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ABSTRACT A method for fitting sedimentation velocity experiments using whole boundary Lamm equation solutions is pre-
sented. The method, termed parametrically constrained spectrum analysis (PCSA), provides an optimized approach for simul-
taneously modeling heterogeneity in size and anisotropy of macromolecular mixtures. The solutions produced by PCSA are
particularly useful for modeling polymerizing systems, where a single-valued relationship exists between the molar mass of
the growing polymer chain and its corresponding anisotropy. The PCSA uses functional constraints to identify this relationship,
and unlike other multidimensional grid methods, assures that only a single molar mass can be associated with a given anisotropy
measurement. A description of the PCSA algorithm is presented, as well as several experimental and simulated examples that
illustrate its utility and capabilities. The performance advantages of the PCSAmethod in comparison to other methods are docu-
mented. The method has been added to the UltraScan-III software suite, which is available for free download from http://www.
ultrascan.uthscsa.edu.
INTRODUCTION
Analytical ultracentrifugation is an important method for
studying macromolecular systems in the solution phase.
This technique can be used to obtain detailed information
about dynamic interactions of macromolecules and to
describe the composition of mixtures, including partial con-
centration of its constituents as well as their molar mass and
anisotropy distributions. In recent years, in part due to the
availability of fast and low-cost computers, significant
advances have been made in the sophistication of data anal-
ysis methods and software for the study of sedimentation
velocity (SV) experiments. SVexperiments can be modeled
by finite-element solutions of the Lamm equation (1), but
such solutions are computationally considerably more
complex than exponential functions used for sedimentation
equilibrium experiments. However, the computational
complexity incurred when analyzing SV experiments is
offset by the significant advantage in information that SV
experiments offer, especially with respect to resolution
and precision (2).

Unlike in equilibrium experiments, where net flow ceases
in the ultracentrifuge cell, the sedimentation and diffusion
transport in SV experiments incurs frictional effects arising
from the interaction of the macromolecules with the sur-
rounding solvent. These frictional effects can be measured,
and as long as the partial specific volumes (PSV) of the sol-
utes are known, they can be conveniently expressed in terms
of the frictional ratio, f/f0, or anisotropy. This quantity re-
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lates the frictional coefficient f of each solute to the
frictional coefficient of a hypothetical sphere that has the
same density and volume as the solute. If the molecule is
spherical, these coefficients are identical, and the frictional
ratio equals unity. For molecules with increasing nonglobu-
larity, the frictional ratio increases to values of 1.2–1.5 for
folded proteins, up to 2.5 for intrinsically disordered and
denatured proteins, and to much larger values for fibrils,
elongated polymer chains, and linear nucleic acids.

In addition, the sedimentation and diffusion coefficients,
together with the PSV, can be used to infer the molar
mass distributions of the solutes. A complete description
of the molar mass and anisotropy of each distinct solute
in the mixture is therefore possible, provided the solutes
are observed with a sufficient signal/noise. It should be
noted that we refer to the PSV and frictional ratio of the
sedimenting particle observed in the analytical ultracentri-
fuge, which includes hydration. Previously, we described
the two-dimensional spectrum analysis (2DSA) (3,4),
which solves the problem of modeling the sedimentation
coefficient and anisotropy distributions of heterogeneous
mixtures for the general case by decomposing the domain
of possible solutes into a high resolution two-dimensional
grid of sedimentation and diffusion coefficient pairs. In
this fitting method, a Lamm equation (1) solution is simu-
lated for each sedimentation and diffusion coefficient pair,
and a linear combination of all simulated solutions is fitted
by a nonnegatively constrained least-squares (NNLS) algo-
rithm (5) to the experimental data. In this linear fit, the so-
lution is represented by positive, nonzero coefficients of
each term in the linear combination.
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In the 2DSA, the high-resolution grid used includes many
more solutes than can be resolved by the technique, and
therefore the solution is subject to considerable degeneracy,
and especially for noisy data, produces false positives, albeit
with low concentrations. This problem can be addressed by
performing a parsimonious regularization on the result using
genetic algorithms (6). However, the refinement of the
2DSA solution by genetic algorithms using a parsimonious
regularization approach is only appropriate for paucidis-
perse solute systems. For systems where broad heterogene-
ity is evident, the resolution afforded by sedimentation
velocity experiments is insufficient to identify individual
solutes in the mixture by genetic algorithms, and a 2DSA
Monte Carlo approach is more appropriate. Monte Carlo
analysis will attenuate noise contributions, and regularize
the final solution (7). Although this method can provide
high-resolution detail, we will show that for certain poly-
merizing systems, additional constraints imposed on the
grid will reduce the degeneracy without decreasing the qual-
ity of the fit, and avoid any ambiguity that may result from
the overdetermined grid, and thus improve the information
content.
THEORY AND ALGORITHM

A constrained grid method for the characterization of
macromolecular mixtures that are heterogeneous both in
size and anisotropy was implemented in the software
UltraScan-III (The University of Texas Health Science
Center at San Antonio (UTHSCA), San Antonio, TX).
The method, termed parametrically constrained spectrum
analysis (PCSA), discretizes the sedimentation and diffu-
sion coefficients along an arbitrary function f/f0 ¼ F(s)
over a space S defined by user-specified limits smin, smax,
f/f0,min, and f/f0,max. There is no limitation on the functional
form of F, as long as it is single-valued, which constitutes
the constraint. The functional form of F should also describe
the distribution characteristics of the solutes in the system to
be fitted. Multiple functional forms can be tested to identify
the most appropriate function. Analogous to the 2DSA
method, each discretized point along the curve described
by F(s) gives rise to a parameter pair consisting of a sedi-
mentation coefficient and a frictional ratio. A corresponding
diffusion coefficient D is obtained from the expression
shown as

D ¼ RT

"
Nk9hp

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2sknh

1� nr

s #�1

; (1)

where R is the universal gas constant, T is the temperature of

the experiment, N is Avogadro’s number, k is the frictional
ratio f/f0, h is the viscosity, r is the density of the solvent,
and n denotes the PSV. The corresponding s and D values
from each point in the discretization of F are used to simu-
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late an entire experiment for each solute described by F,
generating the inputs for a linear system shown as

Ax ¼ b; (2)

where A is the matrix containing all simulated data, x is the
concentration vector to be solved by NNLS minimization,

and b is the vector containing the experimental data. The
simulations are generated with the adaptive space-time
finite-element solution of the Lamm equation as described
earlier in Cao and Demeler (8,9). After NNLS optimization,
as represented in Eq. 3, a sparse linear combination of
Lamm equations is obtained, and the final solution is
described by Eq. 4,

minkAx � bk2 : xR0; (3)

Cðr; tÞ ¼
Xn
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where C represents the concentration of the fitted solution

for radius r and scan t, ci is the fitted partial concentration
(always a positive, nonzero value) for simulated component
i, L is the Lamm equation solution for component i, and h
represents a baseline offset incorporating time- and radially
invariant noise components.

Because a single function F does not cover the entire
space S that should be examined to capture all possible sig-
nals needed to represent the experimental system within the
constraint of the functional form, a parameterization of the
functional form is now required. For example, the functional
form implemented in the C(s) method (10) uses a horizontal
line within an f/f0 versus s grid to represent all components
in the experimental mixture. The parameterization of this
functional form consists of varying the intercept of the hor-
izontal line. Because the horizontal line in C(s) is con-
strained to a single f/f0 value, heterogeneity in f/f0 cannot
be identified. However, a weight average frictional coeffi-
cient can still be obtained by evaluating multiple horizontal
lines with different intercepts and finding the line giving rise
to the lowest root mean-square deviation (RMSD). But even
if a straight line is adopted as the functional form, the lim-
itation of a single frictional ratio in the C(s) method can be
overcome by not restricting the solutions to a horizontal
line, but instead varying not only the intercept, but also
the slope. In this article, we refer to the C(s) method by
its horizontal-line parameterization as PCSA-HL.

To address the general case of variable frictional ratios,
we have implemented an analogous approach by performing
a grid search over a k-vector of parameters p ¼ [p1,p2,...,pk]
of a functional form F(s,p) where the functional form itself
can be varied. For each functional form F and vector of
parameters p, we proceed as follows:

Each point of the discretization of F(s,p) over the user-
specified search space S provides an s and D pair as input
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to the Lamm equation. This populates the columns of a ma-
trix of simulated data AF(s,p), which is subsequently fit to the
experimental data b, providing an RMSD goodness-of-fit for
each chosen F, p. The user then selects the discretization in-
terval for p such that the variants of the functional form suf-
ficiently cover the search space S. In these terms, the goal of
the PCSA is to perform the optimization shown in

minkAFðs;pÞx � bk2 : F; p˛p-grid; xR0: (5)

For example, when the functional form of F is represented
FIGURE 1 Low-resolution grid parameterizations using 10 grid varia-

tions for a two-dimensional grid covering the sedimentation coefficient

range from 1 to 10 S and the anisotropy range for frictional ratios from 1

to 5 given by (A) straight-line models; (B) increasing sigmoid models;

and (C) decreasing sigmoid models. Higher resolution is achieved by either

iteratively increasing the resolution in a subsection of the grid, or by using

denser grids.
by a straight line, then k ¼ 2 and the parameters to be varied
are the slope (p1) and the intercept (p2) of the straight line. In
this case, the p-grid to be searched is constructed to ensure
that the variations of p1 and p2 are chosen so that F(s,p)
achieves a uniform coverage of the entire search space S.
Other functional forms include, but are not limited to expo-
nential growth or decay and increasing or decreasing sig-
moids. An example of a low-resolution discretization with
the functional form of a straight line (SL) is shown in
Fig. 1 A, and for an increasing and decreasing sigmoid in
Fig. 1, B and C, respectively. A higher resolution discretiza-
tion is shown in Fig. 2 A. Each element of the p-grid defines
an F(s,p) value, whose discretization produces a different
linear combination of Lamm equations that populate the
columns of matrix A.

Each linear combination is solved according to Eq. 3, and
all solutions are then ranked by RMSD. Because the calcu-
lation of any one solution is independent of another, these
calculations can be performed in parallel. UltraScan-III
takes advantage of multicore architectures to perform these
calculations in multiple threads, allowing high-resolution
grids to be calculated in a matter of seconds or minutes, de-
pending on grid resolution and the number of cores avail-
able. A detailed performance analysis for a dataset with
20,000 datapoints is presented in Table S1 in the Supporting
Material. After obtaining the optimal RMSD solution
from the examined p-grid, the solution can be improved
further either by refinement near the best-fit model
(BFM), or by nonlinear least-squares optimization of p
with the Levenberg-Marquardt (LM) algorithm (11,12).

To assist with convergence, the LM is initialized with the
best-fit p found in the grid search, producing the final BFM.
The BFM contains a discrete distribution of solutes that all
fall on the curve described by the functional form. If LM is
not used, the quality of the fit obtained at this point depends,
among other factors, on the size of the discretization incre-
ments Dpj. The larger the increments, the lower the resolu-
tion. Because LM depends on a serial, iterative function
evaluation, it may be comparatively inefficient on a
multicore architecture, and an alternative grid refinement
approach, which can be performed in parallel, may be faster.
To improve the BFM using grid refinement, it is recommen-
ded to construct a new grid with higher resolution near the
BFM by using smaller discretization increments Dpj. Grid
Biophysical Journal 106(8) 1741–1750



FIGURE 2 Comparison between different analysis methods applied to the experimental data listed in Table 2. (A) RMSD heat map for a high-resolution

grid using the straight-line (SL) PCSA. (Red lines) Solutions with the lowest RMSD; (purple lines) poor selections for this system. (The BFM is the red line

that intercepts the two white circles.) (White circles) Most prominent solutes found for this system in the BFM. (B) Genetic algorithm Monte Carlo analysis

(red) overlaid with the straight-line PCSAMonte Carlo analysis (green). The major components are essentially congruent, exhibiting significant difference in

anisotropy. The PCSA fit constrains the solution to a single point, while the genetic algorithm analysis is multivalued for the frictional ratio of the larger

species. (C) PCSA horizontal-line parameterization (PCSA-HL) for the same data as analyzed in panel B. All fits have the same frictional ratio average

of 7.20, but are shown offset for clarity: unregularized (top), TR with L-curve criterion a-value¼ 0.51 (center), 100-iteration Monte Carlo analysis (bottom).

For all fits, the smaller species is significantly broadened in the s-domain through introduction of false positives as explained in panels D and E. One-dimen-

sional histogram plots for the same data are shown for each plot in Fig. S1 in the Supporting Material. (D) Boundary shapes of two solutes with identical

s-values of 5.07 s (equal to the smaller DNA species shown in panel B), but different f/f0; (blue) f/f0 ¼ 7.20, the average value obtained in the PCSA-HL, and

(black) f/f0 ¼ 3.95, which is equal to the true f/f0 value of the smaller DNA species. (Red curve) Fit of the (black) curve obtained by PCSA-HL when f/f0 is

constrained to 7.20. (The red curve clearly has a much smaller deviation from the black curve than the blue curve, because the red curve satisfies the least-

squares condition and produces a lower RMSD at the expense of introducing multiple artifactual solutes.) (E) Solutes obtained in the PCSA-HL fit of the

(black) curve shown in panel D. (Black/blue position) The true single species position and partial concentration. All red bars, corresponding to the unregu-

larized fit shown in the red curve in panel D, represent incorrect sedimentation coefficients, frictional ratios, and partial concentrations. This condition is

encountered whenever a mixture heterogeneous in frictional ratio is fitted with the PCSA-HL or the C(s) method. As shown in panel B, this problem is

completely eliminated by the PCSA-SL solution.
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refinement proceeds by creating a new grid with smaller
discretization intervals Dpj covering the reduced range be-
tween the two p-grid points from the previous p-grid that
are adjacent on either side of the BFM. The grid refinement
process can be repeated until there is no further improve-
ment in RMSD.

In our experience, this condition does not require more
than three grid-refinement iterations. It is important to
note that the grid construction employed in UltraScan
is optimized for the sedimentation coefficient range on the
interval (smin, smax) selected by the user. This means that
if either smin or smax does not include, or instead exceeds,
the actual sedimentation coefficient range present in the
experiment, the optimal solution may not be found. The
assumption is made that the entire s-value range must be
represented in the experimental data, or the coverage of
the sedimentation and diffusion coefficient range may be
incomplete. Hence, it is important that the user selects the
Biophysical Journal 106(8) 1741–1750
correct range for the sedimentation coefficient to assure
optimal coverage of the parameter space. There are tools
in UltraScan that assist the user in finding an appropriate
s-value range.

A general approach is to preprocess experimental data
with the 2DSA method (4), fitting both time- and radially
invariant noise components, as well as the meniscus position
as described in Demeler (13). After that, an enhanced van
Holde-Weischet analysis (14) will provide a reliable estimate
for the appropriate sedimentation coefficient range to be used
for the PCSAmethod. The final result will provide a heatmap
of RMSD values for all solutions produced from the discre-
tization of the p-grid. Such a heat map is shown in Fig. 2 A.
ERROR ANALYSIS

Once a BFM has been found, the solution could include
false-positive contributions from remaining stochastic noise.
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A 0th-order Tikhonov regularization (TR) method (15) is
implemented in UltraScan that smoothes the BFM. TR
proceeds by minimizing as shown in Eq. 4 with an additional
term containing the magnitude of x as shown in Eq. 6.
The regularization parameter a determines the magnitude
of the regularization, and a value of zero is equivalent to
the unregularized NNLS solution, as

minkAx � bk2 þ a2kxk2 : xR 0: (6)

Choosing an appropriate value of a requires a tradeoff be-

tween goodness-of-fit and the smoothness of the solution.
One method for optimizing the value of a is the L-curve
(16) criterion. UltraScan contains a feature to automatically
find the elbow of the L-curve and subsequently set the most
appropriate value of a (see Fig. 3). Whereas Tikhonov reg-
ularization will smooth out minor contributions to the
solution, and provide a probability distribution for the
possible error spread, a more rigorous approach to the deter-
mination of confidence intervals is a statistical evaluation of
a sufficient number of repeat experiments. Although such an
approach is generally not practical, Monte Carlo analysis
offers nearly identical results, and can be applied when
the original optimizations result in random residuals. In
our implementation, the random residuals sr,t are used in a
Box-Muller transform (17) to generate new pseudo-random
residuals that are added to the BFM, generating a new data
FIGURE 3 Regularization parameter a determination using the L-curve

criterion. The elbow of the curve represents the a-value for the best

compromise between variance and norm of the solution. It is found by

graphical means through extrapolation from the last five points from either

end of the curve. The closest point from the intercept to the curve represents

the best-fit a-value.
set whose noise distribution and noise magnitude at every
point is equivalent, though not identical, to the one observed
in the original data set. Our Monte Carlo implementation in
UltraScan is further described in Demeler and Brookes (7).
Because all Monte Carlo iterations are independent of each
other, in UltraScan these calculations can be performed in
parallel threads, taking advantage of modern multicore
architectures. Experimental comparisons between Tikhonov
regularization and Monte Carlo analysis are shown for
selected samples in the experimental section.
MATERIALS AND METHODS

Sedimentation velocity experiments were performed at the Center for

Analytical Ultracentrifugation for Macromolecular Assemblies (CAUMA)

at the University of Texas Health Science Center at San Antonio

(UTHSCSA). All experiments were performed in UV intensity mode, either

at 260 or 280 nm in phosphate or TRIS buffers, as indicated. Data were con-

verted to pseudo-absorbance data before fitting, and all RMSD values are

reported in absorbance units. All experiments were performed with Epon

two-channel centerpieces in an Optima XLI (Beckman Coulter, Brea,

CA) at 20�C. Hydrodynamic corrections and partial specific volumes

were estimated with the relevant modules for analytes, buffers, and solu-

tions integrated in the software UltraScan-III (UltraScan Project,

UTHSCSA, TX). The analysis was performed with UltraScan-III, ver.

2.0, Rel. 1651 (18) according to methods outlined in Demeler (13), and us-

ing the PCSA module. All 2DSA, genetic algorithms (GA), and 2DSA/GA

Monte Carlo calculations were performed on the XSEDE infrastructure

through the UltraScan Science Gateway (19), using the Alamo

(UTHSCSA), Lonestar or Stampede (Texas Advanced Computing Center),

or Trestles (San Diego Supercomputing Center) clusters. PCSA calcula-

tions are sufficiently fast that they can be performed on a modern laptop.

Plasmid pPOL-1-208-12 DNA (20) was prepared as described in

Maniatis et al. (21), and depending on fragment sizes needed, either fully

or partially digested with Ava-I, Pst-I, or Awl-I. In the experiment shown

later in Fig. 7, desired fragments from the partial digest were isolated by

preparative 1% agarose gel electrophoresis and mixed at approximately

equal proportion (based on absorbance units) with the full plasmid digests.

Our plasmid purification did not include a CsCl buoyant density gradient

step to avoid introduction of ethidium bromide. This leaves ~15% of the

total absorbance due to chromosomal DNA in the sample, which contrib-

utes to a negligible background after digestion. All DNA samples were

purified by HPLC using an GE HiTrap Q HP anion exchange column

(GE Healthcare Life Sciences, Pittsburgh, PA), and using a 10 mM

NaPO4 buffer, pH 7.5, with a NaCl gradient ranging from 0 to 1.2 M.

The desired DNA fragments eluted at ~660 mM NaCl concentration.

HPLC-purified DNA solutions were dialyzed against 1.7 mM sodium phos-

phate buffer, pH 7.5. Bovine brain clathrin was purified from bovine brain

clathrin-coated vesicles as described previously in Morgan et al. (22).

Clathrin cages were prepared by dialysis of 0.8 mg/mL bovine brain cla-

thrin into 10 mM Mes pH 6.2, 2 mM CaCl2 for 7 h.
SIMULATION SETTINGS

All fibrinogen simulations were calculated with a Lamm
equation solution based on the finite-element method pro-
posed by Claverie et al. (23) with a constant time grid and
a regular radial grid containing 10,000 radial points. The
simulated solution was interpolated onto a radial grid with
0.001 cm spacing. The same solution was used earlier as
a reference solution for determining the accuracy of the
Biophysical Journal 106(8) 1741–1750
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ASTFEM solution (8,9). The simulations of the testing data
were performed at 1.0 absorbance units with 0.5% random
Gaussian distributed noise added, which is equivalent to
the noise typically observed in a well-tuned XLA centrifuge
(Beckman Coulter) at 280 nm when optical density is <1.0
absorbance units. Each experiment was simulated with 50
equally spaced scans, such that the moving boundary
spanned the entire solution column. The meniscus position
was fixed at 5.8 cm and the bottom of the cell position
was held fixed at 7.2 cm for all simulations. The fibrinogen
oligomer mixture was simulated at 20, 40, and 60 krpm
(with u2t at the end of the run ranging between 1.89 �
1011–2.78 � 1011). Simulation of rotor acceleration was
applied during the finite-element calculation for each data
set. Density and viscosity of the solution was assumed to
be that of water at 20�C (0.998234 g/mL, 1.001940 cp).
FIGURE 4 Sedimentation velocity analysis of polymerizing clathrin

triskelia in a clathrin assembly reaction. (A) Two-dimensional spectrum

analysis. At low sedimentation coefficients, highly anisotropic triskelia

monomers and dimers, as well as incompletely formed clathrin cage frag-

ments are apparent, whereas at higher sedimentation coefficients the

more spherical, fully formed cages are apparent. (B) Parametrically con-

strained spectrum analysis of the same data as shown in panel A using a

decreasing sigmoidal functional form. The frictional ratio versus sedimen-

tation coefficient distribution observed mirrors the information observed in

the 2DSA analysis, but all values are constrained to a single sedimentation-

frictional ratio pair. (C) Experimental data (black) overlaid with the fitted

PCSA solution (red) for the clathrin assembly reaction mixture. The data

demonstrate a near-perfect fit. The PCSA analysis resulted in a BFM

with an RMSD of 5.469 � 10�3, whereas the unconstrained 2DSA-Monte

Carlo analysis resulted in a lower RMSD of 5.437 � 10�3.
RESULTS AND DISCUSSION

To test the PCSA algorithm, we evaluated the method’s per-
formance on simulated and experimental data containing
selected systems in various states of polymerization where
heterogeneity in anisotropy and mass was expected. Simu-
lated data will test the method’s ability to recover known
parameters from the simulation. The data are simulated
with noise contributions equivalent to that found in actual
experiments. We chose to simulate five oligomers of fibrin-
ogen (monomer-pentamer) offering heterogeneity in mass
and anisotropy. A crystal structure is available (3GHG
in the RCSB protein database (24)) which we modeled
into oligomeric structures, whose hydrodynamic para-
meters were predicted using UltraScan-SOMO (25,26)
(see Table S2).

We analyzed the simulated data with Monte Carlo
methods for genetic algorithms (GA), PCSAwith increasing
sigmoids (IS), and PCSA with horizontal-line (HL) func-
tional forms. Detailed results comparing the performance
of each method for a 40 krpm and a 60 krpm simulation
are shown in Table S3. These results show that the GA
method performs best, with an average deviation of 3.62%
from the simulated parameters, whereas the PCSA-IS
method showed a twofold higher deviation of 7.13%, fol-
lowed by the PCSA-HL with an error rate of 19.73%, which
is greater than fivefold worse than the GA method. RMSD
values closely followed this pattern, with an average increase
of 0.1797% over the simulated RMSD for the GA analysis,
0.4006% for the PCSA-IS, and 2.6996% for the PCSA-HL
analysis. All five species were correctly identified in the
40- and 60-krpm data, although the resolution was insuffi-
cient to resolve the tetramer from the pentamer, the most
closely spaced species, in the 20 krpm data by all methods.

The first experimental system measured the polymeriza-
tion of clathrin triskelia monomers into fully formed
clathrin cages. Due to the monomeric triskelion shape, a
large frictional coefficient is expected for the monomeric
Biophysical Journal 106(8) 1741–1750
clathrin triskelia and any incomplete clathrin cages, whereas
fully formed cages are expected to be spherical with a
frictional ratio approaching unity. Indeed, unconstrained
2DSA analysis suggests the presence of these species (see
Fig. 4 A). The pattern in the 2DSA suggests that the two-
dimensional grid can be approximated with a decaying
exponential or decreasing sigmoidal functional form. As
shown in Fig. 4 B, a decreasing sigmoidal parameterization
results in an excellent fit (see Fig. 4 C), with an RMSD
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equivalent to the RMSD from the unconstrained 2DSA fit
(0.005467 vs. 0.005437, respectively). The BFM obtained
in this fit, while constrained to a single line, closely tracked
the s versus f/f0 distribution of signal observed in the 2DSA,
and the multiple split peaks observed in the 2DSA for the
low-molecular-weight species can be equally well repre-
sented by a single peak with a minor shoulder in the
PCSA (Fig. 4 B). A PCSA-HL analysis without regulariza-
tion over the same parameter range resulted in an increased
RMSD of 0.005617 and a uniform frictional ratio of 2.73,
far from the more spherical anisotropy expected for the
fully formed clathrin cages. The increased RMSD indicates
that the heterogeneity in anisotropy contributes a detectable
signal above the background noise level to the boundary
shape.

In the next experiment, a DNA mixture consisting of two
double-stranded fragments with sizes 208 and 2812 bp in
length was measured. This experiment was repeated under
a range of ionic conditions using a 1-mM sodium phosphate
buffer containing 1.7, 5, 7, 10, 20, 50, and 150 mM NaCl.
When the ionic strength is increased, DNA is expected to
exhibit a reduced anisotropy due to increasing charge
neutralization along the backbone. As a consequence, the
parameterization for each salt concentration describing the
anisotropy as a function of DNA fragment length is ex-
pected to vary in a systematic fashion. 2DSA analysis of
these samples revealed two major species for each salt con-
centration, with significantly different anisotropies (see
Table 1). From this analysis, it can be seen that the confi-
dence intervals are very narrow in the sedimentation
domain, but are significantly larger in the frictional domain,
especially for the larger component. It is evident that the
2DSA and genetic algorithm Monte Carlo analysis identify
many species with the same sedimentation coefficient, but a
large range of frictional ratios (see Fig. 2 B). In such a case,
the benefit of additional constraints that provide a univalued
relationship between sedimentation and anisotropy could be
helpful. Because any two species can be fitted with a straight
line, a straight-line functional form was chosen to represent
these samples in the PCSA. The fits of these experiments by
straight-line PCSA are shown in Fig. 5. They reveal a
striking relationship between the slope of the straight-line
parameterization and the salt concentration, clearly showing
TABLE 1 2DSA-Monte Carlo results for all examined salt concentr

[NaCl] (mM) s [1] f/f0 [1] % [1

1.7 5.14 (4.76 5.52) 3.88 (3.17, 4.58) 43.1

5.0 5.30 (5.07 5.52) 3.83 (3.01, 4.65) 43.2

7.0 5.40 (4.87 5.92) 3.71 (2.74, 4.68) 42.9

10.0 5.44 (4.98 5.90) 3.74 (2.40, 5.08) 42.3

20.0 5.56 (5.32 5.79) 3.42 (2.48, 4.35) 42.5

50.0 5.65 (5.13 6.18) 3.32 (1.49, 5.16) 43.4

150.0 5.60 (5.28 5.92) 3.44 (1.92, 4.95) 42.4

Ninety-five percent confidence limits are shown in parentheses. Numbers in squa

corrected for conditions equivalent to water at 20�C.
a systematic decrease in anisotropy with increasing salt con-
centration (see Fig. 6).

As in the previous example, the RMSD values of the
PCSA fits are nearly indistinguishable from the RMSD
values obtained from the 2DSA or GA fits, as are the loca-
tions of the major species in the two-dimensional grid iden-
tified by either method. There are also a number of minor
species apparent (light cyan color, each with <2% of the
total concentration) in all samples, which presumably result
from low-concentration digestion products of remaining
chromosomal DNA. Due to their low concentration, the con-
fidence in their position is also very low and they do not
appear necessarily at the same positions when analyzed
under different salt conditions. A detailed comparison of
results between all methods and parameterizations in the
PCSA for the sedimentation velocity experiment of
1.7 mM NaCl DNA mixture is shown in Table 2.

This comparison highlights several important trends:

1. The 2DSA results in the best RMSD and also in the
broadest confidence region for the frictional ratio, espe-
cially for the larger component. The lowest RMSD
can be explained by the degeneracy of the method,
where even low-amplitude stochastic noise contribu-
tions are fitted. The broad confidence interval in the
frictional ratio can be explained by the limited diffusion
information available for the fastest sedimenting spe-
cies, which is already low due to the high anisotropy
of the large DNA fragment. However, the value of the
imposed constraints (both by the PCSA as well as by
the GA) is clear: The confidence region is substantially
reduced when parameterization or parsimonious regula-
rization is used, without resulting in a significant penalty
in RMSD.

2. Frictional ratios are in good agreement for all methods
except the horizontal-line (HL) parameterization, which
reports a weight average frictional ratio only, and there-
fore by definition misses the true frictional ratio values,
and also suffers from a substantial increase in RMSD.
The best agreement is obtained for the smaller species
due to slower sedimentation and faster diffusion (except
for the HL parameterization).

3. RMSD values are very similar, with a small increase
in RMSD apparent when additional constraints are
ations

] s [2] f/f0 [2] % [2]

10.68 (10.46, 10.91) 12.04 (3.13, 20.96) 31.5

11.12 (10.26, 11.99) 9.91 (8.64, 11.18) 25.9

11.35 (11.16, 11.54) 10.17 (8.30, 12.04) 28.2

11.42 (11.10, 11.74) 10.45 (6.34, 14.56) 34.3

11.67 (11.45, 11.89) 10.78 (7.98, 13.57) 35.5

11.93 (11.25, 12.60) 9.95 (3.69, 16.21) 30.2

12.03 (11.44, 12.63) 9.21 (5.40, 13.03) 31.4

re brackets refer to the fragment number in the DNA mixture. All values are
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FIGURE 5 PCSA analysis of a mixture of two

linear dsDNA fragments in 1, 5, 7, 10, 20, 50, and

150 mM NaCl using a straight-line function. Lower

salt concentration results in a steeper slope, indi-

cating a higher anisotropy. The dependence of the

slope on salt concentration is shown in Fig. 6. To

see this figure in color, go online.
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imposed. The RMSD order observed is 2DSA < GA <
PCSA-IS < PCSA-SL � PCSA-HL. These constraints
are derived either from parsimonious regularization (in
the GA) or from the parameterization in the PCSA.
When the parameterization is no longer able to capture
the information content present in the data, the RMSD
jumps to much larger values, as is observed in the
PCSA-HL parameterization.

4. All methods produce very similar sedimentation coeffi-
cients, although the results from the PCSA-HL method
deviates from all other methods, and suffers from overly
broad confidence intervals in the smaller species, and in
additional species not identified in the other methods
(Fig. 2 C).

This is explained by the following observation: When the
straight-line model is restricted to zero slope, the parameter-
FIGURE 6 Dependence of the PCSA-SL slope parameter on the salt con-

centration used for DNA. A strong decrease in slope is apparent up to

30 mM NaCl, suggesting maximum flexibility reached in the DNA confor-

mation at 30 mM NaCl.
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ization is identical to the parameterization used in the C(s)
analysis (10). Such a parameterization produces a very
different and incorrect result and returns a significantly
elevated RMSD (see Table 2). Moreover, the sedimenting
species corresponding to the smaller DNA fragment is
now split into multiple false-positive species (Fig. 2,
C–E). In addition, because the frictional ratio represents a
weight average, and is needed for an absolute molecular
weight transformation, any derived molecular weights for
any species will more than likely be incorrect. Regulariza-
tion does not alleviate this problem; it merely hides it by
artificially broadening the width of the peak of the smaller
species (see Fig. 2 C). Choosing the a-value suggested by
the L-curve criterion during Tikhonov regularization simply
smoothens the solution without eliminating the false-posi-
tive solutes (Fig. 2 C). We believe that this outcome is an
artifact in the PCSA-HL parameterization stemming from
its inability to accommodate heterogeneity in anisotropy,
and the least-squares optimization.

When a BFM is obtained with the HL parameterization
for a sample with heterogeneity in anisotropy, the resulting
f/f0 value represents a weight average of all species in the
system, which by definition has to be higher than the f/f0
of the most globular species in the mixture. Any Lamm
equation solution of such a species will have a steeper
boundary than one for the actual species, causing a large
RMSD in the final fit. However, during least-squares mini-
mization a solution with a lower RMSD that also maintains
the weight average f/f0 can be found by introducing mul-
tiple false-positive species with smaller amplitudes in the
vicinity of the actual species, considerably broadening the
peak width (see Fig. 2, D and E, for comparison), but
better satisfying the least-squares condition. Increasing the
regularization parameter beyond the L-curve criterion
in an attempt to join the false-positive species into a
single peak, centered around the desired species, increases
the RMSD further and causes nonrandom residuals



TABLE 2 Comparison of results from different analysis methods for a sedimentation velocity experiment of a DNA mixture

consisting of two double-stranded fragments in 1.7 mM NaCl

Monte Carlo s [1] f/f0 [1] % [1] s [2] f/f0 [2] % [2] RMSD

2DSA 5.14 (4.74, 5.74) 3.87 (3.11, 4.63) 43.5 10.67 (10.21, 11.13) 12.67 (1.71, 23.63) 35.4 3.2146

GA 5.15 (5.12, 5.18) 3.71 (3.45, 3.97) 46.7 10.66 (10.64, 10.68) 11.25 (10.10, 12.39) 35.3 3.2609

IS 5.16 (4.56, 5.77) 3.74 (3.21, 4.27) 49.6 10.67 (10.26, 11.08) 11.01 (10.38, 11.65) 38.7 3.3697

SL 5.05 (4.55, 5.55) 3.95 (3.25, 4.65) 44.6 10.67 (9.97, 11.38) 9.74 (9.02, 10.46) 40.2 3.4253

HL 5.22 (1.44, 9.00) 7.20 (0.00, 0.00) 50.4 10.71 (9.84, 11.58) 7.20 (0.00, 0.00) 43.1 4.6832

One-hundred iteration Monte Carlo analyses were performed on 2DSA, genetic algorithms (GA), PCSAwith an increasing sigmoid function (IS), straight-

line parameterization (SL), and horizontal-line parameterization (HL). Ninety-five percent confidence limits are shown in parentheses. Numbers in square

brackets refer to the fragment number in the DNA mixture. All values are corrected for conditions equivalent to water at 20�C. Two-dimensional pseudo-

three-dimensional plots of each analysis are shown in Fig. S3, Fig. S4, Fig. S5, Fig. S6, and Fig. S7 in the Supporting Material. A large increase in RMSD is

seen when PCSA-HL parameterization is used (compare also Fig. S2).

FIGURE 7 DNA digestion with six fragments as analyzed with the

straight-line PCSA parameterization. The DNA fragments resolved by

PCSA show excellent correspondence with the 1% agarose gel electropho-

resis result, both in position as in partial concentration. To see this figure in

color, go online.
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(see Fig. S2 in the Supporting Material). Monte Carlo anal-
ysis of the sedimentation coefficient error intervals around
both species using 2DSA, GA, or PCSA analysis demon-
strates that the peak width should be much more narrow
than the regularized HL parameterization would suggest.
This demonstrates that fitting of samples with heterogeneity
in anisotropy using PCSA-HL, with or without regulariza-
tion, may unfavorably impact the resolution and peak width
of actual species, and may introduce false-positive species.

When a finite-element model for an experiment provides
random residuals, and allows for heterogeneity in anisot-
ropy, a transformation of the sedimentation coefficient dis-
tribution to absolute molecular weight should be possible,
provided an accurate partial specific volume is available.
As can be seen in Fig. 5, a transformation of the sedimenta-
tion coefficient distributions from the seven salt concentra-
tions clearly shows that the molecular weights for the two
DNA species are not identical, and instead show a consistent
shift to larger molecular weights for lower salt concentra-
tions (Fig. 5, right panel). This discrepancy could be ex-
plained by the primary charge effect or a salt-dependent
change in hydration of DNA, which causes the partial spe-
cific volume value to change, affecting the molecular-weight
transformation. However, in our analysis, we assumed a con-
stant PSV of 0.55 mL/mg for all salt concentrations.

The final experimental example shows a DNA restriction
digest dissolved in 100 mM NaCl containing phosphate
buffer, giving rise to a mixture of 5 dsDNA fragments. A
straight line (Fig. 7) and increasing sigmoidal functional
form (see Fig. S8) was used in the PCSA to fit the
data. When comparing the two-dimensional sedimentation
pattern of a straight-line functional form to a 1% agarose
gel electrophoresis image of the same DNA mixture, a
remarkable resolution and agreement with the bands of
the gel image are achieved, where the solutes identified by
the PCSA mirror closely the spacing and relative concentra-
tion of each species seen in the gel image. Also, the slope
derived from the straight-line fit is 0.65, in good agreement
with the slope predicted for the 100-mMNaCl concentration
in the previous experiment (Fig. 6). The result suggests that
both functional forms are similarly appropriate for this
system.
CONCLUSION

We have presented a method that effectively searches the
two-dimensional solution space over s and f/f0 by constrain-
ing the solution to a single-valued functional form, which
assures that the solution does not contain sedimenting spe-
cies with multiple frictional coefficients. In summary, these
results demonstrate that the PCSA offers an excellent mech-
anism for constraining the 2DSA solution to a single-valued
function without sacrificing the generality of heterogeneity
in anisotropy, and can provide useful information about
the intrinsic anisotropic properties of a system, and eluci-
date trends such as anisotropy changes in response to an
external perturbation such as salt concentration. At the
same time, our method does not require the user to apply
unwarranted constraints demanding constant frictional
ratios for the entire solution as is done in the C(s) method
and the horizontal-line parameterization. Simulated data
also showed that the PCSA-IS method, which allows for
variation in the frictional ratio, performs significantly better
Biophysical Journal 106(8) 1741–1750
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and provides higher accuracy than the PCSA-HL when
fitting systems that exhibit heterogeneity in size and
anisotropy.

We showed that the PCSA method with appropriate func-
tional forms can provide useful parameterizations for
anisotropies of polymer growth, and allows prediction of in-
termediate values for polymer size distributions. The PCSA
provides a generalized solution that allows for heterogeneity
in anisotropy and size, while still providing a univalued
function.
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Supplemental Material:

Supplemental_Figure  1: Histogram plots of data shown  in  Figure 2B,C.  A:PCSA-HL,
without  regularization;  B:  PCSA-HL,  with  regularization;  C:  PCSA-HL, Monte Carlo;
D: genetic  algorithm,  Monte  Carlo;  E: PCSA-SL,  Monte  Carlo.  The  PCSA-SL and
genetic algorithms produce nearly identical results and avoid the broadening of the 5-S
peak. 



Supplemental_Figure  2: Residuals  for  sedimentation velocity  whole  boundary fitting of  two DNA
fragments in 1.7 mM NaCl buffer (data from Table 2) for horizontal line (HL) parameterization (left)
and straight  line  (SL)  parameterization  (right).  Bitmaps of  the residual  pattern  are shown on the
bottom.  The  increase  in  RMSD for  HL parameterization  is  significant,  with  non-random residual
patterns especially evident for the poorly fitted slower sedimenting component near the meniscus.



Supplemental_Figure  3: 2DSA  with a 100 iteration  Monte Carlo analysis  of  1.7 mM NaCl DNA
sample (compare Table 2)



Supplemental_Figure 4: Genetic algorithm with a 100 iteration Monte Carlo analysis of 1.7 mM NaCl
DNA sample (compare Table 2).



Supplemental_Figure 5: PCSA increasing sigmoid parameterization with a 100 iteration Monte Carlo
analysis of 1.7 mM NaCl DNA sample (compare Table 2).



Supplemental_Figure  6: PCSA  straight  line  parameterization  with  a  100  iteration Monte  Carlo
analysis of 1.7 mM NaCl DNA sample (compare Table 2).



Supplemental_Figure  7: PCSA  horizontal line parameterization with a 100 iteration Monte Carlo
analysis of 1.7 mM NaCl DNA sample (compare Table 2).



Supplemental_Figure 8: 5-fragment DNA digest shown in Figure 7 analyzed with the PCSA using an
increasing sigmoid functional form, producing a very similar pattern as the straight line method shown
in Figure 7.



Variations Time Refinements RMSD Threads LM Iterations Speedup

10 1m.34s 1 0.0054185 1 0 1

10 0m.17s 1 0.0054185 8 0 5.5

12 2m.16s 1 0.0054143 1 0 1

12 0m.24s 1 0.0054143 8 0 5.25

10 4m.48s 3 0.0054129 1 0 1

10 0m.51s 3 0.0054127 8 0 5.7

10 4m.56s 3 0.0054124 1 12 1

10 0m.59s 3 0.0054124 8 12 5.0

10 1m.55s 1 0.0054124 1 24 1

10 0m.40s 1 0.0054124 8 24 2.9

5 0m.49s 1 0.0054124 1 36 1

5 0m.42s 1 0.0054124 8 36 1.2

11 2m.08s 1 0.0054124 1 18 1

11 0m.33s 1 0.0054124 8 18 3.9

Supplemental_Table  1:   PCSA performance analysis  for a 20,000 point absorbance sedimentation
velocity dataset using a 100 point s-value resolution setting and the straight-line functional form. All
calculations were performed on a Dell Inspiron 1732 laptop equipped with an Intel I7 processor and 8
GB RAM. The effect of different analysis settings on the speed of convergence is shown. The following
trends are observed: When Levenberg-Marquardt refinement was used, the solution converged reliably
to the same, lowest RMSD observed during all trials. The number of Levenberg-Marquardt iterations
required for convergence depended on the resolution of the parameter grid for the functional form.
Additional grid refinements provided an initial improvement in RMSD, which reduced the number of
Levenberg-Marquardt iterations. RMSDs obtained with grid refinements approached the RMSD value
obtained with Levenberg-Marquardt iterations, with variations only in the fifth significant digit. Since
grid refinements can be parallelized,  additional threads accelerate the calculations most when the
number  of  Levenberg-Marquardt  iterations  is  smallest,  since  Levenberg-Marquardt  iterations  are
evaluated sequentially. For reference, the RMSD from the 2DSA was 0.0053679. For this dataset, the
optimal solution was reached fastest when multi-threading was used, and when using an intermediate
grid resolution setting. For a single thread calculation, the fastest execution speed was obtained when
a relatively coarse grid was used and more time was spent in the Levenberg-Marquardt iterations,
where multi-threading has no advantage. The trends observed here are typical, but execution time will
vary with hardware, dataset size, and desired optimization level. In general, RMSDs obtained from fits
without Levenberg-Marquardt iterations vary only in the fourth significant digit, a small penalty for
significant speedup realized when multiple processors are available. A 2-fold increase in memory was
observed when the number of threads were quadrupled. Runs executed with one thread required an
average of 79 MB, while runs performed with 8 threads needed an average of 318 MB of RAM. The
column labeled “Speedup” indicates the speedup observed when eight threads are used compared to
identical parameterization with one thread.



Model: s20,W (sec) D20,W (cm2/sec) f/f0 ν̄ (ml/mg) MW (kDa)

Fibrinogen, monomer 7.28466e-13 2.56171e-07 2.0300 0.719 245.55

Fibrinogen, dimer 1.02062e-12 1.79455e-07 2.3000 0.719 491.10

Fibrinogen, trimer 1.20156e-12 1.40846e-07 2.5600 0.719 736.65

Fibrinogen, tetramer 1.31673e-12 1.15758e-07 2.8300 0.719 982.21

Fibrinogen, pentamer 1.38593e-12 9.74709e-08 3.1200 0.719 1,227.75

Supplemental_Table 2: Hydrodynamic and molecular parameters for simulated fibrinogen oligomers

f/f0 Molar Mass Partial Concentration

40 krpm 60 krpm 40 krpm 60 krpm 40 krpm 60 krpm

GA IS HL GA IS HL GA IS HL GA IS HL GA IS HL GA IS HL

1 0.4 6.2 33.4 -0.6 0.9 28.9 -0.6 9.4 54.5 -0.9 1.5 46.7 0.2 -0.8 -3.0 0.3 0.0 -0.1

2 -0.8 11.4 17.8 3.0 8.8 13.8 -1.1 17.3 27.2 4.7 13.6 21.5 0.3 -2.5 -3.5 0.2 0.5 0.4

3 0.5 10.7 5.8 1.2 9.9 2.3 0.7 16.5 6.5 2.1 15.8 3.5 -1.2 2.3 -43.5 2.1 3.6 -1.4

4 -2.3 6.0 -4.5 -0.4 6.5 -8.1 -3.4 8.3 -13.9 -0.1 10.4 -13.1 4.6 -24.2 -41.4 9.5 -2.0 -22.8

5 6.7 -0.3 -15.2 12.1 0.3 -19.2 -4.1 -1.0 -26.2 19.4 0.7 -31.3 -4.2 19.2 63.1 -13.8 -3.3 19.5

av 2.2 6.9 15.3 3.5 5.3 14.5 3.3 10.5 25.7 5.4 8.4 23.2 2.1 9.8 30.9 5.2 1.9 8.8

Supplemental_Table  3: Accuracy comparison between genetic  algorithms (GA),  PCSA-IS (IS)  and
PCSA-HL (HL) for recovering the frictional ratio, molar mass and partial concentration for the five
simulated fibrinogen oligomers for 40 and 60 krpm simulations. Shown are the percentage differences
between the observed values from each method, and the actual values that were simulated (compare
Supplemental_Table  2 for  target  values).  Smaller  numbers  indicate  a  better  agreement  with  the
simulated data. 0.5% random noise were added to the simulated data to approximate experimental
conditions observed in the instrument.  Values highlighted in green represent the best fit of the three
methods.  Overall  averages  (av)  for each category and method are shown in the last  row. Percent
RMSD deviations from the simulated RMSD value (0.005 OD) for each method at 40 krpm were 0.0%
(GA),  +0.3516 % (IS),  +2.957% (HL),  and at  60  krpm were  +0.3594% (GA),  +0.4496 (IS)  and
+2.4422% (HL). This matches well with the overall error rate for the three methods, which where 3.62
% (GA), 7.13% (IS), and 19.73% (HL). The 20 krpm results are not listed since neither method was
able to resolve the two most closely spaced species, the tetramer and pentamer at 20 krpm.
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