## Niche-based screening identifies small-molecule inhibitors of leukemia stem cells

Kimberly A Hartwell<sup>1-3,13</sup>, Peter G Miller<sup>2,3,13</sup>, Siddhartha Mukherjee<sup>4,12</sup>, Alissa R Kahn<sup>5</sup>, Alison L Stewart<sup>1</sup>, David J Logan<sup>1</sup>, Joseph M Negri<sup>1</sup>, Mildred Duvet<sup>1,4</sup>, Marcus Järås<sup>2</sup>, Rishi Puram<sup>2,3</sup>, Vlado Dancik<sup>1</sup>, Fatima Al-Shahrour<sup>1,2</sup>, Thomas Kindler<sup>2</sup>, Zuzana Tothova<sup>2,3</sup>, Shrikanta Chattopadhyay<sup>1,6</sup>, Thomas Hasaka<sup>1</sup>, Rajiv Narayan<sup>1</sup>, Mingji Dai<sup>1,10</sup>, Christina Huang<sup>1</sup>, Sebastian Shterental<sup>2</sup>, Lisa P Chu<sup>2</sup>, J Erika Haydu<sup>2</sup>, Jae Hung Shieh<sup>5</sup>, David P Steensma<sup>3,7</sup>, Benito Munoz<sup>1</sup>, Joshua A Bittker<sup>1</sup>, Alykhan F Shamji<sup>1</sup>, Paul A Clemons<sup>1</sup>, Nicola J Tolliday<sup>1</sup>, Anne E Carpenter<sup>1</sup>, D Gary Gilliland<sup>1,2,7,8,12</sup>, Andrew M Stern<sup>1,12</sup>, Malcolm A S Moore<sup>9\*</sup>, David T Scadden<sup>1,4,6\*</sup>, Stuart L Schreiber<sup>1,8,10\*</sup>, Benjamin L Ebert<sup>1-3,7\*</sup> & Todd R Golub<sup>1,3,8,11\*</sup>

<sup>1</sup>Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. <sup>2</sup>Division of Hematology, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA. <sup>3</sup>Harvard Medical School, Boston, MA 02115, USA. <sup>4</sup>Center for Regenerative Medicine and Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA. <sup>5</sup>Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA. <sup>6</sup>Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA. <sup>7</sup>Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA. <sup>8</sup>Howard Hughes Medical Institute, Harvard Medical School, Chevy Chase, MD 20815, USA. <sup>9</sup>Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA. <sup>10</sup>Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA. <sup>11</sup>Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA. <sup>12</sup>Present addresses: Department of Medicine and Irving Cancer Research Center, Columbia University School of Medicine, New York, NY 10032, USA (S.M.); Merck Research Laboratories, West Point, PA 19446, USA (D.G.G.); Department of Computational and Systems Biology, University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA 15260, USA (A.M.S.). <sup>13</sup>These authors contributed equally to this work. <sup>\*</sup>e-mail: <u>m-moore@ski.mskcc.org</u>, <u>dscadden@mgh.harvard.edu</u>, <u>stuart\_schreiber@harvard.edu</u>, <u>bebert@partners.org</u> or golub@broadinstitute.org

### Supplementary Results

Supplementary Figures 1-5

Supplementary Tables 1-6

Supplementary Note 1



### Supplementary Figure 1 | A High-Throughput System for Probing Primary, Stem-enriched Leukemia Cells Within a Stromal Niche

(a) Primary, stem cell-enriched, murine leukemia cells (LSCe cells) were generated as shown for high throughput screening. Granulocyte-Monocyte Progenitors (GMPs) were isolated by fluorescenceactivated cell sorting (FACS) from  $\beta$ -actin dsRed mice, transduced with the MLL-AF9 oncogene, and transplanted into lethally-irradiated wild-type mice. At disease onset, splenocytes were transplanted through 3 additional rounds of recipient animals to generate guaternary leukemic mice. Whole bone marrow was harvested from these animals at disease onset, and (b) the LSCe population was isolated by flow cytometry using defined immunophenotypic markers Hoechst<sup>-</sup> dsRed<sup>+</sup> c-Kit<sup>hi</sup> FcyRII<sup>hi</sup> CD34<sup>hi</sup> following Lin and Sca-1 depletion. Representative gating strategies are shown. Also see Methods. (c) When LSC-enriched (LSCe) cells (c-Kit<sup>hi</sup>) and LSC-depleted cells (c-Kit<sup>lo</sup>) are plated into co-culture with OP9 stroma at identical densities, the c-Kit<sup>hi</sup> cells form CAFCs (arrow) with greater efficiency than the c-Kit<sup>lo</sup> cells. Qualitative images representative of two independent experiments are shown. (d) Kaplan-Meier survival curves of mice transplanted with co-cultures generated from 500, 100, or 25 LSCe cells on bone marrow mesenchymal stromal cell (BMSC) stroma at the 6-day assay endpoint ( $n \ge 4$  as shown). (e) The CellProfiler segmentation algorithm divides each individual cell into one or more subcellular areas (termed "objects;" See Methods), shown outlined in white. (f) Distribution of neutral control (DMSO only) and positive control (10 µM XK469, a topoisomerase IIß inhibitor) wells. (g) The performance of 196 prioritized compounds in the stromal toxicity counterscreen, by lowest toxic concentration. A concentration range of 160 nM to 20 µM was examined with OP9 and primary BMSC stromal monolayers grown alone, at 8 concentrations, with a viability readout (CellTiter-Glo). Compounds showing toxicity towards either type of stroma at or below 10 µM were excluded from further study.



## Supplementary Figure 2 | Prioritized Screening Hits Display LSCe Cell Selectivity Relative to HSPCs in Co-culture

(a) Dose-response curves for parbendazole and methiazole on LSCe cells (2 replicates per concentration) and normal HSPCs (6 replicates per concentration) in co-culture on primary BMSC stroma.
 (b) These benzimidazole carbamates also displayed strong activity against human AML cell lines (shown as mean +/- SEM of duplicate replicates).



а

Stromal Pretreatment Screen

### Supplementary Figure 3 | Novel Small Molecule BRD7116 Selectively Targets LSCe Cells by Both Cell-Autonomous and Cell-Non-Autonomous Mechanisms

(a) A stromal pretreatment secondary screen identified compounds that antagonize leukemia cobblestone area formation indirectly through the stroma. (b) Normalized dose-response curves for troglitazone, a PPAR- $\gamma$  agonist in the LSCe cell retest and stromal pretreatment screens, both with OP9 stroma in duplicate. (c) Representative images of OP9 stroma treated with troglitazone, consistent with adipocytic differentiation. (d) Troglitazone dose-response curves for 6 human AML cell lines. Data is mean +/- SEM for duplicate replicates. (e) BRD7116 dose-response curves for 6 human AML cell lines, with incomplete inhibition relative to positive controls. (f) The effects of BRD7116 on CAFC activity of primary human CD34<sup>+</sup> cells isolated from either normal or leukemic patient samples. Co-cultures were treated for 6 days, and then rinsed. The fraction of replicate co-cultures containing cobblestone areas at the 5-week assay endpoint (2 weeks for FLT3-ITD sample) is shown (n  $\ge$  6). The clinical characteristics of the AML samples are described in Figure 4b. (g) Viability of BMSC stromal cells pretreated with BRD7116 prior to the plating of admixed LSCe and HSPC cells (as mean +/- SEM of quadruplicate replicates), from stromal monolayers cultured in the absence of hematopoietic cells in parallel for the same length of time as the stromal pretreatment screen depicted in Figure 3c. n.s. = not significant relative to DMSO-treated controls.



## Supplementary Figure 4 | Lovastatin Selectively Inhibits Murine and Human Leukemia Cells in Co-culture

(a) Lovastatin activity against human AML cell lines (in duplicate). (b) Dose-response curves for lovastatin from an additional, independent human AML cell line screen (see Methods). Effects were normalized between DMSO control, set at 100, and media only (no cells), set at zero. (c) Lovastatin dose-response curves for 7 murine myeloid cell lines. Data are represented as mean +/- SEM of duplicate replicates. (d) Quantification of lovastatin effects on MOZ-TIF2 LSCe cells in co-culture (normalized to DMSO control; as mean +/- SEM) by flow cytometry analysis ( $n \ge 3$ ).



#### Supplementary Figure 5 | Sensitivity of LSCe Cells to HMGCR Inhibition

(a) Schematic representation of in vivo shRNA screening strategy. Primary LSCe cells were infected with a pool of shRNA lentiviruses targeting genes within the mevalonate pathway as well as control genes. After 24 hours, a portion of the cells were harvested and the remainder transplanted into recipient mice. After 2 weeks, at the onset of leukemiogenesis, the leukemia cells in the bone marrow were harvested and the change in shRNA frequency was determined relative to Time 0 (See Methods). (b) Schematic indicating the location of the genes examined *in vivo* by shRNA pooled screening within the mevalonate pathway. (c) Quantification of Hmgcr RNA knockdown in murine Ba/F3 cells for the Hmgcr shRNAs that scored in the screen relative to three control shRNAs (LUC-58, RFP-03, LacZ-29). (d) The effects of various chemical inhibitors of farnesyl and geranylgeranyl transferases on LSCe cells co-cultured with OP9 stromal cells at the 6 day assay endpoint. Data are mean +/- SEM of triplicate replicates. \* p < 0.001 relative to DMSO-treated controls. (e) The farnesyltransferase inhibitor L-744,832 was also a hit in the co-culture screen and passed initial selectivity filtering steps. The doseresponse curve for LSCe cells co-cultured with BMSC stroma is shown. (f) The long-term engraftment of admixed normal HSPCs quantified by flow cytometric analysis at 16 weeks post transplantation was not impaired by lovastatin treatment (compared to DMSO-treated co-cultures containing HSPCs alone). Mean +/- SEM is shown (n = 5). n.s. = not significant, relative to DMSO controls. (g) Multilineage repopulation (as frequency of cell types in peripheral blood) at 16 weeks post transplantation was also unaffected by lovastatin treatment. Mean +/- SEM is shown (n = 5). n.s. = not significant, relative to DMSO controls.

### Supplementary Table 1 | Image-based Rules Defining the CAFC Phenotype

| Rule<br># | Rule                                                           | Explanation                                                                                                                     |
|-----------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| 1         | CellsdsRed_Neighbors_PercentTouching_2 > 69.2                  | Cell objects that have >69% of their perimeter<br>touching other objects, after expanding 2 pixels                              |
| 2         | CellsdsRed_Texture_GaborY_CorrdsRed_3 < 13.9                   | Cell objects with texture feature (Gabor wavelet in<br>Y direction) < 13.9 at a 3 pixel scale in the dsRed<br>channel           |
| 3         | CellsdsRed_Neighbors_NumberOfNeighbors_2 > 3.0                 | Cell objects with > 3 neighbor objects (within 2<br>pixels)                                                                     |
| 4         | CellsdsRed_Texture_Contrast_CorrdsRed_3 < 9.55                 | Cell objects with low texture contrast at a 3 pixel<br>scale in the dsRed channel                                               |
| 5         | CellsdsRed_Intensity_MinIntensity_CorrdsRed > 0.104            | Cell objects with the minimum intensity across all<br>their pixels in the dsRed channel > 0.104                                 |
| 6         | CellsdsRed_Intensity_StdIntensity_CorrdsRed < 0.0312           | Cell objects with standard deviation of pixel<br>intensities in dsRed channel < 0.03 (a measure of<br>texture)                  |
| 7         | CellsdsRed_Intensity_MinIntensity_CorrStroma > 0.109           | Cell objects with the minimum intensity across all their pixels in the stromal channel > 0.109                                  |
| 8         | CellsdsRed_Neighbors_NumberOfNeighbors_2 > 2.0                 | Cell objects with >2 neighbor objects (within 2<br>pixels)                                                                      |
| 9         | CellsdsRed_Zernike_9_9 > 0.0185                                | Cell objects with a 9 <sup>th</sup> /9th order Zernike shape<br>feature > 0.018                                                 |
| 10        | CellsdsRed_Texture_SumEntropy_CorrdsRed_1 > 2.42               | Cell objects with a low texture feature (Haralick's<br>Sum of Entropy) at a 1 pixel scale in the dsRed<br>channel               |
| 11        | CellsdsRed_Texture_InverseDifferenceMoment_CorrdsRed_1 > 0.571 | Cell objects with a texture feature (Haralick's<br>Inverse Difference Moment) >0.571 at a 1 pixel<br>scale in the dsRed channel |
| 12        | CellsdsRed_Neighbors_AngleBetweenNeighbors_2 < 77.3            | Cell objects with nearby neighbor objects (within 2 pixels) that are within 77 degrees of each other                            |
| 13        | CellsdsRed_Zernike_5_3 > 0.0424                                | Cell objects with a 5 <sup>th</sup> /3rd order Zernike shape<br>feature > 0.0424                                                |
| 14        | CellsdsRed_Neighbors_SecondClosestXVector_2 > -7.82            | Cell objects with their second closest neighbor<br>having an X coordinate vector > -7.82                                        |
| 15        | CellsdsRed_Location_Center_Y < 351.3                           | Cell objects with their centroid Y coordinate < 351<br>pixels from the origin                                                   |
| 16        | CellsdsRed_Texture_GaborX_CorrdsRed_3 < 29.6                   | Cell objects with texture feature (Gabor wavelet in<br>X direction) < 29.6 at a 3 pixel scale in the dsRed<br>channel           |
| 17        | CellsdsRed_Intensity_MinIntensity_CorrdsRed > 0.104            | Cell objects with the minimum intensity across all<br>their pixels in the dsRed channel > 0.104                                 |
| 18        | CellsdsRed_Texture_GaborY_CorrdsRed_3 < 18.2                   | Cell objects with texture feature (Gabor wavelet in<br>Y direction) < 18.2 at a 3 pixel scale in the dsRed<br>channel           |
| 19        | CellsdsRed_Neighbors_SecondClosestYVector_2 < 8.75             | Cell objects with their second closest neighbor<br>having an Y coordinate vector < 8.75                                         |
| 20        | CellsdsRed_Zernike_2_2 < 0.058                                 | Cell objects with a 2nd/2nd order Zernike shape<br>feature < 0.058                                                              |
| 21        | CellsdsRed_Neighbors_SecondClosestYVector_2 > -7.62            | Cell objects with their second closest neighbor<br>having an Y coordinate vector < -7.62                                        |
| 22        | CellsdsRed_Zernike_0_0 > 0.615                                 | Cell objects with a 0 <sup>th</sup> /0th order Zernike shape<br>feature (even intensity) > 0.615                                |
| 23        | CellsdsRed_Neighbors_SecondClosestObjectNumber_2 > 636         | Cell objects with their second closest neighbor<br>having an object number > 636                                                |
| 24        | CellsdsRed_Intensity_UpperQuartileIntensity_CorrdsRed > 0.0919 | Cell objects with a pixel intensity of the upper<br>quartile in the dsRed channel > 0.0919                                      |
| 25        | CellsdsRed_Intensity_StdIntensity_CorrdsRed < 0.0154           | Cell objects with a pixel intensity standard deviation in the dsRed channel < 0.0154                                            |
| 26        | CellsdsRed_Texture_GaborX_CorrdsRed_1 > 2.44                   | Cell objects with texture feature (Gabor wavelet in X direction) > 2.44 at a 1 pixel scale in the dsRed                         |

|    |                                                            | channel                                                                                                                      |
|----|------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| 27 | CellsdsRed_Neighbors_FirstClosestXVector_2 > -6.50         | Cell objects with their closest neighbor having an<br>X coordinate vector > -6.5                                             |
| 28 | CellsdsRed_Neighbors_NumberOfNeighbors_2 > 2.0             | Cell objects with >2 neighbor objects (within 2<br>pixels)                                                                   |
| 29 | CellsdsRed_Texture_DifferenceEntropy_CorrdsRed_1 > 1.58    | Cell objects with a texture feature (Haralick's<br>Difference Entropy) > 1.58 at a 1 pixel scale in the<br>dsRed channel     |
| 30 | CellsdsRed_Texture_Contrast_CorrdsRed_1 < 2.88             | Cell objects with a texture feature (Haralick's<br>Contrast) < 2.88 at a 1 pixel scale in the dsRed<br>channel               |
| 31 | CellsdsRed_Neighbors_FirstClosestXVector_2 > 1.59          | Cell objects with their closest neighbor having an<br>X coordinate vector > 1.59                                             |
| 32 | CellsdsRed_Intensity_MedianIntensity_CorrStroma < 0.220    | Cell objects with a median pixel intensity in the<br>stromal channel < 0.22                                                  |
| 33 | CellsdsRed_Intensity_MassDisplacement_CorrStroma > 3.88    | Cell objects with a pixel intensity shift in the<br>grayscale versus binary centroids in the stromal<br>channel > 3.88       |
| 34 | CellsdsRed_Texture_GaborX_CorrdsRed_3 < 19.7               | Cell objects with texture feature (Gabor wavelet in<br>X direction) < 19.7 at a 3 pixel scale in the dsRed<br>channel        |
| 35 | CellsdsRed_Texture_GaborY_CorrdsRed_1 > 1.91               | Cell objects with texture feature (Gabor wavelet in<br>Y direction) > 1.91 at a 1 pixel scale in the dsRed<br>channel        |
| 36 | CellsdsRed_Zernike_4_2 > 0.00394                           | Cell objects with a 4 <sup>th</sup> /2nd order Zernike shape<br>feature > 0.00394                                            |
| 37 | CellsdsRed_Texture_DifferenceEntropy_CorrdsRed_1 < 1.17    | Cell objects with a texture feature (Haralick's<br>Difference Entropy) < 1.17 at a 1 pixel scale in the<br>dsRed channel     |
| 38 | CellsdsRed_Texture_AngularSecondMoment_CorrdsRed_3 > 0.081 | Cell objects with a texture feature (Haralick's<br>Angular Second Moment) > 0.081 at a 3 pixel<br>scale in the dsRed channel |
| 39 | CellsdsRed_Zernike_3_1 > 0.139                             | Cell objects with a 3rd/1st order Zernike shape<br>feature > 0.139                                                           |
| 40 | CellsdsRed_Zernike_2_0 < 0.165                             | Cell objects with a 2nd/0th order Zernike shape<br>feature < 0.165                                                           |
| 41 | CellsdsRed_Zernike_7_5 < 0.0515                            | Cell objects with a 7 <sup>th</sup> /5th order Zernike shape<br>feature < 0.0515                                             |
| 42 | CellsdsRed_Intensity_StdIntensityEdge_CorrdsRed < 0.0261   | Cell objects with standard deviation of pixel<br>intensities along their perimeter in dsRed channel<br>< 0.0261              |
| 43 | CellsdsRed_Intensity_MeanIntensityEdge_CorrdsRed > 0.146   | Cell objects with mean pixel intensities along their<br>perimeter in dsRed channel > 0.146                                   |
| 44 | CellsdsRed_Zernike_5_1 > 0.0464                            | Cell objects with a 5 <sup>th</sup> /1st order Zernike shape<br>feature > 0.0464                                             |
| 45 | CellsdsRed_Neighbors_FirstClosestYVector_2 > -6.77         | Cell objects with their closest neighbor having a Y coordinate vector > -6.77                                                |
| 46 | CellsdsRed_Neighbors_SecondClosestYVector_2 > -7.32        | Cell objects with their second closest neighbor<br>having a Y coordinate vector > -7.32                                      |
| 47 | CellsdsRed_AreaShape_Eccentricity < 0.872                  | Cell objects not very elliptical (on a scale of<br>0=circular to 1=linear/flattened) < 0.872                                 |
| 48 | CellsdsRed_Zernike_1_1 < 0.363                             | Cell objects with a 1st/1st order Zernike shape<br>feature < 0.363                                                           |
| 49 | CellsdsRed_Intensity_StdIntensityEdge_CorrdsRed < 0.0326   | Cell objects with standard deviation of pixel<br>intensities along their perimeter in dsRed channel<br>< 0.0326              |
| 50 | CellsdsRed_Intensity_MinIntensity_CorrdsRed > 0.0937       | Cell objects with the minimum intensity across all<br>their pixels in the dsRed channel > 0.0937                             |

The 50 rules identified by the user-trained automated algorithm as the strongest image-based correlates of the cobblestone area phenotype are shown for a representative screening run. Rules are based on features of cell "objects" (see Supplementary Fig. 1d and Methods), which individual cells are segmented into for classification. While all 50 rules contribute to the classification algorithm, the rules are rank-ordered with those given the most weight listed first. Detailed explanations are shown for the purposes of illustration only, as the exact 50 rules will vary by image batch (see Methods).

| Category          | Parameter                                                | Description                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------------|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Assay             | Type of assay                                            | Cell-based co-culture assay                                                                                                                                                                                                                                                                                                                                                                             |
|                   | Target                                                   | Leukemic Cobblestone Area-Forming Cells (CAFCs)                                                                                                                                                                                                                                                                                                                                                         |
|                   | Primary measurement                                      | Total CAFC area per well                                                                                                                                                                                                                                                                                                                                                                                |
|                   | Key reagents                                             | Primary stem-enriched leukemia cells, Bone marrow<br>stromal cells (OP9 cell line or primary bone marrow<br>mesenchymal stromal cells), Image analysis<br>software algorithms (see<br>http://www.cellprofiler.org/published_pipelines.shtml)                                                                                                                                                            |
|                   | Assay protocol                                           | See Methods                                                                                                                                                                                                                                                                                                                                                                                             |
|                   | Additional comments                                      |                                                                                                                                                                                                                                                                                                                                                                                                         |
| Library           | Library size                                             | 14,718 compounds screened                                                                                                                                                                                                                                                                                                                                                                               |
|                   | Library composition                                      | Compounds were selected from a series of<br>chemically diverse commercially available and<br>internally synthesized libraries, including ~1,920<br>known bioactive molecules, ~1,600 natural products,<br>and 2,880 compounds generated via diversity<br>oriented synthesis (DOS)<br>Broad Institute compound collection                                                                                |
|                   | Additional comments                                      |                                                                                                                                                                                                                                                                                                                                                                                                         |
| Screen            | Format                                                   | 384-well (Corning 3712)                                                                                                                                                                                                                                                                                                                                                                                 |
|                   | Concentration(s) tested                                  | 5 μM in 0.2% DMSO                                                                                                                                                                                                                                                                                                                                                                                       |
|                   | Plate controls                                           | Neutral control: DMSO carrier alone; Positive<br>control: 10 μΜ XK469, a topoisomerase IIβ inhibitor                                                                                                                                                                                                                                                                                                    |
|                   | Reagent/ compound dispensing system                      | Automated: Multidrop Combi (Thermo Scientific) for<br>reagents, CyBi-Well Vario (CyBio) for compounds                                                                                                                                                                                                                                                                                                   |
|                   | Detection instrument and software<br>Assay validation/QC | Microscopy images captured using automated<br>ImageXpress Micro (Molecular Devices; 10x total<br>magnification; binning of 2); Images analyzed using<br>CellProfiler software<br>Assay sensitivity and specificity for CAFCs were<br>86% and 87%, respectively. Retest rate was 71.5%<br>in co-culture with OP9 stromal type (61.6% with<br>primary bone marrow stromal cells); Additional              |
|                   | Correction factors                                       | retesting (Fig. 1e); Compounds previously known to<br>have preferential activity against LSCs relative to<br>HSPCs were recovered; Secondary assays                                                                                                                                                                                                                                                     |
|                   | Nermelization                                            | N/A                                                                                                                                                                                                                                                                                                                                                                                                     |
|                   | Normalization                                            | well was performed for compound treatments on<br>each plate using the mean of neutral control wells<br>(set at 0% effect) and the mean of positive control<br>wells (set at -100% effect) on that plate. Each<br>experimental compound was thus represented as a<br>percent effect on CAFC area per well within this<br>normalized range.                                                               |
|                   | Additional comments                                      | All compounds were tested in duplicate                                                                                                                                                                                                                                                                                                                                                                  |
| Post-HTS analysis | Hit criteria                                             | The lowest (in magnitude) % inhibitory effect (see<br>Normalization above) required to achieve statistical<br>significance within a given screening run (z-score<br>less than -3 relative to the neutral control in both<br>replicates) was identified. This cutoff (-67% effect)<br>was then used to permissively identify hits across<br>the run that achieved at least this degree of<br>inhibition. |
|                   | HII rate                                                 |                                                                                                                                                                                                                                                                                                                                                                                                         |
|                   | Additional assay(s)                                      | Retesting (above); Secondary screening assays<br>(Fig. 1e); Other secondary studies.                                                                                                                                                                                                                                                                                                                    |
|                   | Commation of hit punty and structure                     | secondary experiments and verified analytically.                                                                                                                                                                                                                                                                                                                                                        |
|                   | Additional comments                                      | · · ·                                                                                                                                                                                                                                                                                                                                                                                                   |

### Supplementary Table 2 | Small Molecule Screening Data

| # | Name and<br>Source                   | Structure                                    | SMILES                                                                                                          | 0            |
|---|--------------------------------------|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------|
| 1 | celastrol*                           |                                              | OC(C(C=C1C2=<br>CC=C3[C@]1(C<br>C[C@]4([C@@H<br>]5C[C@@](CC[C<br>@@]5(CC[C@]3<br>4C)C)(C(O)=O)C)<br>C)C)=O)=C2C | CC10         |
| 2 | piperlongumine <sup>†</sup>          | MeO<br>MeO<br>OMe                            | O=C(C=CCC1)N<br>1C(/C=C/C2=CC(<br>OC)=C(C(OC)=C<br>2)OC)=O                                                      |              |
| 3 | 2-methoxy-<br>estradiol <sup>‡</sup> | MeO<br>HO<br>HO                              | O[C@@H]1[C@<br>@]2(C)CC[C@]3(<br>[H])C(C=C4OC)=<br>C(C=C4O)CC[C<br>@@]3([H])[C@]2<br>([H])CC1                   |              |
| 4 | BRD7116 <sup>§</sup>                 | Me Me<br>Me Me<br>Me Me                      | O=C(NC1=CC=C<br>(S(=O)(C2=CC=<br>C(C=C2)NC(C3C<br>(C3(C)C)(C)C)=O<br>)=O)C=C1)C(C4(<br>C)C)C4(C)C               | CC10;<br>SPT |
| 5 | lovastatin <sup>‡</sup>              | Me<br>Me,<br>,<br>,O<br>H<br>H<br>Me<br>''OH | CCC(C)C(=O)OC<br>1CC(C)C=C2C=<br>CC(C)C(CCC(O)<br>CC(O)CC(=O)O)<br>C12                                          | CC10         |
| 6 | parbendazole <sup>†</sup>            |                                              | O=C(OC)NC1=N<br>C2=C(N1)C=CC(<br>CCCC)=C2                                                                       |              |

### Supplementary Table 3 | The 155 Prioritized Screening Hits

| 7  | methiazole <sup>†</sup> |                                                               | O=C(NC1=NC2=<br>C(N1)C=CC(SC(<br>C)C)=C2)OC                                                                                               |      |
|----|-------------------------|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|------|
| 8  | BRD1686**               |                                                               | O=C(C(OC1=CC<br>=C(C=C1)OC)C)<br>NC2=C(C=CC=C<br>2)OCC                                                                                    |      |
| 9  | BRD9608ª                | O<br>NH<br>NH<br>NH<br>NH<br>H <sub>2</sub> N<br>He<br>O<br>H | O=C(C1=CC=CC<br>(NC(C2CCCC2)<br>=O)=C10[C@@<br>H]([C@@H](C3)<br>C)CN(C)CC4=CC<br>=C(C=C4)C(NC5<br>=C(C=CC=C5)N)<br>=O)N3[C@H](CO<br>)C    |      |
| 10 | BRD6708ª                | $H_{H}$                                                       | O=C(C(C=CC=C<br>1NC(NC2=CC=C<br>C=C2)=O)=C1O[<br>C@@H]([C@@H<br>](C3)C)CN(C)CC<br>4=CC=C(C(NC5=<br>CC=CC=C5N)=O<br>)C=C4)N3[C@H](<br>CO)C |      |
| 11 | BRD1319 <sup>††</sup>   | Me<br>Me                                                      | CC[N+]1=C(/C=C<br>(C2)/C=C(CC2C)<br>C)SC3=C1C=CC<br>=C3                                                                                   | CC10 |
| 12 | BRD0638 <sup>††</sup>   | Me<br>Me<br>Me                                                | CC[N+]1=C(/C=C<br>(C2)\C=C(CC2(C<br>)C)C)OC3=C1C=<br>CC=C3                                                                                | CC10 |
| 13 | BRD1856 <sup>§</sup>    |                                                               | O=C(C1=CC=CC<br>=C1)C2=CC=[N+<br>](CC3=NC=CC=<br>C3)C=C2                                                                                  | CC10 |
| 14 | BRD6491**               | O <sub>2</sub> N<br>H<br>O<br>Me<br>OMe                       | O=C(C1=CC=C([<br>N+]([O-<br>])=O)C=C1)NC2=<br>CC=CC(OC(C)C(<br>C3=CC=C(C=C3)<br>OC)=O)=C2                                                 | CC10 |

| 15 | BRD8404 <sup>‡‡</sup>                 | Me<br>Me<br>S                                            | O=C(C1=CC=CS<br>1)C2=C(C3=CC=<br>C(C=C3)C)C(C#<br>N)=C(N2CC4)C5<br>=C4C=C(C(OC)=<br>C5)OC                    | CC10         |
|----|---------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------|
| 16 | nitrendipine <sup>§§</sup>            |                                                          | O=[N+]([O-<br>])C1=CC=CC(C2<br>C(C(OCC)=O)=C<br>(C)NC(C)=C2C(O<br>C)=O)=C1                                   |              |
| 17 | BRD53501**                            | Me<br>Me<br>OH<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N   | OC(CN1C(C=CC<br>=C2)=C2N=C1C)<br>COC(C=C3C(C)<br>C)=C(C=C3)C                                                 | CC5          |
| 18 | L-744,832 <sup>§§</sup>               | HS NH <sub>2</sub> Me O Me | O=C(N[C@@H](<br>C(OC(C)C)=O)C<br>CS(=O)(C)=O)[C<br>@H](CC1=CC=C<br>C=C1)OC[C@@<br>H](NC[C@H](CS)<br>N)C(C)CC |              |
| 19 | troglitazone***                       | Me<br>Me<br>HO<br>Me<br>Me<br>Me                         | O=C(NC1=O)SC<br>1CC(C=C2)=CC=<br>C2OCC3(C)OC(<br>C(C)=C4C)=C(C(<br>C)=C4O)CC3                                | CC10;<br>SPT |
| 20 | Bax channel<br>blocker <sup>†††</sup> |                                                          | OC(CN1CCNCC<br>1)CN2C(C=CC(B<br>r)=C3)=C3C4=C2<br>C=CC(Br)=C4                                                |              |

| 21 | BRD1059 <sup>‡‡</sup>                        |                                                   | CIC(C=C1)=CC=<br>C1NC(/N=S(C2=<br>C(C(CCC3)=O)C<br>3=C(S2)CI)\C)=O                                                                                          |      |
|----|----------------------------------------------|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 22 | BRD7506 <sup>‡</sup>                         |                                                   | O=C1C[C@@]2(<br>C)C(C[C@@](C(<br>C(O3)=O)=C)([H]<br>)[C@H]3C2)C(C)<br>=C1                                                                                   |      |
| 23 | BRD3807 <sup>‡</sup>                         | HO<br>Me<br>Me<br>H<br>H<br>H<br>H<br>H<br>H<br>H | O=C(C(CO)=C(C<br>1)C)OC1[C@H]([<br>C@H]2[C@@]3([<br>C@](CC2)([H])[C<br>@@]4([H])[C@]([<br>C@]([C@]5(O6)[<br>C@H]6C4)(C(C=<br>C[C@H]5O)=O)C<br>)([H])CC3)C)C |      |
| 24 | BRD0602 <sup>‡</sup>                         |                                                   | OC[C@H](C([C@<br>H]1C/C=C([C@H<br>](CC/C(C)=C/CC/<br>C(C)=C\C[C@@]<br>12C)O)/C)=C(O)<br>C2=O)C                                                              |      |
| 25 | BRD7359**                                    |                                                   | O=[N+]([O-<br>])C(C=C(C=C1)N<br>C(C(CC2=CC=C<br>C=C2)N3C(C(C4<br>CC5CC4)C5C3=<br>O)=O)=O)=C1C                                                               | CC10 |
| 26 | pioglitazone<br>hydrochloride <sup>†††</sup> |                                                   | O=C(NC(S1)=O)<br>C1CC2=CC=C(C<br>=C2)OCCC(C=C<br>3)=NC=C3CC                                                                                                 | SPT  |

| 27 | BRD6436*                  | Ме ОН<br>ОН<br>ОН | O=C(CCC(/C=C/<br>C(C1O)O)O)OC1<br>CCCCCCC                                                                      | CC5 |
|----|---------------------------|-------------------|----------------------------------------------------------------------------------------------------------------|-----|
| 28 | BRD6574**                 |                   | OC(COC1=C(F)C<br>=C(Br)C=C1F)C<br>N2CCC(CC2)CN<br>3C(C4=CC=CC5<br>=C4C(C3=O)=CC<br>=C5)=O                      |     |
| 29 | nimopidine <sup>§§</sup>  |                   | O=[N+]([O-<br>])C1=CC=CC(C2<br>C(C(OCCOC)=O)<br>=C(C)NC(C)=C2<br>C(OC(C)C)=O)=<br>C1                           |     |
| 30 | trifluridine <sup>†</sup> |                   | OC[C@@H]1[C<br>@H](CC(O1)N2C<br>(NC(C(C(F)(F)F)<br>=C2)=O)=O)O                                                 |     |
| 31 | BRD3636 <sup>‡</sup>      |                   | O=C(/C1=C/CC[<br>C@]2(O[C@@H]<br>2[C@H]3OC(C([<br>C@@H]3[C@H](<br>C1OC(C)=O)OC(<br>/C(C)=C/C)=C)=<br>C)=O)C)OC |     |
| 32 | BRD4560 <sup>‡</sup>      |                   | O=C1OCC(CC[C<br>@@](O)([C@]([C<br>@H]2[C@@H](C<br>3)OC(C)=O)(CC<br>CC2(C)C)C)[C@<br>H]3C)=C1                   |     |

| 33 | SKF-96365 <sup>§§</sup>     | MeO OMe                                                                                            | COC1=CC=C(CC<br>COC(CN2C=NC=<br>C2)C3=CC=C(C=<br>C3)OC)C=C1                                                                                      |     |
|----|-----------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 34 | BRD3808**                   | Me NH OH<br>Me NH OH                                                                               | O=C(N(C1=O)C)<br>C2=C(N=C(N2C<br>C3=CC=C(C=C3)<br>F)NCC(O)C4=CC<br>=CC=C4)N1C                                                                    | CC5 |
| 35 | vesamicol<br>hydrochloride* | OH<br>N                                                                                            | OC1C(CCCC1)N<br>2CCC(CC2)C3=<br>CC=CC=C3                                                                                                         | CC5 |
| 36 | BRD0471 <sup>‡</sup>        | Me Me<br>Me O<br>Me O<br>Me O<br>Me O<br>Me O<br>Me O<br>Me                                        | O=C([C@@]([C<br>@H]1C[C@@H]2<br>C(C(/C=C\C(C)(C<br>)O)=O)=C)(O1)C)<br>[C@@H]2OC(CC<br>(C)C)=O                                                    |     |
| 37 | BRD9886**                   |                                                                                                    | O=C(NC(C=CC=<br>C1)=C1S2)C2CC<br>(NC(C(OCC)=C3)<br>=CC=C3[N+]([O-<br>])=O)=O                                                                     |     |
| 38 | rosiglitazone*              |                                                                                                    | O=C(NC(S1)=O)<br>C1CC2=CC=C(C<br>=C2)OCCN(C3=<br>NC=CC=C3)C                                                                                      |     |
| 39 | BRD2476⁵                    | O<br>O<br>O<br>N<br>Me<br>H <sub>2</sub> N<br>O<br>Me<br>O<br>H<br>O<br>H<br>O<br>H <sub>2</sub> N | O=C(C(C=C(C=C<br>1)NS(C2=CC=C<br>C=C2)(=O)=O)=<br>C1O[C@H]([C@<br>@H](C3)C)CN(C)<br>CC4=CC=C(C(N<br>C5=C(C=CC=C5)<br>N)=O)C=C4)N3[<br>C@@H](CO)C |     |

| 40 | BRD2327⁵                                    | Me N OH                       | O=C(CC(C=C(C=<br>C1)N(C)C)=C1O[<br>C@H]([C@@H](<br>C2)C)CN(C)CC3<br>=CC=C(C=C3)C(<br>NC4=CC=CC=C4<br>N)=O)N2[C@@H<br>](CO)C   |      |
|----|---------------------------------------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------|------|
| 41 | BRD0666**                                   |                               | O=C1N(C2=CC=<br>C(C)C(C)=C2)C(<br>SCC(NC(C=CC=<br>C3)=C3C)=O)=N<br>C4=C1C(C)=C(S<br>4)C                                       |      |
| 42 | BRD8436**                                   |                               | [O-<br>][N+](N(N=C1[N+<br>]([O-<br>])=O)C2=CC=CC<br>=C2)=C1NCCC3<br>=CC=C(C(OC)=C<br>3)OC                                     | CC10 |
| 43 | telenzepine<br>dihydrochloride <sup>†</sup> | HN<br>N<br>N<br>Me<br>N<br>Me | O=C(C1=CSC(C)<br>=C12)NC3=C(C=<br>CC=C3)N2C(CN(<br>CC4)CCN4C)=O                                                               | CC10 |
| 44 | tosyl-phe-<br>CMK <sup>§§</sup>             | Me<br>Me                      | CICC([C@H](CC<br>1=CC=CC=C1)N<br>S(C2=CC=C(C=<br>C2)C)(=O)=O)=O                                                               |      |
| 45 | tetrandrine <sup>§§</sup>                   |                               | COC1=C(OC(C=<br>C2)=CC=C2C[C<br>@H]3C(C(CCN3<br>C)=C4)=CC(OC5<br>=C([C@@H]6C7)<br>C(CCN6C)=CC(<br>OC)=C5OC)=C4<br>OC)C=C7C=C1 |      |

| 46 | BRD9912 <sup>c,e,g</sup>    | OH O<br>N<br>H<br>Br                                                                               | OC1=CC=C(Br)C<br>=C1/C=N/NC(C2<br>=CC=CC=C2O)=<br>O                                                                                                    | CL5 |
|----|-----------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 47 | BRD8012 <sup>b</sup>        |                                                                                                    | O=C(N(C[C@@<br>H]([C@@H](O1)<br>CN(C)CC2=CC=<br>C(C=C2)C(NC3=<br>C(N)C=CC=C3)=<br>O)C)[C@H](C)C<br>O)CC4=C1C=CC<br>(NC(NC5=CC=C(<br>C=C5)OC)=O)=C<br>4 |     |
| 48 | BRD3408 <sup>c,e,g</sup>    |                                                                                                    | OC(C(OC)=C1)=<br>CC(Br)=C1/C=N/<br>NC(CCCCCCC(N<br>O)=O)=O                                                                                             | CL5 |
| 49 | parthenolide <sup>‡‡‡</sup> | Me<br>Me<br>O                                                                                      | CC1=CCC[C@]2<br>(C)O[C@@H]2[C<br>@H]3OC(=O)C(=<br>C)[C@@H]3CC1                                                                                         | SPT |
| 50 | BRD4115 <sup>§</sup>        | O<br>H<br>N<br>O                                                                                   | FC1=CC=C(C=C<br>1)CNC(C2=C(C=<br>CC=C2)C(CC3=<br>CC=CC=C3)=O)<br>=O                                                                                    |     |
| 51 | BRD3999ª                    | Me<br>S<br>NH<br>O<br>Me<br>H <sub>2</sub> N<br>Me<br>H <sub>2</sub> N                             | O=C(C1=CC=CC<br>(NS(C2=CC=C(C<br>=C2)C)(=O)=O)=<br>C1O[C@@H]([C<br>@@H](C3)C)CN(<br>C)CC4=CC=C(C(<br>NC5=C(C=CC=C<br>5)N)=O)C=C4)N3<br>[C@@H](CO)C     |     |
| 52 | BRD1478ª                    | S NH<br>NH<br>NH<br>NH<br>NH<br>NH<br>NH<br>NH<br>NH<br>NH<br>H <sub>2</sub> N<br>H <sub>2</sub> N | O=C(C(C=CC=C<br>1NC(C2=NC3=C(<br>C=CC=C3)S2)=O<br>)=C10[C@@H]([<br>C@@H](C4)C)C<br>N(C)CC5=CC=C(<br>C(NC6=CC=CC=<br>C6N)=O)C=C5)N<br>4[C@H](CO)C       | SPT |

| 53 | BRD0193⁵ | Me <sup>-N</sup><br>Me <sup>-N</sup><br>NH <sub>2</sub><br>NH <sub>2</sub> | O=C(CC(C=C(C=<br>C1)NC(CCCCCC<br>(NC2=CC=CC=C<br>2N)=O)=O)=C1O[<br>C@@H]([C@@H<br>](C3)C)CN(C)CC<br>4CCCCC4)N3[C<br>@@H](CO)C                      | CC5 |
|----|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 54 | BRD9122⁵ | NH <sub>2</sub><br>NH <sub>2</sub><br>Me<br>NH <sub>2</sub><br>Me<br>NH <sub>2</sub><br>Me<br>NH <sub>2</sub><br>Me<br>NH <sub>2</sub><br>Me<br>NH <sub>2</sub><br>Me<br>NH <sub>2</sub><br>Me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | O=C(CC(C=C(C=<br>C1)NC(NC2=CC(<br>OCO3)=C3C=C2<br>)=O)=C1O[C@H]<br>([C@H](C4)C)CN<br>(C)CC5=CC=C(C<br>(NC6=CC=CC=C<br>6N)=O)C=C5)N4[<br>C@@H](CO)C | CC5 |
| 55 | BRD6332ª | Me H <sub>2</sub> N<br>Me OH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | O=C(C1=CC=CC<br>(N(C)C)=C1O[C<br>@H]([C@H](C2)<br>C)CN(C)CC3=CC<br>=C(C(NC4=CC=<br>CC=C4N)=O)C=<br>C3)N2[C@@H](<br>CO)C                            |     |
| 56 | BRD3719⁵ | NH2<br>NH2<br>NH2<br>NH2<br>NH2<br>NH2<br>NH2<br>NH2<br>NH2<br>NH2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | O=C(C1=CC(NC(<br>CCCCCC(NC2=<br>C(N)C=CC=C2)=<br>O)=O)=CC=C1O[<br>C@@H]([C@@H<br>](C3)C)CN(C)CC<br>4=CC(OCO5)=C<br>5C=C4)N3C(CO)<br>C              |     |
| 57 | BRD2023⁵ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | O=C(CC(C=C(C=<br>C1)NC(C2CCCC<br>C2)=O)=C1O[C<br>@H]([C@H](C3)<br>C)CN(C)CC4=CC<br>=C(C=C4)C(NC5<br>=C(N)C=CC=C5)<br>=O)N3[C@@H](<br>CO)C          | SPT |

| 58 | BRD8170⁵                 | $O = H_2 N$                                           | O=C(C1=CC(NC(<br>C2CCCC2)=O)<br>=CC=C1O[C@H]<br>([C@H](C3)C)CN<br>(C)CC4=CC=C(C<br>=C4)C(NC5=C(C<br>=CC=C5)N)=O)N<br>3[C@H](CO)C              |     |
|----|--------------------------|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 59 | BRD9834 <sup>c,e,g</sup> |                                                       | CIC1=C(OC)C(O<br>C)=CC(CI)=C1/C<br>=N/NC(CCCCC(<br>NO)=O)=O                                                                                   |     |
| 60 | BRD6819⁵                 | $Me \xrightarrow{N}_{Me} O \xrightarrow{N}_{Me} H_2N$ | O=C(C1=CC(N(C<br>)C)=CC=C1O[C<br>@H]([C@H](C2)<br>C)CN(C)CC3=CC<br>=C(C(NC4=C(C=<br>CC=C4)N)=O)C=<br>C3)N2[C@@H](<br>CO)C                     |     |
| 61 | BRD0350 <sup>c,e,g</sup> | OMe<br>OMe                                            | BrC1=NC=CC=C<br>1/C=N/NC(CCCC<br>CCC(OC)=O)=O                                                                                                 |     |
| 62 | BRD6376 <sup>c,e,g</sup> |                                                       | ONC(CCCCC(N/<br>N=C/C1=NC(C=<br>CC=C2)=C2C=C<br>1)=O)=O                                                                                       | CC5 |
| 63 | BRD1484 <sup>c,e,g</sup> | OH N OH N OH                                          | OC1=CC(/C=N/N<br>C(CCCCCC(NC2<br>=CC=CC=C2O)=<br>O)=O)=C(C=C1)<br>O                                                                           |     |
| 64 | BRD4247 <sup>c,e,g</sup> |                                                       | ONC(CCCCCC(<br>N/N=C/C(SC=C1<br>)=C1C)=O)=O                                                                                                   |     |
| 65 | BRD6258ª                 |                                                       | O=C(C(C=CC=C<br>1NC(C2=CC(C)=<br>NN2C)=O)=C1O[<br>C@@H]([C@@H<br>](C3)C)CN(C)CC<br>4=CC=C(C(NC5=<br>C(C=CC=C5)N)=<br>O)C=C4)N3[C@<br>@H](CO)C |     |

| 66 | BRD8008 <sup>‡</sup>   |                                                                          | O=C(N(CCC1)[C<br>@@H]1C2=O)[C<br>@](O)([C@H]3O<br>C/C=C(C)/C)N2[<br>C@@H]4C5=C3<br>C(C=C6)=C(N5[C<br>@H](OOC(C4)(C<br>)C)/C=C(C)/C)C=<br>C6OC  |  |
|----|------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 67 | BRD0837ª               | N<br>N<br>Me<br>H <sub>2</sub> N<br>H<br>H<br>H <sub>2</sub> N<br>H<br>H | O=C(C1=CC(NS(<br>C2=CC=CC=C2)(<br>=O)=O)=CC=C1<br>O[C@@H]([C@<br>@H](C3)C)CN(C)<br>CC4=CC=C(C(N<br>C5=C(C=CC=C5)<br>N)=O)C=C4)N3[<br>C@H](CO)C |  |
| 68 | BRD2498 <sup>§§</sup>  | OMe<br>MeO<br>MeO<br>NH <sub>2</sub><br>Cl                               | O=S(NCCN(CC1)<br>CCC1CCC(C(C=<br>C(C(N)=C2)Cl)=<br>C2OCC3=CC(OC<br>)=CC(OC)=C3)=<br>O)(C)=O                                                    |  |
| 69 | RG-14620 <sup>§§</sup> |                                                                          | CIC1=CC(CI)=CC<br>(/C=C(C#N)/C2=<br>CC=CN=C2)=C1                                                                                               |  |
| 70 | BRD8275**              |                                                                          | CIC1=CC(OCC(N<br>C2=C(C(C)=C(S2<br>)C)C(OCC)=O)=<br>O)=CC=C1                                                                                   |  |

| 71 | BRD2736⁵                 | Me H <sub>2</sub> N<br>Me O<br>Me O<br>Me O<br>Me O<br>Me O<br>O<br>H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | O=C(C1=CC(N(C<br>)C)=CC=C1O[C<br>@H]([C@H](C2)<br>C)CN(C)CC3=CC<br>=C(C=C3)C(NC4<br>=C(C=CC=C4)N)<br>=O)N2[C@H](CO<br>)C                           |             |
|----|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 72 | BRD9456ª                 | $N$ $N$ $N$ $N$ $Me$ $H_2N$ $Me^{V^{(1)}}$ $He^{V^{(1)}}$ $He^{V^{(2)}}$ $He^{V^$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | O=C(C1=CC=CC<br>(NC(C2=NC=CN<br>=C2)=O)=C1O[C<br>@@H]([C@@H](<br>C3)C)CN(C)CC4<br>=CC=C(C(NC5=<br>C(C=CC=C5)N)=<br>O)C=C4)N3[C@<br>H](CO)C         |             |
| 73 | BRD1177 <sup>‡</sup>     | MeO<br>MeO<br>OMe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | O=C(C=CCC1)N<br>1C(CCC2=CC(O<br>C)=C(C(OC)=C2)<br>OC)=O                                                                                            |             |
| 74 | BRD7475⁵                 | CI<br>S<br>NH <sub>2</sub><br>CI<br>S<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>CI<br>N<br>H<br>C<br>N<br>H<br>CI<br>N<br>H<br>C<br>N<br>H<br>C<br>N<br>H<br>C<br>N<br>H<br>C<br>N<br>H<br>C<br>N<br>H<br>C<br>N<br>H<br>C<br>N<br>H<br>C<br>N<br>H<br>C<br>N<br>N<br>N<br>N | O=C(CC(C=C(C=<br>C1)NS(C2=CC=<br>C(C=C2)Cl)(=O)=<br>O)=C1O[C@H]([<br>C@H](C3)C)CN(<br>C)CC4=CC=C(C<br>=C4)C(NC5=CC=<br>CC=C5N)=O)N3[<br>C@@H](CO)C |             |
| 75 | BRD4053 <sup>c,e,g</sup> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | O=C(N/N=C/C1=<br>NC(C=CC=C2)=<br>C2C=C1)C3=NC<br>=CC=C3                                                                                            |             |
| 76 | SB-216641 <sup>§§</sup>  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | O=C(C1=CC=C(<br>C2=C(C)C=C(C3<br>=NOC(C)=N3)C=<br>C2)C=C1)NC(C=<br>C4OCCN(C)C)=<br>CC=C4OC                                                         | CC5;<br>SPT |

| 77 | GF-109203X <sup>§§</sup>  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | O=C(N1)C(C2=C<br>N(C3=C2C=CC=<br>C3)CCCN(C)C)=<br>C(C4=CNC5=C4                                                                                 | CC10 |
|----|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|------|
|    |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C(C4=CNC5=C4<br>C=CC=C5)C1=O                                                                                                                   |      |
| 78 | BRD5418 <sup>b</sup>      | N<br>N<br>H<br>N<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | O=C(C1=CC(NC(<br>NC2=CC=CC=C2)=O)=CC=C1O[C<br>@@H]([C@@H](<br>C3)C)CN(C)CC4<br>=CC=C(C(NC5=<br>C(C=CC=C5)N)=<br>O)C=C4)N3[C@<br>H](CO)C        |      |
| 79 | Azathioprine <sup>†</sup> | $N = NO_2$ | CN1C(SC2=NC=<br>NC3=C2NC=N3)<br>=C(N=C1)[N+]([O<br>-])=O                                                                                       |      |
| 80 | BRD6790ª                  | NH<br>NH<br>NH<br>NH<br>H <sub>2</sub> N<br>H <sub>2</sub> N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | O=C(C(C=CC=C<br>1NS(C2=CC=CC<br>=C2)(=O)=O)=C1<br>O[C@@H]([C@<br>@H](C3)C)CN(C)<br>CC4=CC=C(C(N<br>C5=C(C=CC=C5)<br>N)=O)C=C4)N3[<br>C@H](CO)C |      |

| 81 | BRD2011ª                  | NH<br>NH<br>Me<br>Me<br>OH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | O=C(C1=CC=CC<br>(NC(C2CCCCC2)<br>=O)=C1O[C@H](<br>[C@H](C3)C)CN(<br>C)CC4=CC=C(C(<br>NC5=CC=CC=C5<br>N)=O)C=C4)N3[<br>C@H](CO)C                           |  |
|----|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 82 | Tracazoloate <sup>†</sup> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | O=C(OCC)C1=C(<br>C(C=NN2CC)=C<br>2N=C1C)NCCCC                                                                                                             |  |
| 83 | BRD27137⁵                 | $ \begin{array}{c} & O \\ & H_2 \\ & H_2 \\ & H_2 \\ & H_1 \\ & H_2 \\ & H_1 \\ & H_2 \\ $ | O=C(CC(C=C(C=<br>C1)NC(NC2=CC<br>=CC3=C2C=CC=<br>C3)=O)=C1O[C<br>@H]([C@H](C4)<br>C)CN(C)CC5=CC<br>=C(C=C5)C(NC6<br>=C(N)C=CC=C6)<br>=O)N4[C@@H](<br>CO)C |  |
| 84 | BRD4586⁵                  | Me<br>Me<br>Me<br>Me<br>Me<br>Me<br>Me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | O=C(CC1=CC(N(<br>C)C)=CC=C1O[C<br>@H]([C@H](C2)<br>C)CN(C)CC3=CC<br>=C(C(NC4=C(N)<br>C=CC=C4)=O)C<br>=C3)N2[C@H](C<br>O)C                                 |  |
| 85 | BRD1684 <sup>c,e,g</sup>  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BrC(C=NC=C1)=<br>C1/C=N/NC(CCC<br>CCC(NC2=CC=C<br>C=C2O)=O)=O                                                                                             |  |

| 86 | BRD3259⁵               | $Me \underset{Me}{\overset{N}{\overset{N}{\overset{N}{\overset{N}{\overset{N}{\overset{N}{\overset{N}{$ | O=C(C(C=C(C=C<br>1)N(C)C)=C1O[C<br>@@H]([C@H](C<br>2)C)CN(C)CC3=<br>CC=C(C(NC4=C(<br>C=CC=C4)N)=O)<br>C=C3)N2[C@H](<br>CO)C                                                                                   |  |
|----|------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 87 | Etoposide <sup>†</sup> | HO<br>HO, Me<br>HO, Me<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO    | O=C(OC1)[C@]([<br>C@@]1([H])[C@<br>@H]2O[C@@H]<br>3O[C@@](CO[C<br>@@H](C)O4)([H]<br>)[C@]4([H])[C@H<br>](O)[C@H]3O)([H<br>])[C@H](C5=CC(<br>OC)=C(O)C(OC)<br>=C5)C6=C2C=C(<br>OCO7)C7=C6                      |  |
| 88 | BRD1486 <sup>‡</sup>   | AcO<br>AcO<br>AcO<br>HO<br>Me<br>Me<br>N<br>Me                                                          | O[C@H]1[C@H](<br>OC([C@H](C)[C<br>@@H](C)C2=C3<br>C=CC=N2)=O)[C<br>@@](O)(C)[C@<br>@]4(O[C@@]5(C<br>)COC3=O)[C@H]<br>(OC(C)=O)[C@H]<br>[5[C@H](OC(C)=<br>O)[C@@H](OC(<br>C)=O)[C@H]1<br>OC(C6=CC=CC=<br>C6)=O |  |
| 89 | BRD3119ª               | Me O HN<br>Me O HN<br>Me O HN<br>Me H <sub>2</sub> N                                                    | O=C(C1=CC=CC<br>(NS(C2=C(ON=C<br>2C)C)(=O)=O)=C<br>1O[C@@H]([C@<br>@H](C3)C)CN(C)<br>CC4=CC=C(C=C<br>4)C(NC5=C(C=C<br>C=C5)N)=O)N3[<br>C@H](CO)C                                                              |  |
| 90 | BRD1831 <sup>‡</sup>   | MeO OH                                                                                                  | O[C@@H]([C@<br>@H](O1)/C=C/C2<br>=CC=CC=C2)C(<br>OC)=CC1=O                                                                                                                                                    |  |

| 91 | BRD7355 <sup>††</sup>    | N=(SH<br>N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SC1=NN=C(CCN<br>2C(C=CC=C3)=C<br>3C4=C2C=CC=C<br>4)N1CC=C                                                                                          |      |
|----|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 92 | BRD9545⁵                 | Me <sup>N</sup><br>Me <sup>N</sup> | O=C(CC(C=C(C=<br>C1)NC(CCCCCC<br>(NC2=C(N)C=CC<br>=C2)=O)=O)=C1<br>O[C@H]([C@H](<br>C3)C)CN(C)CC4<br>CC4)N3[C@@H]<br>(CO)C                         |      |
| 93 | BRD33679 <sup>b</sup>    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | O=C(CC1=CC(N<br>S(C2=CC=CS2)(<br>=O)=O)=CC=C1<br>O[C@H]([C@H](<br>C3)C)CN(C)CC4<br>=CC=C(C=C4)C(<br>NC5=C(N)C=CC<br>=C5)=O)N3[C@<br>@H](CO)C       |      |
| 94 | BRD7348 <sup>c,e,g</sup> | HO <sup>-</sup> <sup>H</sup><br>O<br>N<br>Br                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ONC(CCCCCCC<br>(N/N=C/C1=CC=<br>CC(Br)=C1)=O)=<br>O                                                                                                |      |
| 95 | BRD8827**                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | O=C(N(C(N1C)=<br>O)C)C2=C1N=C(<br>NCC3=CC=CO3)<br>N2CC4=CC=CC=<br>C4C                                                                              | CC10 |
| 96 | BRD1859 <sup>a</sup>     | $CI$ $O$ $NH$ $NH$ $H_2N$ $H_$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | O=C(C1=CC=CC<br>(NS(C2=CC=C(C<br>I)C=C2)(=O)=O)=<br>C1O[C@@H]([C<br>@@H](C3)C)CN(<br>C)CC4=CC=C(C<br>=C4)C(NC5=C(C<br>=CC=C5)N)=O)N<br>3[C@H](CO)C |      |

| 97  | dexamethasone<br>acetate <sup>†</sup> |                                                                                             | O=C(C)OCC([C<br>@](O)([C@@]1([<br>C@@]2([H])[C@]<br>3([H])[C@@](F)([<br>C@](C(CC3)=CC<br>4=O)(C=C4)C)[C<br>@@H](O)C1)C)[<br>C@@H](C2)C)=<br>O           |  |
|-----|---------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 98  | BRD4339⁵                              | O<br>N<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H                     | O=C(C1=CC(NC(<br>NC2=CC=CC3=C<br>2C=CC=C3)=O)=<br>CC=C1O[C@@H<br>]([C@@H](C4)C)<br>CN(C)CC5=CC=<br>C(C(NC6=C(C=C<br>C=C6)N)=O)C=C<br>5)N4[C@H](CO)<br>C |  |
| 99  | BRD5229⁵                              |                                                                                             | O=C(CC1=CC(N<br>S(C2=CC=C(C=<br>C2)F)(=O)=O)=C<br>C=C1O[C@H]([C<br>@H](C3)C)CN(C)<br>CC4=CC=C(C(N<br>C5=C(N)C=CC=<br>C5)=O)C=C4)N3[<br>C@@H](CO)C       |  |
| 100 | BRD0010 <sup>b</sup>                  | N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N | O=C(C1=CC(NC(<br>NC2=CC=CC=C2<br>)=O)=CC=C1O[C<br>@@H]([C@@H](<br>C3)C)CN(C)CC4<br>=CC=C(C=C4)C(<br>NC5=C(C=CC=C<br>5)N)=O)N3[C@<br>@H](CO)C            |  |
| 101 | BRD6218 <sup>c,e,g</sup>              |                                                                                             | [O-<br>][N+]1=CC=C(C=<br>C1)/C=N/NC(C2=<br>NC=CC=C2)=O                                                                                                  |  |

| 102 | BRD8430 <sup>b</sup> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | O=C(CC(C=C(C=<br>C1)N(C)C)=C1O[<br>C@H]([C@H](C2<br>)C)CN(C)CC3=C<br>C=C(C(NC4=C(N<br>)C=CC=C4)=O)C<br>=C3)N2[C@@H](<br>CO)C               |  |
|-----|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--|
| 103 | BRD3521ª             | N =<br>N =<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$HN = H_{2}N$<br>$HN = H_{2}N$<br>$HN = H_{2}N$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^{1}$<br>$Me^$ | O=C(C(C=CC=C<br>1NC(C2=CC=NC<br>=C2)=O)=C1O[C<br>@@H]([C@@H](<br>C3)C)CN(C)CC4<br>=CC=C(C(NC5=<br>C(C=CC=C5)N)=<br>O)C=C4)N3[C@<br>H](CO)C |  |
| 104 | BRD1413 <sup>d</sup> | HO O N <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | OCCCOC1=CC=<br>C(C2=N[C@](C(<br>N3CCOCC3)=O)(<br>CC4=CC=CC=C4<br>CN=[N+]=[N-<br>])CO2)C=C1                                                 |  |
| 105 | BRD5757ª             | Me H <sub>2</sub> N<br>Me H <sub>2</sub> N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | O=C(C(C=CC=C<br>1N(C)C)=C1O[C<br>@@H]([C@@H](<br>C2)C)CN(C)CC3<br>=CC=C(C(NC4=<br>CC=CC=C4N)=O<br>)C=C3)N2[C@H](<br>CO)C                   |  |
| 106 | BRD0257**            | $ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C1(CCN2C(N=C(<br>N=N3)SCC4=CC<br>5=NON=C5C=C4<br>)=C3C6=C2C=C<br>C=C6)=CC=CC=<br>C1                                                        |  |

| 107 | BRD6992ª                  | N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N                         | O=C(C1=CC=CC<br>(NC(C2=CC=C(C<br>=C2)C3=NC=CS<br>3)=O)=C1O[C@<br>@H]([C@@H](C<br>4)C)CN(C)CC5=<br>CC=C(C(NC6=C<br>C=CC=C6N)=O)<br>C=C5)N4[C@H](<br>CO)C | SPT  |
|-----|---------------------------|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 108 | BRD6975 <sup>b</sup>      | F O O O O O O O O O O O O O O O O O O O                                                                             | O=C(C1=CC(NC(<br>NC2=CC=C(C=C<br>2)F)=O)=CC=C1<br>O[C@@H]([C@<br>@H](C3)C)CN(C)<br>CC4=CC=C(C(N<br>C5=C(C=CC=C5)<br>N)=O)C=C4)N3[<br>C@@H](CO)C         |      |
| 109 | BRD58870 <sup>e</sup>     | HO NH<br>OMe                                                                                                        | O=C(N([C@H]1C<br>2=CC=C(CO)C=<br>C2)CC3(C4)C[C<br>@@H](C[C@@H<br>]4C5)C[C@@H]5<br>C3)C6=C(C=CC=<br>C6)[C@H]1C(NC<br>CC(C=C7)=CC=<br>C7OC)=O             |      |
| 110 | NSC 119889 <sup>§§§</sup> | Br<br>Br<br>OH<br>OH<br>HO<br>O                                                                                     | OC(C1=C(C(Br)=<br>C(C(Br)=C1Br)Br<br>)C2=C(C=C3)C(<br>OC4=C2C=CC(O<br>)=C4)=CC3=O)=<br>O                                                                | CC10 |
| 111 | BRD9907ª                  | MeO<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>Me<br>H <sub>2</sub> N<br>Me<br>O<br>H <sub>2</sub> N | O=C(N(C[C@H]([<br>C@H](O1)CN(C)<br>CC2=CC=C(C(N<br>C3=C(C=CC=C3)<br>N)=O)C=C2)C)[C<br>@H](C)CO)C4=C<br>1C(NC(NC(C=C5<br>)=CC=C5OC)=O)<br>=CC=C4         |      |

| 112 | BRD5081⁵              | $Me \xrightarrow[N]{Me} O \xrightarrow[N]{Me} H_2N$                                                           | O=C(C1=CC(N(C<br>)C)=CC=C1O[C<br>@H]([C@@H](C<br>2)C)CN(C)CC3=<br>CC=C(C(NC4=C(<br>C=CC=C4)N)=O)<br>C=C3)N2[C@@<br>H](CO)C                       | CC5  |
|-----|-----------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 113 | BRD31108 <sup>ь</sup> |                                                                                                               | O=C(CC(C=C(C=<br>C1)NC(NC2=CC<br>=C(C=C2)F)=O)=<br>C1O[C@H]([C@<br>H](C3)C)CN(C)C<br>C4=CC=C(C=C4)<br>C(NC5=C(N)C=C<br>C=C5)=O)N3[C@<br>@H](CO)C | CC10 |
| 114 | BRD0508ª              | MeO<br>NH<br>NH<br>NH<br>NH<br>NH<br>H<br>NH<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H | O=C1C2=CC=C<br>C(NC(NC3=CC=<br>C(C=C3)OC)=O)<br>=C2O[C@H](CN(<br>C)CC4=CC=C(C(<br>NC5=C(C=CC=C<br>5)N)=O)C=C4)[C<br>@@H](C)CN1[C<br>@@H](C)CO    |      |
| 115 | BRD9652ª              | NH<br>NH<br>NH<br>NH<br>NH<br>NH<br>NH<br>NH<br>H<br>NH<br>H<br>H<br>H<br>H<br>H                              | O=C(C(C=CC=C<br>1NC(C2CC2)=O)<br>=C1O[C@@H]([<br>C@@H](C3)C)C<br>N(C)CC4=CC=C(<br>C(NC5=C(C=CC<br>=C5)N)=O)C=C4)<br>N3[C@H](CO)C                 |      |
| 116 | BRD6350 <sup>b</sup>  |                                                                                                               | O=C(CC(C=C(C=<br>C1)NC(CC2=CC<br>=CC=C2)=O)=C1<br>O[C@H]([C@H](<br>C3)C)CN(C)CC4<br>=CC=C(C(NC5=<br>C(N)C=CC=C5)=<br>O)C=C4)N3[C@<br>@H](CO)C    |      |

| 117 | BRD0983ª                             | $ \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$ | O=C(C(C=CC=C<br>1NC(C2CCCC2<br>)=O)=C1O[C@H]<br>([C@H](C3)C)CN<br>(C)CC4=CC=C(C<br>=C4)C(NC5=C(C<br>=CC=C5)N)=O)N<br>3[C@@H](CO)C            |  |
|-----|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--|
| 118 | BRD8258 <sup>c,e,g</sup>             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | BrC(N=CC=C1)=<br>C1/C=N/NC(CCC<br>CCC(NC2=C(O)<br>C=CC=C2)=O)=<br>O                                                                          |  |
| 119 | BRD2553 <sup>c,e,g</sup>             | HO-N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ONC(CCCCC(N/<br>N=C/C1=CC2=C(<br>C=C1)C(C=CC=<br>C3)=C3C2)=O)=<br>O                                                                          |  |
| 120 | tryphostin AG-<br>1478 <sup>§§</sup> | MeO<br>MeO<br>Cl<br>VH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CIC1=CC(NC2=N<br>C=NC3=C2C=C(<br>OC)C(OC)=C3)=<br>CC=C1                                                                                      |  |
| 121 | BRD1698 <sup>c,e,g</sup>             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ONC(CCCCC(N/<br>N=C/C(SC=C1)=<br>C1C)=O)=O                                                                                                   |  |
| 122 | BRD6717 <sup>‡</sup>                 | Mer H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | O=C(C[C@@H]1<br>[C@H]2[C@@H]<br>3[C@H](C(C(O3)<br>=O)=C)[C@@H](<br>OC(C(CO)=C)=O<br>)CC1=C)[C@@H<br>]2C                                      |  |
| 123 | BRD3438 <sup>b</sup>                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | O=C(CC1=CC(N<br>S(C2=CC=CS2)(<br>=O)=O)=CC=C1<br>O[C@H]([C@H](<br>C3)C)CN(C)CC4<br>=CC=C(C=C4)C(<br>NC5=C(N)C=CC<br>=C5)=O)N3[C@<br>@H](CO)C |  |

| 124 | BRD4729⁵                 | NH <sub>2</sub><br>NH <sub>2</sub><br>Me<br>N<br>N<br>H<br>N<br>O<br>Me<br>O<br>Me<br>O<br>Me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | O=C(CC(C=C(C=<br>C1)NC(C2=CC=<br>NC=C2)=O)=C1<br>O[C@H]([C@H](<br>C3)C)CN(C)CC4<br>=CC=C(C=C4)C(<br>NC5=C(N)C=CC<br>=C5)=O)N3[C@<br>@H](CO)C      |      |
|-----|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 125 | BRD1581 <sup>c,e,g</sup> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | OC1=CC=CC(/C<br>=N/NC(C2=CC=<br>CC=C2O)=O)=C<br>10                                                                                                | CL10 |
| 126 | BRD5099⁵                 | Me<br>O<br>N<br>N<br>Me<br>H <sub>2</sub> N<br>Me<br>H <sub>2</sub> N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | O=C(C1=CC(NS(<br>C2=CC=C(C)C=<br>C2)(=O)=O)=CC<br>=C1O[C@@H]([<br>C@@H](C3)C)C<br>N(C)CC4=CC=C(<br>C(NC5=C(C=CC<br>=C5)N)=O)C=C4)<br>N3[C@H](CO)C |      |
| 127 | BRD8711⁵                 | Me <sup>N</sup><br>Me <sup>N</sup><br>NH <sub>2</sub><br>NH <sub>2</sub> | O=C(CC(C=C(C=<br>C1)NC(CCCCCC<br>(NC2=C(N)C=CC<br>=C2)=O)=O)=C1<br>O[C@@H]([C@<br>@H](C3)C)CN(C)<br>CC4CCCCC4)N3<br>[C@H](CO)C                    |      |
| 128 | BRD4192**                | HO N S O N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | OC1=CC=NC(SC<br>C(NC2=CC=C(O<br>C3=CC=CC=C3)<br>C=C2)=O)=N1                                                                                       |      |
| 129 | BRD6276 <sup>c,e,g</sup> | Me<br>N<br>N<br>HN<br>OH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | O=C(C1=CC=CC<br>=C1O)N/N=C/C2<br>=CN(C3=C2C=C<br>C=C3)C                                                                                           |      |

| 130 | BRD7016 <sup>f</sup>  |                                                                                        | O=C(OCC1)N1C(<br>C=C2)=CC=C2C<br>N(C3=O)C4=C(C<br>=CC=C4)[C@@]<br>3(O[C@H]5CCO)<br>[C@H](C)[C@H]<br>5[Si](C)(C)C6=C<br>C=C(C=C6)OC        |  |
|-----|-----------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--|
| 131 | BRD7283⁵              |                                                                                        | O=C(N(C[C@@<br>H]([C@@H](O1)<br>CN(C)CC2=CC=<br>C(C=C2)C(NC3=<br>C(N)C=CC=C3)=<br>O)C)[C@H](C)C<br>O)CC4=C1C=CC<br>(NC(NC(C)C)=O)<br>=C4  |  |
| 132 | BRD1933 <sup>‡‡</sup> | OH N                                                                                   | OC(C1=CC=CC=<br>C1)(CC2=CC=C<br>N=C2)C3=CC=C<br>C=C3                                                                                      |  |
| 133 | BRD7942⁵              | F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H | O=C(C1=CC(NC(<br>CCC(F)(F)F)=O)<br>=CC=C1O[C@@<br>H]([C@H](C2)C)<br>CN(C)CC3=CC=<br>C(C(NC4=C(C=C<br>C=C4)N)=O)C=C<br>3)N2[C@@H](C<br>O)C |  |
| 134 | BRD3137 <sup>‡</sup>  |                                                                                        | C/C=C(/C)\C(=O)<br>O[C@H]1C[C@<br>@H]2[C@H](OC(<br>=O)C2=C)[C@@<br>H]3O[C@]3(C)C<br>CC=C1C                                                |  |

| 135 | Suxibuzone <sup>†</sup>  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | O=C(N(N(C1=O)<br>C2=CC=CC=C2)<br>C3=CC=CC=C3)<br>C1(COC(CCC(O)<br>=O)=O)CCCC                                                                               |      |
|-----|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 136 | BRD3661 <sup>ь</sup>     | Me<br>NH <sub>2</sub><br>Me<br>NH <sub>2</sub><br>Me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | O=C(CC(C=C(C=<br>C1)NC(CC2=CN(<br>C)C3=C2C=CC=<br>C3)=O)=C1O[C<br>@H]([C@H](C4)<br>C)CN(C)CC5=CC<br>=C(C(NC6=C(N)<br>C=CC=C6)=O)C<br>=C5)N4[C@@H](<br>CO)C |      |
| 137 | BRD2745⁵                 | N<br>N<br>N<br>Me<br>H<br>N<br>H<br>H<br>N<br>H<br>H<br>N<br>H<br>H<br>N<br>H<br>H<br>N<br>H<br>H<br>N<br>H<br>H<br>N<br>H<br>H<br>N<br>H<br>H<br>N<br>H<br>H<br>N<br>H<br>H<br>N<br>H<br>H<br>N<br>H<br>H<br>N<br>H<br>H<br>N<br>H<br>H<br>N<br>H<br>H<br>N<br>H<br>H<br>N<br>H<br>H<br>N<br>H<br>H<br>N<br>H<br>H<br>N<br>H<br>H<br>N<br>H<br>H<br>N<br>H<br>H<br>N<br>H<br>H<br>H<br>N<br>H<br>H<br>H<br>N<br>H<br>H<br>H<br>N<br>H<br>H<br>N<br>H<br>H<br>N<br>H<br>H<br>N<br>H<br>H<br>N<br>H<br>H<br>N<br>H<br>H<br>N<br>H<br>H<br>N<br>H<br>N<br>H<br>H<br>N<br>H<br>N<br>H<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>H<br>N<br>H<br>H<br>N<br>H<br>H<br>N<br>H<br>H<br>N<br>H<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>H<br>N<br>H<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>H<br>N<br>N<br>N<br>H<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N | O=C(C1=CC(NS(<br>C2=CC=CS2)(=O)<br>)=O)=CC=C1O[C<br>@@H]([C@@H](<br>C3)C)CN(C)CC4<br>=CC=C(C(NC5=<br>C(C=CC=C5)N)=<br>O)C=C4)N3[C@<br>H](CO)C              | CL5  |
| 138 | BRD3842**                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CIC1=C(C=CC=C<br>1)N2C(C(C=CC=<br>C3)=C3N=C2CS<br>C4=NC=NC5=C4<br>N=CN5)=O                                                                                 |      |
| 139 | BRD0122 <sup>c,e,g</sup> | HO N N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ONC(CCCCCCC<br>(N/N=C/C1=CC=<br>C(O)C2=C1C=C<br>C=C2)=O)=O                                                                                                 | CL5  |
| 140 | BRD8422 <sup>c,e,g</sup> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | O=C(N/N=C/C1=<br>NC(C=CC=C2)=<br>C2C=C1)CCCCC<br>CC(NC3=CC=CC<br>=C3O)=O                                                                                   | CC10 |

| 141 | BRD9825⁵                   | O<br>HN<br>N<br>Me<br>HN<br>H2<br>H<br>H2<br>H<br>H2<br>H<br>H2<br>H | O=C(C1=CC(NC(<br>C2=CC=NC=C2)<br>=O)=CC=C1O[C<br>@@H]([C@@H](<br>C3)C)CN(C)CC4<br>=CC=C(C=C4)C(<br>NC5=C(C=CC=C<br>5)N)=O)N3[C@<br>@H](CO)C |     |
|-----|----------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 142 | wortmannin <sup>§§</sup>   | O<br>Me<br>O<br>Me<br>O<br>Me                                        | O=C(O1)C2=CO<br>C(C(C3=C4[C@<br>@H](C[C@]5([C<br>@H]3CCC5=O)C<br>)OC(C)=O)=O)=C<br>2[C@]4(C)[C@H]<br>1COC                                   | CC5 |
| 143 | pyrimethamine <sup>†</sup> |                                                                      | CIC(C=C1)=CC=<br>C1C(C(N)=NC(N)<br>=N2)=C2CC                                                                                                |     |
| 144 | tranylcypromine            | · //NH2                                                              | N[C@@H]1[C@<br>H](C1)C2=CC=C<br>C=C2                                                                                                        |     |
| 145 | BRD0686 <sup>c,e,g</sup>   |                                                                      | CIC(N=CC=C1)=<br>C1/C=N/NC(CCC<br>CCC(NC2=CC=C<br>C=C2O)=O)=O                                                                               |     |
| 146 | BRD8085**                  |                                                                      | O=C(CC1=CC=C<br>C=C1)NC(N=C(N<br>=C2C)C3=CC=C(<br>CI)C=C3)=C2C(C<br>)=O                                                                     |     |
| 147 | BRD4355 <sup>c,e,g</sup>   | OH HO HO                                                             | OC1=C(C=CC=C<br>1)C(N/N=C/C2=C<br>(C(C=CC=C3)=C<br>3C=C2)O)=O                                                                               |     |

| 148 | BRD4488⁵               | N<br>Me<br>HN<br>HN<br>HN<br>HN<br>HN<br>HN<br>HN<br>HN<br>HN<br>HN                        | O=C(C1=CC(NC(<br>CC2=CC=CC=C2)<br>)=O)=CC=C1O[C<br>@@H]([C@@H](<br>C3)C)CN(C)CC4<br>=CC=C(C(NC5=<br>C(C=CC=C5)N)=<br>O)C=C4)N3[C@<br>H](CO)C  |  |
|-----|------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--|
| 149 | BRD4081 <sup>††</sup>  |                                                                                            | O=C(N1C(C=CC<br>=C2)=C2SC3=C1<br>C=CC=C3)NC(C)<br>(C)C                                                                                        |  |
| 150 | cotinine <sup>†</sup>  | Me O<br>N                                                                                  | O=C(CC[C@H]1<br>C2=CC=CN=C2)<br>N1C                                                                                                           |  |
| 151 | BRD5036ª               | Me N H <sub>2</sub> N<br>Me H <sub>2</sub> N                                               | O=C(C1=CC=CC<br>(N(C)C)=C1O[C<br>@@H]([C@@H](<br>C2)C)CN(C)CC3<br>=CC=C(C(NC4=<br>C(C=CC=C4)N)=<br>O)C=C3)N2[C@<br>@H](CO)C                   |  |
| 152 | SU 9516 <sup>§§§</sup> | MeO N<br>NH                                                                                | O=C(N1)/C(C2=<br>C1C=CC(OC)=C<br>2)=C\C3=CNC=N<br>3                                                                                           |  |
| 153 | BRD7637ª               | $ \begin{array}{c} F \\ O \\ Me^{V} \\ OH \end{array} $ | O=C(C1=CC=CC<br>(NS(C2=CC=C(F)C=C2)(=O)=O)=<br>C1O[C@@H]([C<br>@@H](C3)C)CN(<br>C)CC4=CC=C(C(<br>NC5=C(C=CC=C<br>5)N)=O)C=C4)N3<br>[C@H](CO)C |  |

| 154 | quercetin <sup>†</sup>   | OC1=CC2=C(C(<br>O)=C1)C(C(O)=C<br>(O2)C3=CC=C(O<br>)C(O)=C3)=O |      |
|-----|--------------------------|----------------------------------------------------------------|------|
| 155 | BRD6379 <sup>c,e,g</sup> | OC1=CC(OC)=C<br>C=C1/C=N/NC(C<br>2=C(C=CC=C2)O<br>)=O          | CL10 |

- \* MicroSource Discovery Systems, Inc.
- <sup>†</sup> Prestwick Chemical
- <sup>‡</sup>Analyticon
- § TimTec
- \*\* ChemBridge
- <sup>††</sup> ChemDiv
- <sup>‡‡</sup> Maybridge
- <sup>§§</sup> Biomol
- \*\*\* Sigma
- <sup>‡‡‡</sup> MPBio
- §§§ CalBioChem

<sup>a</sup> Chou, D.H. et al. Synthesis of a novel suppressor of beta-cell apoptosis via diversity-oriented synthesis. *ACS Med Chem Lett* **2**, 698-702 (2011).

<sup>b</sup> Marcaurelle, L.A. et al. An aldol-based build/couple/pair strategy for the synthesis of medium- and large-sized rings; discovery of macrocyclic histone deacetylase inhibitors. *J Am Chem Soc* **132**, 16962-76 (2010).

<sup>c</sup> http://chembank.broadinstitute.org/chemistry/search/execute.htm?id=5685018

<sup>d</sup> Mitchell, J.M. & Shaw, J.T. A Structurally diverse library of polycyclic lactarns resulting from

systematic placement of proximal functional groups. Angew Chem Int Ed Engl 45, 1722-6 (2006).

<sup>e</sup> Vegas, A.J. et al. Fluorous-based small-molecule microarrays for the discovery of histone deacetylase inhibitors. *Angew. Chem., Int. Ed.,* **46**, 7960-4 (2007).

<sup>f</sup> Franz, A.K., Dreyfuss, P.D. Schreiber, S.L. Synthesis and cellular profiling of diverse organosilicon small molecule. *J Am Chem Soc* **129**, 1020-1 (2007).

<sup>g</sup> Tang, W., Luo T., Greenberg, E.F., Bradner, J.E. & Schreiber, S.L. Discovery of histon deacetylace & selective inhibitors. *Bioorg Med Chem Lett* **21**, 2601-5 (2011).

**O** Hits showing stromal pretreatment effects for LSCe cells cultured with OP9 stroma are noted (SPT), as are compounds that displayed ten-fold or five-fold greater potency against LSCe cells in co-culture relative to hAML cell lines (CC10, CC5, respectively; see Methods). Compounds that displayed ten-fold or five-fold greater potency against the hAML cell lines relative to LSCe cells in co-culture are also noted (CL10, CL5, respectively).

| Lovastatin | AML 3               | AML 6                | Normal              |
|------------|---------------------|----------------------|---------------------|
| 0 (DMSO)   | <b>16/16</b> (100%) | <b>23/24</b> (95.8%) | <b>24/24</b> (100%) |
| 0.125 µM   | <b>6/6</b> (100%)   | <b>5/6</b> (83.3%)   | <b>6/6</b> (100%)   |
| 0.25 µM    | <b>6/12</b> (50%)   | <b>6/12</b> (50%)    | <b>12/12</b> (100%) |
| 0.5 µM     | <b>5/12</b> (41.7%) | <b>4/12</b> (33.3%)  | <b>12/12</b> (100%) |
| 0.75 µM    | <b>3/12</b> (25%)   | <b>3/12</b> (25%)    | <b>12/12</b> (100%) |
| 1 µM       | <b>1/6</b> (16.7%)  | <b>0/6</b> (0%)      | <b>6/6</b> (100%)   |
| 2 µM       | <b>0/6</b> (0%)     | <b>0/6</b> (0%)      | <b>6/6</b> (100%)   |

#### Supplementary Table 4 | Representative raw data for human CAFC assays

The data is shown as the ratio of the number of replicate wells positive for cobblestone areas relative to the total number of replicates.

# Supplementary Table 5 | EC50 values for additional statins in co-culture with BMSC stromal cells

| Statin       | LSCe EC <sub>50</sub> (nM) | HSPC EC <sub>50</sub> (nM) |
|--------------|----------------------------|----------------------------|
| Cerivastatin | < 10                       | > 20,000                   |
| Simvastatin  | 15                         | > 20,000                   |
| Fluvastatin  | 28                         | > 20,000                   |
| Rosuvastatin | 1,200                      | > 20,000                   |
| Atorvastatin | 1,900                      | > 20,000                   |

Supplementary Table 6 | Number of different shRNAs depleted by 20-fold relative to control

shRNAs during in vivo leukemiogenesis

| Gene    | # shRNAs<br>scoring |
|---------|---------------------|
| Hmgcr   | 3                   |
| Fnta    | 2                   |
| lcmt    | 2                   |
| Fdft1   | 1                   |
| Rabggtb | 1                   |
| Fdps    | 1                   |
| Pggt1b  | 0                   |
| Rabggta | 0                   |

#### Supplementary Note 1 | High-Throughput Co-Culture Assay Methods

LSCe Co-culture Screen. Liquid dispensing was performed using an automated liquid dispenser (Multidrop Combi) or a multichannel pipettor, and liquid removal was performed with a Microplate washer (ELx405, BioTek) or 24-channel wand aspirator (VP186L, V and P Scientific). In 384-well plates (3712, Corning), wells were coated with 10 µl of 0.1% gelatin (ES006B, Chemicon International), incubated for 15 minutes, then washed with PBS. 6,750 OP9 cells in 50 µl of OP9 media were then added to each well with time spent in suspension at plating kept to a minimum for these cells. All incubation steps included the addition of a breathable plate cover (B90112, VWR) to avoid evaporation. After 24 hours of incubation at 37°C/ 5% CO<sub>2</sub> the media was aspirated and 300 freshly isolated LSCe cells were added to each well in 50 µl of 50% OP9 media (pre-conditioned on OP9 cells for 3 days), and 50% co-culture media (500 ml DMEM (11965-092, Gibco), 10% Horse Serum (26050-088, Gibco), 1:100 Hydrocortisone (07904, StemCell Technologies), 2.5 ml Beta-mercaptoethanol (ES-007-E, Chemicon International), 10% FBS (10082-147, Gibco) and 1% Pen-Strep). After a 24 hour incubation, the plates were briefly centrifuged for 30 seconds (60 x gravity, slow braking) and 100 nl of test compounds in dimethyl sulfoxide (DMSO), DMSO alone, or XK469 (X3628, Sigma) were pin transferred to a final concentration of 5  $\mu$ M in 0.2% DMSO and the plates were re-incubated for 3 days. The media was aspirated, 50  $\mu$ I of fresh media (the same 50/50 media mix added at LSCe cell plating) was added and 100 nl of compound was again added to the appropriate wells. Plates were returned to incubator for 2 days then imaged at 10x total magnification in the dsRed and GFP channels.

**HSPC Co-Culture Screen**. 2,000 Primary murine BMSCs were plated in 30µL per well in 384-well plates (3712, Corning) pretreated with fibronectin (20 µg/mL fibronectin (Millipore) for 30 minutes at 37°C). Breathable plate covers were added and plates were spun at approximately 60 x gravity, incubated at room temperature for 60-90 minutes then kept at  $33^{\circ}C/5\%$  CO<sub>2</sub> for 3 days. Murine HSPCs were plated in phenol-red free alpha-MEM with 20% FBS (20 µL containing 200 cells per well) and incubated at  $33^{\circ}C/5\%$  CO<sub>2</sub> overnight, after which 100 nl of test compounds in DMSO, or control compounds were pin transferred to a final concentration of 20 µM in 0.2% DMSO. The plates were then incubated at  $33^{\circ}C/5\%$  CO<sub>2</sub> for 6 days. The co-cultures were imaged using dsRed and GFP filters at 4x total magnification. The total number of HSPCs per well was quantified using CellProfiler software.

**Quantification of Cobblestone Areas.** An image analysis pipeline comprised of multiple algorithms for CAFC quantification was developed using CellProfiler<sup>25</sup> software

(http://www.cellprofiler.org/published\_pipelines.shtml). First, each of the nine dsRed images capture per well at 10x magnification was processed by masking the well boundary and correcting for illumination variation (a consequence of optical hardware irregularities, illumination patterns, or shading). Next, each individual dsRed-positive region (LSCe cells) was segmented within the well into one or more subcellular areas termed cell "objects" (see Supplementary Fig. 1d). Each object was then assessed for hundreds of characteristics including intensity, area, shape, object neighbors, and texture. These per-object measurements served as input to guide a biologist-supervised machine learning routine in the classification of CAFC versus non-CAFC objects. A gentle boosting classifier<sup>26</sup> was iteratively trained to learn rules to distinguish between the two phenotypes. Every object in every image of a given image set was then scored as either CAFC or non-CAFC using the set of 50 measurement rules returned from

the classifier. Each of nine sites imaged per well was analyzed independently, and the image processing was parallelized. The measurements were automatically merged and stored in a MySQL database (Oracle, Inc.). As cell objects did not correspond 1:1 to the number of cells, 'total cobblestone area per well' was used as a suitable proxy for total CAFC count per well. To determine the sensitivity and specificity of the pipeline, sets of more than 100 representative objects were presented to expert biologists for direct, manual classification. The biologists' classification was compared to the classification determined by the machine learning routine. The full confusion matrix for a representative example was as follows: True positives (i.e. True CAFC) = 36, True negatives (i.e. False CAFC) = 88, False positives (i.e. True nonCAFC) = 14, False negatives (i.e. False non-CAFC) = 5.

Filtering and Retest. 415 compounds scored in the LSCe primary screen. Of these, compounds that decreased total HSPC number by greater than 80% in both replicates relative to DMSO controls (Stewart, A.L., Scadden, D.T., et al., in preparation) or that overtly killed stromal cells in the primary HSPC screen were excluded, yielding 270 compounds. 240 of these were retested on LSCe cells co-cultured with OP9 stroma (8 concentrations per compound) and with BMSCs (4 concentrations per compound). For the BMSC co-culture, 300 LSCe cells in 20µL of fresh BMSC medium were added per 384-well to the existing wells containing stroma in 30µL of media plated 3 days prior). 196 compounds demonstrated an  $EC_{50} \le 5 \mu M$  against LSCe cells in the presence of one stromal type (with 139 showing activity on both types) and were selected for further study.

**Curve Fitting and Determination of EC**<sub>50</sub> **Values.** Refined curve fitting and EC<sub>50</sub> values (Figs. 3a, 3b, 4a, and Supplementary Figs. 2a, 2b, 3b, 3d, 3e, 4a, 5e) were computed and visualized using MATLAB. For each experiment combining an experimental design, cell line or primary cell population, and small molecule, we extracted n value pairs (x,y) corresponding to n independent measurements of effect (y, normalized % of positive control) *versus* concentration (x = log<sub>2</sub>[µM]) across all experiments,  $12 \le n \le 48$  (median *n* = 24) value pairs. For each experiment, we fit two types of models to each concentration response: 4-parameter sigmoid functions and 1-parameter constant functions. In some cases,

individual data points appeared significantly aberrant from the others, so we also computed a version of each model, sigmoid or constant, after censoring individual points that failed to meet an outlier condition defined by Cook's Distance<sup>1,2</sup>, with  $D_{cook} > 4/n^2$ . For each model, we evaluated the fit parameters and their confidence intervals (CIs) to determine which of the four models was most appropriate to use for a given experiment. Models for which any of the parameter CIs were infinite (i.e., those models that did not converge) were rejected, as were sigmoid models whose height parameter was less than 25% of the positive control effect: conversely, we rejected constant models whose parameter CI range was more than 25% of the positive control effect. These filters were sufficient to indicate whether a sigmoid or constant model should be used, and we always selected the uncensored version of constant models if both were available. Some uncensored sigmoid models retained unrealistic slope parameters (too steep), so we chose the corresponding censored sigmoid model in cases where censoring improved the CI range on the slope parameter by at least 10-fold. Doseresponse curves were plotted using the best available model according to these criteria. To report  $EC_{50}$ values for sigmoid models, we used the x value of the sigmoid inflection point when that point fell within the tested concentration range. When the sigmoid inflection point fell outside the tested concentration range, we reported  $EC_{50}$  values as inequalities (e.g. "< 10 nM"), rather than extrapolating. For all other experiments, data were normalized and  $EC_{50}$  values were calculated using Pipeline Pilot (Accelerys, Inc.) and GeneData Screener (GeneData).

<sup>1.</sup> Cook, R.D. & Weisberg, S. *Residuals and influence in regression*, x, 230 p. (Chapman and Hall, New York, 1982).

<sup>2.</sup> Fox, J. & Long, J.S. *Modern methods of data analysis*, 446 p. (Sage Publications, Newbury Park, Calif., 1990).