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Macromolecular Crowding as a Regulator of Gene Transcription
Hiroaki Matsuda,† Gregory Garbès Putzel,† Vadim Backman,† and Igal Szleifer†‡*
†Department of Biomedical Engineering and Chemistry of Life Processes Institute and ‡Department of Chemistry, Northwestern University,
Evanston, Illinois
ABSTRACT Studies of macromolecular crowding have shown its important effects on molecular transport and interactions in
living cells. Less clear is the effect of crowding when its influence is incorporated into a complex network of interactions. Here, we
explore the effects of crowding in the cell nucleus on a model of gene transcription as a network of reactions involving transcrip-
tion factors, RNA polymerases, and DNA binding sites for these proteins. The novelty of our approach is that we determine the
effects of crowding on the rates of these reactions using Brownian dynamics and Monte Carlo simulations, allowing us to inte-
grate molecular-scale information, such as the shapes and sizes of each molecular species, into the rate equations of the model.
The steady-state cytoplasmic mRNA concentration shows several regimes with qualitatively different dependences on the
volume fraction, f, of crowding agents in the nucleus, including a broad range of parameter values where it depends nonmono-
tonically on f, with maximummRNA production occurring at a physiologically relevant value. The extent of this crowding depen-
dence can be modulated by a variety of means, suggesting that the transcriptional output of a gene can be regulated jointly by
the local level of macromolecular crowding in the nucleus, together with the local concentrations of polymerases and DNA-
binding proteins, as well as other properties of the gene’s physical environment.
INTRODUCTION
Systems biology aims to understand cellular processes in
terms of networks of interactions among molecules. Ideally,
this view of biology would be global and yet still rest on a
solid reductionist foundation, since each node of a network
would represent a chemical reaction that could be isolated
and studied in detail. However, it should be appreciated
that this basic framework does not fully capture the com-
plexities of life. The reaction represented by each node in
a network may, for example, be influenced by the physical
environment of some part of the cell.

One form of such a physical influence has received a great
deal of attention from theorists and experimentalists alike:
macromolecular crowding (1). The crowded nature of
cellular environments exerts an important influence on the
thermodynamics and kinetics of reactions. The free energy,
as well as the rates (2–4), of a reaction will depend on the
overall concentration of molecules; these could then play
an important role as crowding agents even if they have no
specific role in the reaction. Much work has been done to
understand the influence of macromolecular crowding on
specific types of processes, such as protein-protein binding
(5), protein folding and stability (6), and chromatin compac-
tion (7,8). However, little is known about the global influ-
ence of crowding on the scale of networks of interactions.
From the theoretical side, an important first step in this di-
rection was taken by Morelli et al. (9), who incorporated
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the influence of crowding on the rates of reactions into sim-
ple gene regulatory networks and found that the level of
crowding had an important effect on steady-state protein
concentrations.

In this work, we study a more complicated model of gene
expression, incorporating the fact that in eukaryotes, RNA
polymerase is recruited to a gene promoter via its interac-
tions with transcription factors. We explicitly take into ac-
count the movement of DNA-binding proteins by the
mechanism of facilitated diffusion (10), whereby molecules
undergo free diffusion interspersed with periods of one-
dimensional diffusion that occurs while the molecule is
nonspecifically bound to DNA. Of most importance, we
determine the effects of macromolecular crowding on the
reaction rates in the model based on explicit assumptions
about molecular shapes and sizes. Specifically, the effects
of crowding on the diffusion coefficients of molecules are
established using Brownian dynamics (BD)simulations,
and the crowding-induced contributions to the binding
free energies between molecules are calculated from Monte
Carlo simulations. We solve the reaction-rate equations of
the model in the steady state, including the dependence of
the reaction rates on the volume fraction, f, of crowders
as determined from the simulations, and explore the effect
of crowding in the cell nucleus on the steady-state concen-
tration of cytoplasmic mRNA (see Fig. 1 for an illustration
of our approach). Our incorporation of molecular-scale
simulation results into the model allows us to correctly
assess the order of magnitude of macromolecular crowding
effects.

We show that there are several regimes of nuclear crowd-
ing dependence of steady-state cytoplasmic mRNA concen-
tration, depending on the concentrations of the reactants as
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FIGURE 1 Reaction network model of gene expression incorporating molecular simulation data. (a) Representative snapshots of BD (left) and Monte

Carlo (right) simulations used to determine diffusion coefficients and free energies, respectively. TF, RNAp, and DNA are represented in red, orange,

and green, respectively. Snapshots were made using VMD (34). (b) Normalized diffusion coefficients calculated from BD simulations. (c) Potential of

mean force between TF and DNA, calculated from Monte Carlo simulations at nuclear crowder volume fraction f ¼ 0:25. (d) Representative formulas

showing the dependence of reaction rates on the volume fraction, f, of crowders in the nucleus. (e) Reactions in the model of gene expression. (f) Repre-

sentative plot of nuclear crowder volume fraction dependence of steady-state cytoplasmic mRNA concentration. To see this figure in color, go online.
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well as other parameters of the system, such as specific or
nonspecific protein-DNA binding affinities. In many cases,
we have found that the mRNA levels depend nonmonotoni-
cally on the volume fraction, f, of crowders in the nucleus,
reaching a maximum at physiologically relevant values near
fz0:3. This dependence may be accentuated by several
means, for example, by decreasing the concentrations of
the reactants or by increasing the binding affinity of nonspe-
cific protein-DNA binding. The picture that emerges is one
in which concentrations of transcription factors, polymer-
ases, and active gene promoters, combined with the overall
level of macromolecular crowding, may exert a quantita-
tively significant and qualitatively nontrivial influence on
the level of expression of genes, with potentially important
implications for the regulation of gene expression. In partic-
ular, the joint dependence of mRNA output on the level of
nuclear crowding and the concentrations of transcription
factors and RNA polymerases suggests that in the spatially
nonuniform cell nucleus, genes in different locations will
experience different effects of macromolecular crowding.
MODEL

The physical modeling of gene regulatory systems as net-
works of chemical reactions (11) has reached the stagewhere
it is not out of the question to make quantitative comparisons
with experiments, at least in the case of bacterial systems
(12). As these comparisons become more common it will
be increasingly important to incorporate into these models
the influence of physical environments occurring in vivo
rather than in vitro. In this regard, a key step was taken by
Morelli et al. (9) when they considered simple models of
gene regulatory networks, taking into account the influence
of macromolecular crowding on the reaction rates. Here,
we develop a multiscale model of gene expression involving
multiple molecular binding events and incorporating micro-
scopic information on the kinetic and thermodynamic effects
of crowding. To approach the problem of gene regulation in
eukaryotes, where gene regulation involves numerous
combinatorial interactions of proteins (13), our model in-
cludes both transcription factors and RNA polymerases.
The most important element of our approach is our molecu-
lar-level treatment of the crowding dependence of the reac-
tion rates. The extent to which crowding slows down
diffusion, as well as the way it induces entropic interactions
between reactants, is determined frommolecular simulations
using a simple but consistent choice of shapes and sizes for
each molecular species. The overall approach, in which mo-
lecular simulations provide the crowding dependence of the
parameters in a set of rate equations, is illustrated in Fig. 1.
Rate equations and their steady-state solution

The system of reactions shown in Fig. 1 e summarizes the
model considered here. In this section, we set out the
steady-state equations for these reactions. Molecular-level
formulas for the reaction rates will be given in the next sec-
tion and will allow us to incorporate the effects of macromo-
lecular crowding in the nucleus.

The first two reactions in Fig. 1 e represent so-called
facilitated diffusion (10). Freely diffusing transcription fac-
tors (TFs) may bind transiently and nonspecifically to DNA.
While a transcription factor is nonspecifically bound, it dif-
fuses along DNA and may encounter its binding site (O) at a
gene promoter, forming a complex we will call CI. In a
similar way, RNA polymerase (RNAp) binds nonspecifi-
cally to DNA and specifically to CI; that is, the TF recruits
RNAp to the promoter, forming a transcription-ready com-
plex we call CII. The reactions thus far are all reversible.
A transcription-ready complex CII may then undergo tran-
scription initiation with a certain probability, freeing the
O, TF, and RNAp and giving rise to a pre-mRNA (pm).
The pm undergoes splicing, where it reacts with a small
nuclear ribonucleic particle (snRNP) to form Complex III
(CIII), and an intron, having been spliced out, is released.
Further mRNA processing steps are represented by a reac-
tion in which CIII gives rise to an mRNA molecule in the
nucleus (mRNAnuc) as well as the released snRNP. The
two final reactions represent the export of mRNA from
the nucleus and its degradation in the cytoplasm.

We note that all the steps after the formation of Complex
II are modeled as being irreversible. As a consequence,
the details of these steps will have no influence on the
steady-state level of mRNA production. Indeed, in the
steady state,

n
�
mRNAcyto

� ¼ g½mRNAnuc� ¼ kM0 ½CIII�
¼ kM½snRNP�½pm� ¼ km½CII�; (1)

and if we wish to calculate the steady-state concentration of

mRNA in the cytoplasm, we need only find the concentra-
tion of CII:

�
mRNAcyto

� ¼ km
n

� ½CII�: (2)

Furthermore, the steady-state flux of mRNA into the cyto-

plasm is simply

n � �
mRNAcyto

� ¼ km½CII�: (3)

The steady-state concentration of complex CII can be ob-
tained by numerically solving the coupled equations

d½CI�
dt

¼ kt½TF$D�½O� � ko½CI� � kf ½RNAp$D�½CI� þ kb½CII�
(4)

d½CII�

dt

¼ kf½RNAp$D�½CI� � ðkb þ kmÞ½CII�: (5)
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To do so, however, the quantities [O], [TF $ D], and
[RNAp $ D] must first be given in terms of the concentra-
tions of complexes CI and CII:

½O� ¼ ½O�tot � ½CI� � ½CII�

½TF$D� ¼

�
½D�tot

.
Kns

D;TF

��½TF�tot�½CI��½CII�
��km

knso
½CII�

1þ
�
½D�tot

.
Kns

D;TF

�

½RNAp$D� ¼

�
½D�tot

.
Kns

D;RNAp

��½RNAp�tot�½CII�
��km

knsb
½CII�

1þ
�
½D�tot

.
Kns

D;RNAp

� :

The latter two expressions are derived from the steady-state
solutions of the reaction-rate equations for the concentra-

tions of ½TF$D� and ½RNAp$D�, respectively. They make
use of the total concentrations ½TF�tot, ½RNAp�tot, and
½O�tot, as well as dissociation constants for nonspecific bind-
ing. In deriving them, we have made the assumption that the
total concentration of DNA basepairs is very large compared
to the concentration of TF, so that we will always have
½D�z½D�tot.

To summarize, solving Eqs. 4 and 5 gives us the concen-
tration of transcription-ready complexes CII. We may then
use Eq. 2 to compute the concentration of cytoplasmic
mRNA or Eq. 3 to compute the rate of mRNA export to
the cytoplasm. Having now determined the level of
mRNA expression in terms of the reaction rates, our next
goal is to use molecular-scale expressions for these rates
to incorporate the influence of macromolecular crowding.
Reaction rates: facilitated diffusion

Macromolecular crowding and other molecular-scale phys-
ics enter into the model via the reaction rates. In this section,
we use the microscopic theory of facilitated diffusion devel-
oped by Berg and co-workers (10,14,15) to give expressions
for the reaction rates of specific and nonspecific binding pro-
cesses involving TFs and RNAps. We do not concern our-
selves with the rates of the irreversible reactions after pm
production, such as splicing and mRNA export, since they
do not influence the steady-state results. It is important to
keep in mind, however, that they are crucial for determining
the dynamics and temporal correlations of the mRNA output
(16), which is not a subject of study in this work.

Assuming that nonspecific binding of TF and RNAp to
DNA is diffusion-limited, we use for forward rates k1 and
k3 the expression (10,14,15)

knst ¼ 2pDTFl

lnðx=2bÞ knsf ¼ 2pDRNApl

lnðx=2bÞ : (6)

These rates depend on the diffusion coefficients DTF and
DRNAp of TF and RNAp, as well as on three length scales,
Biophysical Journal 106(8) 1801–1810
l, b, and x. These are, respectively, the length along the
DNA of one basepair, the radius of the DNA molecule
(viewed as an approximate cylinder), and a correlation
length giving the characteristic distance between DNA
strands.

The nonspecific dissociation rates follow from the disso-
ciation constants for nonspecific binding, called Kns

D;TF and
Kns
D;RNAp:

knso ¼ Kns
D;TF � knst knsb ¼ Kns

D;RNAp � knsf : (7)

The association rate constants for specific binding of TF and
RNAp are given by the expression derived by Berg et al.
(10) for specific protein-DNA binding by facilitated
diffusion:

kt ¼ V � �
D1;TF � knso

�1=2
=L

kf ¼ V � �
D1;RNAp � knsb

�1=2
=L

(8)

Here, D1;TF and D1;RNAp are the one-dimensional diffusion
coefficients of TF and RNAp when these are nonspecifically
bound to DNA, and L is one-half of the total length of DNA
in the nucleus. The factor V, representing the volume of the
nucleus, does not appear in the expression of Berg et al.
(10). This is due to the fact that in the reaction equations
(Eqs. 4 and 5), we take the forward rates to multiply the
product of the volume densities (concentrations) of both re-
agents in such a way that the association rate constants have
the usual dimensions of concentration�1 � time�1.

The backward rates for specific binding are determined
from (10)

ko
kt

¼ ½D�tot �
KD;TF

Kns
D;TF

kb
kf

¼ ½D�tot �
KD;RNAp

Kns
D;RNAp

: (9)

The formulas for the reaction rates given in this section
depend on a number of parameters, such as the diffusion co-
efficients of molecules and their binding affinities, given by
dissociation constants. Section 1 of the Supporting Material
gives a complete description of all of our choices of the nu-
merical values of these parameters. The resulting numerical
values of the reaction rates, which we will use throughout
this article unless otherwise mentioned, are given in Table 1.
These rates are computed assuming dilute (nuclear crowder
volume fraction f ¼ 0) conditions. In the next section, we
will see how the level of crowding influences the kinetics
and thermodynamics of the reactions in our model.
Dependence of rates on nuclear crowding level

We now consider the effects of nuclear crowding on the
rates of specific and nonspecific binding. It is at this level
that microscopic details such as molecular geometries, inter-
actions, and diffusion coefficients enter into our model (see



TABLE 1 Numerical values of model parameters.

Parameter Description

Value

(with f ¼ 0)

knst Association rate constant for

nonspecific TF-DNA binding

4:9� 104 mM�1s�1

knsf Association rate constant for

nonspecific RNAp-DNA binding

3:6� 104 mM�1s�1

knso TF-DNA nonspecific dissociation rate 4:9� 104 s�1

knsb RNAp-DNA nonspecific

dissociation rate

3:6� 104 s�1

Kns
D;TF Dissociation constant for

nonspecific TF-DNA binding

1 mM

Kns
D;RNAp Dissociation constant for nonspecific

RNAp-DNA binding

1 mM

kt Association rate constant for

TF-promoter (O) binding

0:05 nM�1s�1

kf Association rate constant for

RNAp-Complex I binding

0:03 nM�1s�1

ko TF-promoter (O) dissociation rate 1:0 s�1

kb RNAp-Complex I dissociation rate 0:6 s�1

KD;TF Dissociation constant for

TF-O (promoter) binding

1 nM

KD;RNAp Dissociation constant for

RNAp-O (promoter) binding

1 nM

km Rate of pre-mRNA production 0:02 s�1

g Nuclear export rate of mRNA 8� 10�4 s�1

n mRNA degradation rate 3� 10�4 s�1

½TF�tot Total concentration of TF 30 nM

½RNAp�tot Total concentration of RNAp 30 nM

½O�tot Total concentration of O (promoters) 30 nM

½D�tot Total concentration of DNA basepairs 20 mM

The values given here correspond to the values used in this article unless

otherwise stated. See Supporting Material for all details regarding the

choice of values.
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Fig. 1, b–d). Motivated by experimental studies showing
dramatic nanostructural differences between the nuclei of
cells modeling different stages of carcinogenesis (17), we
consider changes in the level of crowding specifically in
the cell nucleus.

Consider, for example, the first reaction in Fig. 1 e,
namely, the nonspecific binding of a TF to DNA, with for-
ward rate constant knst and backward rate knso . Changing
the level of crowding affects these rates in several ways
(1). First, the reaction rates are reduced because of slower
diffusion in a crowded medium. Second, the binding of
TF to DNA is enhanced; these two objects have lower
excluded volume when in contact than they do when apart,
giving rise to an attractive depletion interaction of entropic
origin. Finally, the same entropic interaction induces a
kinetic barrier (see Fig. 1 c) that must be overcome for as-
sociation or dissociation to proceed. Each of these effects
depends on the geometries of the molecules involved,
including the crowders. We model RNAps as spheres of
radius 5.4 nm, TFs as spheres of radius 4.0 nm, DNA as a
cylinder of radius 1 nm, and the crowding agents (crowders)
as spheres of radius 3.0 nm. The crowders represent the pro-
teins found in the nucleus, assuming an average molecular
mass of 67.7 kDa (18); together with a typical partial spe-
cific volume of 0.73 mL/g, this leads to our choice of radius
for the spherical crowders.

The reaction rates are proportional to the diffusion coeffi-
cients of the TF or RNAp (see Eq. 6). We performed BD sim-
ulations of spherical tracer particles of various sizes diffusing
among spherical crowders of radius 3 nm (Fig. 1a, left). These
simulations are described in detail in the SupportingMaterial
(see Fig. 1 b for results). They yield the factor f ðfÞ by which
the diffusion coefficient of a tracer molecule is reduced by the
presence of a volume fraction, f, of crowders:

f ðf; rÞhDðf; rÞ
Dð0; rÞ; (10)

where r is the radius of the diffusing tracer particle (TF or

polymerase). These functions are well fit by cubic polyno-
mials in f, the coefficients of which are given in Table S1
of the Supporting Material.

The influence of crowding on the equilibrium of each
binding reaction is determined by the contribution of crowd-
ing to the free energy of binding,

DFðfÞ ¼ DFf¼ 0 þ DFcrowdðfÞ: (11)

The dissociation constant, KD, of a reaction by definition

varies exponentially with the free energy change. Therefore,

KDðfÞ ¼ KD;f¼ 0 � exp½ þ bDFcrowdðfÞ�: (12)

We calculate the crowding-induced contribution,

DFcrowdðfÞ, to the binding free energy using Monte Carlo
simulations (Fig. 1 a, right; see Supporting Material) in
which all the reactants interact via excluded volume. The
molecular geometries are as described above, although the
DNA (a cylinder of radius 1 nm) is here approximated by
a row of overlapping spheres of radius 1 nm, each a distance
of 1 nm from the next. From these simulations we obtain the
crowder-mediated potential of mean force (PMF) acting be-
tween the reactants; an example is shown for TF-DNA bind-
ing in Fig. 1 c, which shows how DFcrowd, as well as the
crowding-induced free-energy barrier to association,
DFbarrier, are obtained from the PMF. It was convenient to
perform simulations of dissociation rather than association;
the fact that the PMF increases as the TF and DNA are
pulled apart is a manifestation of the attractive nature of
the depletion interaction. When the molecules are in con-
tact, their excluded-volume regions overlap, so that a larger
set of positions is available for the crowders, leading to an
entropic attraction between the TF and the DNA. The
crowding-induced contribution to the free energy of TF
binding to DNA is shown in Fig. S2. Likewise, we have per-
formed simulations to calculate the crowding-induced free
energy differences occurring upon RNAp-D binding. From
the point of view of excluded volume, there is no difference
between binding of a TF to specific or nonspecific DNA.
However, there is an interesting effect of crowding in the
case of specific binding of RNAp. As nonspecifically bound
Biophysical Journal 106(8) 1801–1810



1806 Matsuda et al.
RNAp slides along DNA and comes into contact with a TF,
there is a change in excluded volume, leading to a crowding
dependence of the strength of specific binding of RNAp to
form complex CII. We have also calculated this free-energy
change and the associated free-energy barrier. All crowding-
induced free energies, as well as the barriers to association,
are well fit by polynomial functions of the volume fraction,
f, of crowders (see the Supporting Material).

Based on Eqs. 6 and 10, the full dependence of the rates of
nonspecific binding on crowding are now given by

knst ðfÞ ¼ knst;0 � fTFðfÞ � exp½ � bDFbarrier;TFðfÞ� (13)

knsf ðfÞ ¼ knsf;0 � fRNApðfÞ � exp
�� bDFbarrier;RNApðfÞ

�

(14)

The nonspecific dissociation rates are equal to the associa-
tion rates multiplied by the appropriate equilibrium dissoci-

ation constants (Eq. 7), which themselves depend on f (see
Eq. 12).

knso ðfÞ ¼ Kns
D;TFðfÞ � knst ðfÞ

¼ knso;0 � exp½ þ bDFcrowd;TF�DNAðfÞ� � fTFðfÞ
� exp½ � bDFbarrier;TFðfÞ�

(15)

knsb ðfÞ ¼ Kns
D;RNApðfÞ � knsf ðfÞ
¼ knsb;0 � exp
�þ bDFcrowd;RNAp�DNAðfÞ

�
� fRNApðfÞ � exp

�� bDFbarrier;RNApðfÞ
�

(16)

The microscopic mechanism of facilitated diffusion leads to

a complex crowding dependence on the rates of specific as-
sociation and dissociation. According to Eq. 8, the associa-
tion rate constants for specific binding depend on f through
two sources: the one-dimensional diffusion coefficients, D1,
and the square root of the nonspecific dissociation rates,
themselves highly f-dependent, as shown above. We
make the plausible assumption that crowding slows one-
dimensional diffusion by the same factor as for three-dimen-
sional diffusion. This assumption would be seriously
violated if the diffusing objects were much smaller than
the crowders; rather, they are larger. Thus,

D1;TFðfÞ ¼ D1;TF;0 � fTFðfÞ D1;RNApðfÞ
¼ D1;RNAp;0 � fRNApðfÞ; (17)

ktðfÞ ¼ kt;0 � fTFðfÞ � exp

�
þ 1

bDFcrowd;TF�DNAðfÞ
	

2

� exp

�
� 1

2
bDFbarrier;TFðfÞ

	
;

(18)

and
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kfðfÞ ¼ kf;0 � fRNApðfÞ � exp

�
þ 1

2
bDFcrowd;RNAp�DNAðfÞ

	

� exp

�
� 1

2
bDFbarrier;RNApðfÞ

	

� exp
h
� bDFslide

barrier;RNApðfÞ
i
:

(19)

Here we have introduced the aforementioned free-energy
slide
barrier DFbarrier;RNAp that must be overcome as RNAp slides

along DNA toward TF (that is, toward a CI complex). Note
that the dependence due to the free-energy changes appears
under a square root (hence the factors of 1=2), whereas the
dependence due to the factors f does not. This is because the
f factors influence the overall specific binding rate through
both the one-dimensional diffusion coefficient and the
nonspecific dissociation rate (see Eq. 8).

The rates of nonspecific dissociation are the last ones
whose f dependence we must determine. From Eq. 9,

koðfÞ ¼ ½D�tot �
KD;TFðfÞ
Kns

D;TFðfÞ
� ktðfÞ

¼ ko;0 � fTFðfÞ � exp

�
þ 1

2
bDFcrowd;TF�DNAðfÞ

	

� exp

�
� 1

2
bDFbarrier;TFðfÞ

	
:

(20)

On the other hand, specific binding of RNAp to Complex I
involves bringing RNAp into contact with TF while sliding

along the DNA. This brings about a change in excluded vol-
ume and therefore a crowding-induced free-energy change,
as well as a free-energy barrier.

kbðfÞ ¼ ½D�tot �
KD;RNApðfÞ
Kns

D;RNApðfÞ
� kfðfÞ

¼ kb;0 � exp
h
þ bDFslide

crowd;RNAp�TFðfÞ
i
� fRNApðfÞ

� exp

�
þ 1

2
bDFcrowd;RNAp�DNAðfÞ

	

� exp
h
� bDFslide

barrier;RNAp�TFðfÞ
i

� exp

�
� 1

2
bDFbarrier;RNApðfÞ

	
:

(21)

In view of Eqs. 2 and 3 for steady-state cytoplasmic mRNA

concentration and production rate, respectively, it now re-
mains only to determine the f dependence of the transcrip-
tion rate, km, and the mRNA degradation rate, n. Each of
these processes is of course composed of many complicated
subprocesses, as well as being driven by energy consump-
tion. We assume that the rates of these processes are
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independent of the crowder volume fraction, f, occurring in
the nucleus:

kmðfÞ ¼ km;0 nðfÞ ¼ n0:

In particular, since we are interested in understanding the
effects of changes in the level of crowding specifically in
the nucleus, the lack of f independence of n reflects the
fact that mRNA degradation occurs in the cytoplasm. We
now have the complete f dependence of the reaction rates
needed to calculate the mRNA production level. These de-
pendences involve the effects of slowed diffusion, which
we have determined from BD simulations, as well as the
crowding-induced free-energy changes, which we have
calculated using Monte Carlo simulations. All of these sim-
ulations, as well as their quantitative results, are summa-
rized in the Supporting Material.
RESULTS

Equations 4 and 5 were solved numerically, taking into ac-
count the previous section’s f dependences of the reaction
rates, as well as the parameter values from Table 1. Equation
2 then gives the steady-state cytoplasmic mRNA concentra-
tion (Fig. 2, solid black curve). The cytoplasmic mRNA
level shows a distinctly nonmonotonic dependence on the
volume fraction, f, of crowders in the nucleus, with a
maximum near f ¼ 0:3, a physiologically relevant value.
The figure also shows cytoplasmic mRNA concentrations
as a function of f for larger values (10 nM and 100 nM)
of the dissociation constant for specific binding of RNAp
to CI. This corresponds to weaker binding, resulting in a
lower overall concentration of complex CII and therefore
of mRNA. With weaker RNAp binding, the maximum level
mRNA production occurs at higher volume fractions.

As the volume fraction f of crowders is increased, the
affinities of protein-DNA and protein-protein interactions
are enhanced due to the fact that a bound complex has lower
excluded volume than free reactants. Thus, if the states of
binding of the proteins (TF and RNAp) were at equilibrium,
the concentration of complex CII would increase monoton-
FIGURE 2 Steady-state mRNA concentration as a function of the crow-

der volume fraction, f, in the nucleus. This is shown for three different

values of the dissociation constant KD;RNAp of RNAp binding to CI. To

see this figure in color, go online.
ically with the level of crowding. This is illustrated in
Fig. 3, which shows the steady-state cytoplasmic mRNA
level as a function of f for small values of the transcription
rate km. For comparison these quantities are shown normal-
ized by their values at f ¼ 0. In the limit of very small tran-
scription rates km, we see the monotonic behavior expected
at equilibrium, solely due to the enhancement of binding.
Only at very high volume fractions, near f ¼ 0:5, where
the diffusion coefficients vanish (see Fig. 1 b), does the
mRNA production decrease. This highlights the role of the
driven, irreversible process of transcription, whose rate is
km, in keeping the system out of equilibrium and thus allow-
ing the mRNA production level to depend on the kinetics of
diffusion, which slows down as a function of f. Thus, the
nonmonotonicity of mRNA concentration as a function of
crowder volume fraction, f, is a consequence of the compe-
tition of enhanced binding (essentially an equilibrium
effect) with the slowing down of diffusion.

The extent of this nonmonotonicity can be modulated by
changing various parameters of the system. Fig. 4 shows
that the nonmonotonic dependence on f becomes even
more pronounced if the reactants (TF, RNAp, and O) are
present in smaller concentrations of the order of 3 nM or
0.3 nM, rather than 30 nM. This corresponds to thousands
or hundreds of molecules per nucleus, rather than tens of
thousands. Fig. 5 shows the effects of lowering the reactant
concentrations on the various populations of TFs: free,
nonspecifically bound, specifically bound to promoters
(CI), and bound in transcription-ready complexes (CII).
This is shown for large reactant concentrations (30 nM;
Fig. 5, upper) and for lower concentrations (3 nM; Fig. 5,
lower). In both cases, free TFs make up a very small fraction
of the total; moreover, this fraction decreases as a function
of crowding due to the enhancement of binding. However,
in the case of high concentrations, the fraction of TFs bound
in transcription-ready CII complexes is much larger. For this
reason, the decrease in freely diffusing TFs contributes little
to the concentration of CII (and hence to the mRNA level).
In contrast, in the case of low reactant concentrations
(Fig. 5, lower), the concentration of CII is very small,
FIGURE 3 Effect of varying transcription rate km. The plot shows the

fold change in steady-state mRNA concentration as a function of the crow-

der volume fraction, f, in the nucleus compared to the mRNA concentration

at zero crowding. This quantity is shown for three different values of km. To

see this figure in color, go online.
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FIGURE 4 Fold change in steady-state mRNA concentration as a func-

tion of the crowder volume fraction, f, in the nucleus, compared to the

mRNA concentration at zero crowding. Total concentrations of TF,

RNAp, and O are equal to 30 nM (black solid curve), 3 nM (blue dashed

curve), and 0.3 nm (red dotted curve). The zero-crowding mRNA concen-

trations ½mRNA�cytoð0Þ for these three cases are 555.2 nM, 2.9 nM, and

0.004 nM, respectively. To see this figure in color, go online.
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comparable to that of free TFs. As f increases, the
decreasing level of free TFs therefore contributes more
significantly to the fraction of CII and hence to the cyto-
plasmic mRNA level.
FIGURE 5 Breakdown of total concentration of transcription factors

(TF) into subpopulations of TFs that are free (blue), nonspecifically bound

to DNA (pink), specifically bound (complex CI; cyan), and bound in tran-

scription-read complexes CII (green). This is shown for two different sets

of reactant concentrations. (Upper) Reactant concentrations of 30 nM.

(Lower) Reactant concentrations of 3 nM. Note the different y axis scales

in the two plots. To see this figure in color, go online.
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Fig. 6 shows another way in which the dependence of
mRNA levels on crowding may be modulated, namely, by
changing the strength of the nonspecific protein-DNA asso-
ciation. For the sake of comparison, the cytoplasmic mRNA
concentration is plotted relative to its value at f ¼ 0 for
values of the nonspecific dissociation constant both larger
(10 mM) and smaller (0.1 mM) than that considered previ-
ously. Weaker nonspecific binding (a larger dissociation
constant) gives rise to a much weaker f dependence of
the mRNA output, whereas stronger nonspecific binding
(still much weaker than the specific binding) yields a
much more prominent maximum in the mRNA level as a
function of crowding. Thus, we find that the strength of
this f dependence may be modulated by changes in a variety
of quantities, such as concentrations and binding affinities.
In reality, these might correspond to changes in local phys-
ical conditions surrounding a given gene.
DISCUSSION

In this work, we have used molecular-scale simulations to
incorporate the effects of macromolecular crowding into a
model of gene transcription as a network of chemical reac-
tions. We made explicit and consistent choices of molecular
geometries in determining the effects of crowding on the
diffusion coefficients and the binding free energies of all
molecular species. The dependence of the diffusion con-
stants on the volume fraction, f, of spherical crowders
was determined through BD simulations, whereas the
crowding contributions to the free energies of binding
were calculated from Monte Carlo simulations. These re-
sults were incorporated into expressions for the rates of spe-
cific and nonspecific binding involved in the facilitated
diffusion of DNA-binding proteins (10). The importance
of making a consistent choice of molecular shapes and sizes
can be seen from our estimates of DFcrowd, the contribution
of crowding to the binding free energy, compared to that
used by Morelli et al. (9) in their treatment of crowding ef-
fects on TF binding (see Fig. 7). In effect, they assumed that
the chemical potentials of all molecular species have the
FIGURE 6 Effect of varying the strength of nonspecific protein-DNA

binding is shown in plots of the fold change in steady-state mRNA concen-

tration as a function of the nuclear crowder volume fraction, f, for three

different values of the dissociation constant for nonspecific protein-DNA

binding. To see this figure in color, go online.



FIGURE 7 Crowding dependence of the inverse of the dissociation con-

stant. The black solid curve represents data from Morelli et al. (9), relating

their parameterG to the volume fraction, f, of crowders. For this conversion

we took a specific volume of 0.96 mL/g used by Minton (27) to fit the os-

motic pressure of hemoglobin solutions (35) to a theoretical model for hard

spheres. The blue dotted and red dashed curves give the crowding depen-

dence of inverse dissociation constants for RNAp binding and TF binding,

respectively, as determined from our Monte Carlo simulation data and Eq.

12. To see this figure in color, go online.
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same quantitative dependence on the level of crowding. In a
bimolecular association reaction, this corresponds to a very
large difference in excluded volume between the free and
bound states, equal to the entire excluded volume of a reac-
tant. In contrast, if molecules stick together upon binding,
the change in their excluded volume is small compared to
the total excluded volume of a molecule. The result is that
our crowding-induced free energies are much smaller than
those of Morelli et al. (9), showing the importance of a
consistent treatment of molecular geometries.

Our results show that inmany conditions, the level of cyto-
plasmic mRNA shows a markedly nonmonotonic depen-
dence on the volume fraction, f, of crowders in the
nucleus, frequently reaching a maximum at values near
f ¼ 0:3. This is typical of the levels of crowding typically re-
ported for living cells (19). We have also shown that this
crowding dependence may itself be modulated by several
means. The location of the maximum in the f dependence
may be tuned by changing the binding affinity of RNAp for
bound TF (complex CI), whereas the relative amplitude of
the f dependence can be greatly accentuated by decreasing
the overall concentrations of reactants (Fig. 4) or by
increasing the strength of nonspecific protein-DNA binding.

Morelli et al. (9) also found a nonmonotonic dependence
of mRNA levels on the level of crowding under certain con-
ditions, especially when taking account of nonspecific bind-
ing of polymerase to DNA. Macromolecular crowding has
also been found theoretically to exert a nonmonotonic influ-
ence on the accessible surface area of chromatin (7), as well
as the timescale of loop formation in polymers (20); these
are effects of potential relevance to gene expression levels,
and suggest the intriguing possibility that the level of crowd-
ing could function as a regulatory control mechanism.
Several authors have highlighted the dual influence of
crowding, which promotes molecular association while
slowing diffusion, and the consequent potential existence
of an optimal level of macromolecular crowding (21,22).
Here, we emphasize the role of the irreversible process of
transcription in keeping the system out of equilibrium, al-
lowing its steady-state properties to depend on the diffusion
rates.

There is some evidence that the level of macromolecular
crowding is conserved across different mammalian cell lines
(23). If the level of macromolecular crowding is under evolu-
tionary and homeostatic control, then, conversely, disregula-
tion of crowding may be associated with faulty regulation of
gene expression and with related disease states such as can-
cer. Thus, the link between macromolecular crowding and
transcriptional regulation may shed light on previously
observed nanoscale structural differences between healthy
and precancerous cells (24), since these differences must
be associated with variations in local crowding and concen-
trations, which in turn influence gene expression.

Experiments by Ge et al. (25) have determined the effects
of macromolecular crowding in a cell-free protein expres-
sion system, using polyethylene glycol as well as Ficoll as
the crowding agent. Notably, they found that the level of
mRNA produced by cell-free transcription depends nonmo-
notonically on the concentration of crowding agents.

Recently, Tan et al. (26) studied the crowding dependence
of gene expression in a cell-free system using phage T7
components. Using as crowding agents dextran molecules
of two different sizes, they showed that in the case of small
dextran molecules the gene expression rate is a nonmono-
tonic function of the density of crowders. Interestingly,
they found that at equal weight/volume percent concentra-
tions of crowders, large dextran molecules generate a
much larger crowding effect on gene expression than small
dextran molecules. Although Tan et al. state that this size ef-
fect is consistent with existing theories of crowding, in fact,
considerations of excluded volume predict that at equal
crowder volume fractions, and therefore equal weight/vol-
ume percent, smaller crowders will induce more significant
depletion interactions (4,5,27). The size effect found by Tan
et al. (26) highlights the currently unknown relationship be-
tween theoretical (hard-sphere) and in vitro (dextran, Ficoll,
or polyethylene glycol) models of intracellular crowding.

Notwithstanding the numerous theoretical studies of
macromolecular crowding, the role of the physical environ-
ment of a gene in determining the level of its transcription is
still unclear. With respect to the influence of macromolec-
ular crowding, it will be necessary to go beyond the typical
treatment of crowders as inert hard spheres. Several steps
have been taken in this direction, for example, by consid-
ering crowders with interactions or nonspherical shapes
(28,29). However, we must take seriously the fact that the
role of the crowding agent in the nucleus is played in part
by chromatin rather than by independently mobile mole-
cules. Its physical effects on transcription are perhaps inter-
mediate between those of mobile crowders and the
confinement effects of fixed obstacles (30,31). Also, the
Biophysical Journal 106(8) 1801–1810
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structure of chromatin, which determines the accessibility of
DNA binding sites to TFs, is predicted to be influenced by
macromolecular crowding in a nonmonotonic way (7).
Furthermore, to integrate the physical microenvironments
of genes into a systems-level treatment of gene expression,
one must take into account the spatial compartmentalization
of the nucleus, whose origins may in turn be due to entropic
crowding effects (32,33). Finally, it is tempting to speculate
on the possibility that chromatin territories within the
nucleus regulate gene expression by locally controlling, in
additional to specific genes, concentrations of reactants
and crowders. This local control could lead to gene upregu-
lation or downregulation, according to our predictions, by
the proper choice of environment.
SUPPORTING MATERIAL

One table, eight figures, and a detailed description of the model are avail-

able at http://www.biophysj.org/biophysj/supplemental/S0006-3495(14)
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Macromolecular Crowding as a Regulator of Gene
Transcription

H.Matsuda, G.G.Putzel, V. Backman, and I. Szleifer

1 Numerical estimates of model parameters

Here we determine numerical estimates of the parameters appearing in
the model, namely, the reaction rates and the total concentrations of the
reagents. The rates are determined from the microscopic theory of facili-
tated diffusion developed by Berg and coworkers (1–3). Our estimates are
made assuming dilute conditions (nuclear crowder volume fraction φ = 0).
We do not concern ourselves with the rates of the irreversible reactions fol-
lowing pre-mRNA production, such as splicing and mRNA export, since
they do not influence the steady-state results.

Assuming that non-specific binding of TF and RNAp to DNA is diffusion-
limited, we use the following expression (1–3) for the forward rates k1 and
k3:

knst =
2πDTFl

ln(ξ/2b)
knsf =

2πDRNApl

ln(ξ/2b)
(1)

Here DTF and DRNAp are the diffusion coefficients of TF and RNAp, given
by the Stokes-Einstein formula

DTF =
kBT

6πηrTF
DRNAp =

kBT

6πηrRNAp

We assume a temperature of 37◦ C = 310 K, at which the dynamic viscosity
of water is η = 6.5 × 10−4 J · s/m3. We are modeling the RNA polymerase
as a sphere of radius rRNAp = 5.4 nm and the TF as a sphere of radius
rTF = 4 nm, giving DTF = 8.7×10−11 m2/s and DRNAp = 6.4 × 10−11 m2/s.

The definitions of the variables ξ, b, and l are as follows. ξ is the corre-
lation length for the DNA, that is, the typical distance between neighboring
DNA segments. This correlation length will vary depending on the physical
arrangement of the DNA into loops, chromatin territories, etc. We choose
ξ = 20 nm, keeping in mind that these rates will vary weakly with ξ; we have
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checked that varying ξ in either direction by a factor of 4 does not affect our
qualitative results. Two more lengths appear in Eq. 1: the radius b of the
DNA molecule, about 1 nm, and the length l along the DNA of one base
pair, namely 0.34 nm. Using these values, we have non-specific association
rate constants in the absence of crowding:

knst = 4.9× 104 mM−1s−1 knsf = 3.6× 104 mM−1s−1

The nonspecific dissociation rates follow from the dissociation constants for
non-specific binding, called Kn.s.

D,TF and Kn.s.
D,RNAp. We take these to be both

equal to 1 mM in the absence of crowding, giving

knso = Kn.s.
D,TF · knst = 4.9× 104 s−1 knsb = Kn.s.

D,RNAp · knsf = 3.6× 104 s−1

The association rate constants for specific binding of TF and RNAp are
given by the expression derived by Berg et al. (2) for specific protein-DNA
binding by facilitated diffusion:

kt = V · (D1,TF · knso )1/2/L kf = V · (D1,RNAp · knsb )1/2/L (2)

The factor of V representing the volume of the nucleus does not appear
in the expression of Berg et al. (2). This is due to the fact that in the
reaction equations Eqs. 4 and 5 we take the forward rates to multiply
the product of the volume densities (concentrations) of both reagents, in
such a way that the association rate constants have the usual dimensions
of concentration−1×time−1. We use a typical volume for a HeLa cell of
V = 500µm3 (4, 5). The length L is one-half of the total length of ge-
nomic DNA. A diploid human cell (before S phase) contains 6 × 109 bp.
This corresponds to L = 1 m. The quantities D1,TF and D1,RNAp are the
one-dimensional diffusion coefficients for motion of TF and RNAp along
DNA. Elf et al. (6) report a value of D1 = 0.046µm2/s for a transcription
factor, which is about 100 times smaller than the TF’s three-dimensional
diffusion coefficient. Assuming that the protein follows a helical path wind-
ing around the DNA as has been found experimentally (7), Bagchi et al. (8)
derived a formula for the one-dimensional diffusion coefficient of a protein
non-specifically bound to DNA:

D1 =
kBT

ζtotaltrans

,

where

ζtotaltrans = 6πηR+

(
2π

10l

)2 [
8πηR3 + 6πηR(ROC)2

]
2



Here R is the radius of the spherical protein while ROC is the distance
between the centers of mass of the protein and DNA. The integer 10 appears
because this is the number of base pairs (of length l = 0.34 nm) per turn of
DNA. Using the radii of the TF and RNAp we find

D1,TF =
D3,TF

157.3
D1,RNAp =

D3,RNAp

270.4

Using these numerical values, we obtain

kt = 0.05 nM−1s−1 kf = 0.03 nM−1s−1 (3)

The backward rates for specific binding are determined from (2)

ko
kt

= [D]tot ·
KD,TF

Kns
D,TF

kb
kf

= [D]tot ·
KD,RNAp

Kns
D,RNAp

(4)

The human genome has about 3 ×109 bp. In a diploid cell, there are there-
fore about 6 ×109 ≈ 10−14 moles of base pairs in a volume of about 500µm3

= 5 × 10−13 L. This gives a concentration of [D]tot = 0.02 M= 20 mM.
Protein-DNA dissociation constants have been found to range widely, with
reported values for transcription factor-DNA binding ranging from micro-
molar to picomolar (9, 10) or even stronger (11), with nanomolar values
being common. We have been using dissociation constants of 1 nM for spe-
cific binding of TF or RNAp. The resulting values of the dissociation rates
are

ko = (0.05 nM−1s−1) · (20 mM) · 1 nM

1 mM
= 1.0 s−1 (5)

kb = (0.03 nM−1s−1) · (20 mM) · 1 nM

1 mM
= 0.6 s−1 (6)

The inverse of the rate km represents the time taken by the polymerase
(once already bound to the promoter) to initiate transcription, as well as to
produce the pre-mRNA transcript. An average initiation time of one minute
(12) gives

km,0 = 0.02 s−1

In the model, the step in which nuclear mRNA becomes cytoplasmic mRNA
(with rate γ) includes nucleocytoplasmic diffusion to a nuclear pore in addi-
tion to directed transport across the nuclear pore. The transport and export
of mRNAs has been studied at the single-molecule level in Drosophila by
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Mor et al. (13) who report that nucleocytoplasmic diffusion to a nuclear pore
complex (NPC) occurs on a timescale of 5–40 minutes, while directed trans-
port across the NPC occurs much more rapidly. Assuming a mean time scale
of 20 minutes for an mRNA to exit the nucleus from the site of splicing, we
have

γ0 = 8× 10−4 s−1

The rate of degradation of mRNA in the cytoplasm varies from one tran-
script to another(14, 15); we use a typical time scale of about one hour to
arrive at

ν0 = 3× 10−4 s−1

We now must estimate the total concentration (bound as well as free)
of promoters, RNA polymerases, and transcription factors. Here a question
arises as to how to interpret our model: are we describing a single gene and
its specific transcription factors, as did Morelli et al.(16), or rather describing
in a coarse-grained way all of the genes at once? In the former case the
concentration of promoters in a diploid cell is 2/V where V is the volume
of the nucleus, while in the latter case we must take into account the total
number of active genes. We choose to include all of the active genes at once,
to include the possibility that changes in binding affinities (for example, as
the level of crowding is changes) for such a significant number of genes might
affect the concentration of free RNAp or TF. Experiments in HeLa cells (17)
suggest a number of RNAp molecules on the order of 104, with numbers of
general transcription factors (such as TBP) of the same order of magnitude.
Likewise, in a genome with tens of thousands of genes the number of binding
sites O is of the same magnitude. Given that the nuclei of these cells have
volumes (4, 5) on the order of Vnuc = 500µm3 = 5× 10−13 L we have

[TF]tot ≈ [RNAp]tot ≈ [O]tot ≈
104

Vnuc
≈ 30 nM

These are clearly rough estimates, and for many reasons we should consider
a wide range of possible concentrations. The distributions of molecules in
the nucleus involved in transcription are non-uniform, and we might choose
to interpret our concentrations as the local values at the site of transcrip-
tion (for example, in transcription factories), since the local concentrations
are the only relevant ones for the binding reactions. Furthermore, many
promoter binding sites will be bound by nucleosomes and inaccessible to
DNA-binding proteins, so that the concentration of “active” genes may be
reduced compared to the total number of genes.
4



2 Diffusion Coefficients: Brownian Dynamics
simulations

To find the crowding dependence of the diffusion coefficients of TF and
RNAp in our model, we performed Brownian Dynamics (BD) simulations of
spherical tracer particles of various radii diffusing among spherical crowders
of radius 3 nm. These simulations were carried out using the GROMACS
package (18). The purely repulsive interaction potential between two spher-
ical particles (either crowders or tracers) of radii r1 and r2 was

U(r) = 4ε

(
σ

x+ σ − r1 − r2

)12

, (7)

with ε = 1 kJ/mol and σ = 1 nm. According to the Stokes formula, the fric-
tion coefficient γ of a sphere is proportional to its radius. In our simulations
we have used drag coefficients of γ = r · 30 amu/ps = r · 30 kJ · ps/mol · nm2

where r is the radius of a molecule (crowder or tracer). Our simulations were
performed at a temperature of 310 K, although the results of the simula-
tions (diffusion coefficients normalized by their crowder-free values) should
be nearly independent of temperature since our interaction potentials are
nearly hard-sphere potentials.

For each tracer particle radius we performed simulations at many differ-
ent levels of crowding by including different numbers of crowders within a
(63 nm)3 simulation box. The number of 3 nm radius crowders in the box
varied from 30 to 1140 in steps of 30, corresponding to volume fractions up
to about φ = 0.5.

From each simulation trajectory the diffusion coefficient of the tracer
particle was determined as one sixth of the average slope of the particle’s
mean-square displacement over the time interval from t = 5 ns to t = 20 ns.
The diffusion coefficients were then normalized to their values in the absence
of crowding. The resulting normalized diffusion coefficients are shown in
Fig. 1. These sets of simulations were performed for tracer particles of radii
2,4,5, and 6 nm; for tracer particle radius of 3 nm we used simulations with
crowders only. The normalized diffusion coefficients were well fit by a cubic
polynomial in φ, namely

D(φ, r)

D(0, r)
≡ f(φ, r) = 1 + α

(
r

rcrowd

)
φ+ β

(
r

rcrowd

)
φ2 + γ

(
r

rcrowd

)
φ3, (8)

here α, β, and γ are fitting parameters, depending only on the ratio of the
tracer particle radius to the crowder radius, which are given in Table 1. For
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r/rcrowd α β γ

2/3 -1.41 0.40 -2.23
3/3 -1.95 1.10 -1.91

4/3 -2.83 3.87 -4.11
5/3 -3.57 6.46 -6.45
6/3 -4.39 9.69 -9.76

Table 1: Coefficients in Eqn. 8 for a cubic fit to f(φ).

the model discussed in the article, we need normalized diffusion coefficients
for tracer particles of radius 4 and 5.4 nm, representing the transcription
factor and the RNA polymerase, respectively. For the transcription factor,
we use Eqn. 8 above with the fitting parameters for r = 4 nm. For the
RNAp, we did not have simulations of tracers with radius precisely equal to
5.4 nm, so for the polymerase’s diffusion coefficient we have used Eqn. 8 with
fitting parameters obtained by interpolating the data of Table 1: namely
α = −3.89, β = 7.72, and γ = −7.72.
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Figure 1: The factor f by which the diffusion coefficient of a tracer molecule
is decreased by the presence of a volume fraction φ of crowders (radius 3
nm). This is shown for various radii of tracer molecules: 2, 3, 4, 5, and 6 nm
(top to bottom). Brownian Dynamics simulations are shown with dots; the
curves are polynomial fits given by Eq. 8 with parameters given in Table 1.
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3 Crowding-mediated interactions: Monte Carlo
simulations

To calculate the crowding-induced contribution ∆Fcrowd(φ) to the binding
free energies, as well as the crowding-induced free energy barrier to associ-
ation ∆Fbarrier(φ), we have performed Monte Carlo simulations, which we
discuss now in the context of TF binding to DNA; the case of RNAp bind-
ing to DNA is similar. In each simulation, the cubic simulation box of size
(50 nm)3 contains the TF (a sphere of radius 4 nm) as well as the DNA
(a row of 50 overlapping spheres of radius 1 nm, spaced 1 nm apart, ap-
proximating a rod of diameter 2 nm) and some number Ncrowd of crowders.
The crowders interact with each other, and with the spheres making up the
TF and DNA, as impenetrable hard spheres. The Monte Carlo moves are
random small translations of randomly selected crowders. These moves are
rejected if they cause any overlap between the crowders or between crowders
and the TF or DNA, and accepted otherwise. Every 10 MC moves, a test
move is considered which increases the distance between the TF and DNA
by 0.1 nm (this distance is the reaction coordinate). Likewise, a test move
is also considered which decreases this distance by 0.1 nm. Like the MC
moves, the test moves are accepted or rejected based on whether they lead
to overlaps between crowders and TF or DNA. Over the course of millions
of MC moves, this gives a numerical estimate of the probability pforward of
accepting a move that increases the reaction coordinate, as well as the prob-
ability pbackward of accepting the reverse move. The free energy change in
increasing the TF-DNA distance by ∆x = 0.1 nm is then given by (19)

β∆Fcrowd(x→ x+ ∆x) = ln

[
pbackward
pforward

]
, (9)

where β = 1/kBT . From the free energy changes for each small step of size
∆x, we map out the potential of mean force (PMF) between the TF and
the DNA (see Fig. 1c of the article). As shown in this figure, the PMF
reaches a plateau value which is the free energy required to separate the
TF from the DNA against the depletion force caused by the crowders, or
equivalently minus the crowder contribution to the free energy of binding.
The difference between the maximum of the PMF and the plateau value gives
the crowder-mediated free energy barrier ∆Fbarrier to association. These sets
of simulations were performed for numbers of crowders between 20 and 440
in steps of 20, corresponding to nuclear crowder volume fractions from φ =
0.018 to 0.4. The resulting free energies and free energy barriers are plotted
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in Fig. 2 and Fig. 3 respectively. Likewise, the crowding-induced free energy
difference for pulling RNAp away from DNA is shown in Fig. 4 and the
corresponding free energy barriers in Fig. 5. Finally, the change in excluded
volume as the RNAp slides into contact with the TF along the DNA (forming
the complex CII) entails a crowding-induced free energy change, which we
have also calculated. This is shown in Fig. 6, with the corresponding free
energy barrier plotted in Fig. 7. The free energies determined from the
Monte Carlo simulations were well fit by the following expressions.

−β∆Fcrowd,TF(φ) = 3.2φ+ 2.0φ2 − β∆Fbarrier,TF(φ) = 2.5φ2

−β∆Fcrowd,RNAp(φ) = 3.7φ+ 2.7φ2 − β∆Fbarrier,RNAp(φ) = 3.1φ2

−β∆F slide
crowd,RNAp-TF(φ) = 2.6φ+ 4.6φ2 − β∆F slide

barrier,RNAp-TF(φ) = 0.1φ2 + 9.2φ3

The Monte Carlo simulations were implemented using a C program whose
code is available from the authors upon request.
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Figure 2: Crowding induced free energy change associated with TF-DNA
binding. Symbols show the results of Monte Carlo simulations with error
bars given by the standard error of four independent simulations. The solid
line shows the polynomial fit −β∆Fcrowd,TF(φ) = 3.2φ+2.0φ2 used in com-
puting the results in the paper. The dashed line shows the linear approxi-
mation −β∆Fcrowd,TF(φ) = 3.2φ that can be obtained by exact integration
of excluded volume overlaps.
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Figure 3: Crowding induced free energy barrier associated with TF-DNA
binding. Symbols show the results of Monte Carlo simulations.The solid line
shows the polynomial fit −β∆Fbarrier,TF(φ) = 2.5φ2 used in computing the
results in the paper.
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Figure 4: Crowding induced free energy change associated with RNAp-
DNA binding. Symbols show the results of Monte Carlo simulations with
error bars given by the standard error of ten independent simulations. The
solid line shows the polynomial fit −β∆Fcrowd,RNAp(φ) = 3.7φ+ 2.7φ2 used
in computing the results in the paper. The dashed line shows the linear
approximation −β∆Fcrowd,RNAp(φ) = 3.7φ that can be obtained by exact
integration of excluded volume overlaps.
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Figure 5: Crowding induced free energy barrier associated with RNAp-DNA
binding. Symbols show the results of Monte Carlo simulations.The solid line
shows the polynomial fit −β∆Fbarrier,TF(φ) = 3.1φ2 used in computing the
results in the paper.

11



Nuclear crowder volume fraction �

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

0.1 0.2 0.3 0.4 0.5

0.5

1.0

1.5

2.0

2.5

�
�
�
F

s
l
i
d
e

c
r
o
w
d

Figure 6: Crowding induced free energy change associated with RNAp “slid-
ing” toward TF along DNA, forming complex CII. Symbols show the re-
sults of Monte Carlo simulations with error bars given by the standard
error of ten independent simulations. The solid line shows the polyno-
mial fit −β∆F slide

crowd,RNAp-TF(φ) = 2.6φ + 4.6φ2 used in computing the
results in the paper. The dashed line shows the linear approximation
−β∆F slide

crowd,RNAp-TF(φ) = 2.6φ that can be obtained by exact integration
of excluded volume overlaps.
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Figure 7: Crowding induced free energy barrier associated with RNAp “slid-
ing” toward TF along DNA, forming complex CII. Symbols show the re-
sults of Monte Carlo simulations. The solid line shows the polynomial fit
−β∆F slide

barrier,RNAp-TF(φ) = 0.1φ2 + 9.2φ3 used in computing the results in
the paper.
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4 Effects of Crowder Polydispersity

In order to ensure that our results are not dependent on the strict mono-
dispersity of crowders in the model, we have performed some Monte Carlo
simulations to calculate the crowding induced free energy change upon RNAp
binding to DNA, using a small level of crowder polydispersity. Specifically,
we used crowders with a distribution of three sizes: small (2.7 nm), medium
(3.0 nm), and large (3.3 nm). Half of the crowders were of medium size and
25% were small and large. Figure 8 shows that this poly-dispersity does not
significantly affect the results.
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Figure 8: Effects of crowder polydispersity on the crowding induced free
energy change upon RNAp binding to DNA.
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