is changes) for such a significant number of genes might
affect the concentration of free RNAp or TF. Experiments in HeLa cells (17)
suggest a number of RNAp molecules on the order of 104, with numbers of
general transcription factors (such as TBP) of the same order of magnitude.
Likewise, in a genome with tens of thousands of genes the number of binding
sites O is of the same magnitude. Given that the nuclei of these cells have
volumes (4, 5) on the order of Vnuc = 500µm3 = 5× 10−13 L we have

[TF]tot ≈ [RNAp]tot ≈ [O]tot ≈
104

Vnuc
≈ 30 nM

These are clearly rough estimates, and for many reasons we should consider
a wide range of possible concentrations. The distributions of molecules in
the nucleus involved in transcription are non-uniform, and we might choose
to interpret our concentrations as the local values at the site of transcrip-
tion (for example, in transcription factories), since the local concentrations
are the only relevant ones for the binding reactions. Furthermore, many
promoter binding sites will be bound by nucleosomes and inaccessible to
DNA-binding proteins, so that the concentration of “active” genes may be
reduced compared to the total number of genes.
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2 Diffusion Coefficients: Brownian Dynamics
simulations

To find the crowding dependence of the diffusion coefficients of TF and
RNAp in our model, we performed Brownian Dynamics (BD) simulations of
spherical tracer particles of various radii diffusing among spherical crowders
of radius 3 nm. These simulations were carried out using the GROMACS
package (18). The purely repulsive interaction potential between two spher-
ical particles (either crowders or tracers) of radii r1 and r2 was

U(r) = 4ε

(
σ

x+ σ − r1 − r2

)12

, (7)

with ε = 1 kJ/mol and σ = 1 nm. According to the Stokes formula, the fric-
tion coefficient γ of a sphere is proportional to its radius. In our simulations
we have used drag coefficients of γ = r · 30 amu/ps = r · 30 kJ · ps/mol · nm2

where r is the radius of a molecule (crowder or tracer). Our simulations were
performed at a temperature of 310 K, although the results of the simula-
tions (diffusion coefficients normalized by their crowder-free values) should
be nearly independent of temperature since our interaction potentials are
nearly hard-sphere potentials.

For each tracer particle radius we performed simulations at many differ-
ent levels of crowding by including different numbers of crowders within a
(63 nm)3 simulation box. The number of 3 nm radius crowders in the box
varied from 30 to 1140 in steps of 30, corresponding to volume fractions up
to about φ = 0.5.

From each simulation trajectory the diffusion coefficient of the tracer
particle was determined as one sixth of the average slope of the particle’s
mean-square displacement over the time interval from t = 5 ns to t = 20 ns.
The diffusion coefficients were then normalized to their values in the absence
of crowding. The resulting normalized diffusion coefficients are shown in
Fig. 1. These sets of simulations were performed for tracer particles of radii
2,4,5, and 6 nm; for tracer particle radius of 3 nm we used simulations with
crowders only. The normalized diffusion coefficients were well fit by a cubic
polynomial in φ, namely

D(φ, r)

D(0, r)
≡ f(φ, r) = 1 + α

(
r

rcrowd

)
φ+ β

(
r

rcrowd

)
φ2 + γ

(
r

rcrowd

)
φ3, (8)

here α, β, and γ are fitting parameters, depending only on the ratio of the
tracer particle radius to the crowder radius, which are given in Table 1. For
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r/rcrowd α β γ

2/3 -1.41 0.40 -2.23
3/3 -1.95 1.10 -1.91
4/3 -2.83 3.87 -4.11
5/3 -3.57 6.46 -6.45
6/3 -4.39 9.69 -9.76

Table 1: Coefficients in Eqn. 8 for a cubic fit to f(φ).

the model discussed in the article, we need normalized diffusion coefficients
for tracer particles of radius 4 and 5.4 nm, representing the transcription
factor and the RNA polymerase, respectively. For the transcription factor,
we use Eqn. 8 above with the fitting parameters for r = 4 nm. For the
RNAp, we did not have simulations of tracers with radius precisely equal to
5.4 nm, so for the polymerase’s diffusion coefficient we have used Eqn. 8 with
fitting parameters obtained by interpolating the data of Table 1: namely
α = −3.89, β = 7.72, and γ = −7.72.
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Figure 1: The factor f by which the diffusion coefficient of a tracer molecule
is decreased by the presence of a volume fraction φ of crowders (radius 3
nm). This is shown for various radii of tracer molecules: 2, 3, 4, 5, and 6 nm
(top to bottom). Brownian Dynamics simulations are shown with dots; the
curves are polynomial fits given by Eq. 8 with parameters given in Table 1.
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3 Crowding-mediated interactions: Monte Carlo
simulations

To calculate the crowding-induced contribution ∆Fcrowd(φ) to the binding
free energies, as well as the crowding-induced free energy barrier to associ-
ation ∆Fbarrier(φ), we have performed Monte Carlo simulations, which we
discuss now in the context of TF binding to DNA; the case of RNAp bind-
ing to DNA is similar. In each simulation, the cubic simulation box of size
(50 nm)3 contains the TF (a sphere of radius 4 nm) as well as the DNA
(a row of 50 overlapping spheres of radius 1 nm, spaced 1 nm apart, ap-
proximating a rod of diameter 2 nm) and some number Ncrowd of crowders.
The crowders interact with each other, and with the spheres making up the
TF and DNA, as impenetrable hard spheres. The Monte Carlo moves are
random small translations of randomly selected crowders. These moves are
rejected if they cause any overlap between the crowders or between crowders
and the TF or DNA, and accepted otherwise. Every 10 MC moves, a test
move is considered which increases the distance between the TF and DNA
by 0.1 nm (this distance is the reaction coordinate). Likewise, a test move
is also considered which decreases this distance by 0.1 nm. Like the MC
moves, the test moves are accepted or rejected based on whether they lead
to overlaps between crowders and TF or DNA. Over the course of millions
of MC moves, this gives a numerical estimate of the probability pforward of
accepting a move that increases the reaction coordinate, as well as the prob-
ability pbackward of accepting the reverse move. The free energy change in
increasing the TF-DNA distance by ∆x = 0.1 nm is then given by (19)

β∆Fcrowd(x→ x+ ∆x) = ln

[
pbackward
pforward

]
, (9)

where β = 1/kBT . From the free energy changes for each small step of size
∆x, we map out the potential of mean force (PMF) between the TF and
the DNA (see Fig. 1c of the article). As shown in this figure, the PMF
reaches a plateau value which is the free energy required to separate the
TF from the DNA against the depletion force caused by the crowders, or
equivalently minus the crowder contribution to the free energy of binding.
The difference between the maximum of the PMF and the plateau value gives
the crowder-mediated free energy barrier ∆Fbarrier to association. These sets
of simulations were performed for numbers of crowders between 20 and 440
in steps of 20, corresponding to nuclear crowder volume fractions from φ =
0.018 to 0.4. The resulting free energies and free energy barriers are plotted
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in Fig. 2 and Fig. 3 respectively. Likewise, the crowding-induced free energy
difference for pulling RNAp away from DNA is shown in Fig. 4 and the
corresponding free energy barriers in Fig. 5. Finally, the change in excluded
volume as the RNAp slides into contact with the TF along the DNA (forming
the complex CII) entails a crowding-induced free energy change, which we
have also calculated. This is shown in Fig. 6, with the corresponding free
energy barrier plotted in Fig. 7. The free energies determined from the
Monte Carlo simulations were well fit by the following expressions.

−β∆Fcrowd,TF(φ) = 3.2φ+ 2.0φ2 − β∆Fbarrier,TF(φ) = 2.5φ2

−β∆Fcrowd,RNAp(φ) = 3.7φ+ 2.7φ2 − β∆Fbarrier,RNAp(φ) = 3.1φ2

−β∆F slide
crowd,RNAp-TF(φ) = 2.6φ+ 4.6φ2 − β∆F slide

barrier,RNAp-TF(φ) = 0.1φ2 + 9.2φ3

The Monte Carlo simulations were implemented using a C program whose
code is available from the authors upon request.
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Figure 2: Crowding induced free energy change associated with TF-DNA
binding. Symbols show the results of Monte Carlo simulations with error
bars given by the standard error of four independent simulations. The solid
line shows the polynomial fit −β∆Fcrowd,TF(φ) = 3.2φ+2.0φ2 used in com-
puting the results in the paper. The dashed line shows the linear approxi-
mation −β∆Fcrowd,TF(φ) = 3.2φ that can be obtained by exact integration
of excluded volume overlaps.
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Figure 3: Crowding induced free energy barrier associated with TF-DNA
binding. Symbols show the results of Monte Carlo simulations.The solid line
shows the polynomial fit −β∆Fbarrier,TF(φ) = 2.5φ2 used in computing the
results in the paper.
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Figure 4: Crowding induced free energy change associated with RNAp-
DNA binding. Symbols show the results of Monte Carlo simulations with
error bars given by the standard error of ten independent simulations. The
solid line shows the polynomial fit −β∆Fcrowd,RNAp(φ) = 3.7φ+ 2.7φ2 used
in computing the results in the paper. The dashed line shows the linear
approximation −β∆Fcrowd,RNAp(φ) = 3.7φ that can be obtained by exact
integration of excluded volume overlaps.
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Figure 5: Crowding induced free energy barrier associated with RNAp-DNA
binding. Symbols show the results of Monte Carlo simulations.The solid line
shows the polynomial fit −β∆Fbarrier,TF(φ) = 3.1φ2 used in computing the
results in the paper.
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Figure 6: Crowding induced free energy change associated with RNAp “slid-
ing” toward TF along DNA, forming complex CII. Symbols show the re-
sults of Monte Carlo simulations with error bars given by the standard
error of ten independent simulations. The solid line shows the polyno-
mial fit −β∆F slide

crowd,RNAp-TF(φ) = 2.6φ + 4.6φ2 used in computing the
results in the paper. The dashed line shows the linear approximation
−β∆F slide

crowd,RNAp-TF(φ) = 2.6φ that can be obtained by exact integration
of excluded volume overlaps.
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Figure 7: Crowding induced free energy barrier associated with RNAp “slid-
ing” toward TF along DNA, forming complex CII. Symbols show the re-
sults of Monte Carlo simulations. The solid line shows the polynomial fit
−β∆F slide

barrier,RNAp-TF(φ) = 0.1φ2 + 9.2φ3 used in computing the results in
the paper.
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4 Effects of Crowder Polydispersity

In order to ensure that our results are not dependent on the strict mono-
dispersity of crowders in the model, we have performed some Monte Carlo
simulations to calculate the crowding induced free energy change upon RNAp
binding to DNA, using a small level of crowder polydispersity. Specifically,
we used crowders with a distribution of three sizes: small (2.7 nm), medium
(3.0 nm), and large (3.3 nm). Half of the crowders were of medium size and
25% were small and large. Figure 8 shows that this poly-dispersity does not
significantly affect the results.
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Figure 8: Effects of crowder polydispersity on the crowding induced free
energy change upon RNAp binding to DNA.
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