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Sensitivity of Using the Empirical Variance Estimate for LRT-CM
We studied the sensitivity of using the empirical variance estimates by comparing the power and
type I error under true and misspecified correlation structures across a variety of commonly used
correlation structures (e.g., compound symmetric, autoregressive, unstructured). Table S.1 shows
the simulation results of the proposed LRT-CM method with and without a misspecified correlation
structure under compound symmetric (CS) and autoregressive (1) (AR(1)) correlation structures.
Overall, the power of the tests decreases when the assumed correlation structure is more com-
plicated (i.e., more parameters need to be estimated) than the true underlying correlation structure.
In our simulation setting, the power of LRT-CM decreases by 16% (at most) when assuming an
AR(1) correlation while the true correlation structure is a CS. In contrast, the power of the LRT-
CM is not affected as much (<6% in our simulation setting) when the assumed correlation structure
requires fewer parameters to be estimated than the true underlying correlation structure. Concern-
ing the type I error under misspecified correlation structure, we again investigated the type I error
under two null hypotheses as Figure 2: (1) no interaction with the presence of main effects and (2)
no interaction without the presence of main effects. Under the null hypothesis of (2), the estimates
can become quite unstable for models (a)—-(d). The type I error can be inflated or deflated under

misspecified correlation structure but always remain <10% in our simulations.

Estimation for Tukey’s Row-Column Model in Two-Step Regression
We can express the interaction term 0 R;C;+ \;C;+ R;n; in the model as ;; = (OR,; +\;)C;+ Rin;
or (0C; + n;)R; + \;,C;. If we regress the residuals 7, after removing the additive main effects

(from a saturated model fit) on C’j and R; (again without intercept) separately:

Tijk = uiéjlnijk + €ijik, ey
Tijk = Uj]%i]-nijk + €ijks (2)

we have 4; = éfiz + :\Z-, and 9; = éé’j + 7;. Model (d) has a total of / + J + 1 interaction
parameters. Together with four sum-to-zero identifiability constraints, / + J — 3 parameters (i.e.,
Aoy A2, M1, ..., 7o) are left to be estimated. By (1) and (2), we have (I — 1) + (J — 1)
equations, which are sufficient for estimating the / + J — 3 parameters. After obtaining 4, and ¥,
from (1) and (2), each S\Z and 7); can be calculated using the constraints. Finally, we estimate ¢ by
regressing the residuals from the second step, 8;j; = 741, — }?,-'F]j 1o, — S\ZCA’J 1., 0n }?Z-C'j,
sijh = 0R:CjL,,, + €
where €;;, ~ N(0,Q¢). Again, Q¢ can be a user-defined covariance structure based on model

fitting criterion.



Comparison with Other Exisiting GGI/GEI Methods

The existing GGI or GEI methods for handling (longitudinal) continuous traits are very limited.
Barhdadi and Dubé [1] have applied Tukey’s and Mandel’s models as well as AMMI models to
testing GGI effects on quantitative traits for unbalanced data. They reduced data to cell means and
applied F tests that assume equal variance of all cell means as described in the original papers of
Tukey [2] and Mandel [3]. The likelihood ratio test proposed by Johnson and Graybill [4] was used
for GGI tests with AMMI models, which is also based on single observation per cell. Despite these
complex classical models, a saturated model for interaction is commonly used for testing GGI and
GEI in practice for its computational simplicity and flexibility.

We generated interaction data in the same simulation setting as described in the main text (un-
balanced correlated data in 3 x 3 table settings) and applied the GGI tests summarized in Barhdadi
and Dubé [1] for Tukey’s, Mandel’s, and AMMI models (any within-subject correlation is ignored).
Figure S.2 shows type I error (left panel) and power (right panel) for each of the five multiplicative
models using tests in Barhdadi and Dubé and our proposed tests (LRT-CM and LRT-PB) under the
same simulation settings as described in the section of Simulation Settings in the main text. As ex-
pected, the tests in Barhdadi and Dubé [1] assuming balanced data structure and not accounting for
within-subject correlations yield inflated type I error (especially for Tukey’s and Mandel’s models)
and low power, compared to our proposed methods. For example, when the simulation model is
AMMII with 07 = 02 = 8, AMMII has 65% and 69% power for detecting interactions using
our proposed LRT-CM and LRT-PB, respectively; whereas AMMI1 using the test by Barhdadi and
Dubé only has 8% power (far right column).

Stratified Analysis of GEI in the NAS Data by Baseline Age

To further investigate the potential three-way interaction (age contributions to HFE x Lead inter-
action), we performed stratified analysis for by baseline age: one for those who started the study
at age < 66 years old (N=316) and the other one with those who started at age > 66 years old
(N=355). We then analyzed the two subsets separately. The results (p-values) using models (a)—(e)
are shown in Table S.4. The results indicate that HFE x Lead interaction was found for the older
group of participants but not for the younger group. The stratified analysis results may indicate

some evidence of three-way (age-dependent) interaction.
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TABLE S.1. Power and type I error of the LRT-CM method with and without a misspecified
correlation structure. Two covariance structures were compound symmetric and autoregressive(1)
correlation (02 = 16, p = 0.5).

Corr. Structure Model
True Assumed (a) T1 (b) MC (c) MR (d) TRC (e) AMMII1
Power CS CS 0.592 0.947 0.747 0.825 0.651
CS AR(1) 0.528 0.924 0.660 0.750 0.544
AR(1) AR(1) 0.693 0.973 0.858 0.921 0.779
AR(1) CS 0.722 0.977 0.888 0.940 0.830
Type I Error CS CS 0.054 0.052 0.054 0.053 0.055
(Additive) CS AR(1) 0.044 0.034 0.035 0.024 0.027
AR(1) AR(1) 0.055 0.057 0.053 0.058 0.056
AR(1) CS 0.074 0.079 0.082 0.087 0.088
Type I Error CS CS 0.127 0.087 0.081 0.023 0.057
(Null) CS AR(1) 0.091 0.057 0.050 0.012 0.027
AR(1) AR(1) 0.125 0.083 0.080 0.023 0.056
AR(1) CS 0.147 0.116 0.098 0.037 0.088

CS = compound symmetric; AR(1) = autoregressive(1)



TABLE S.2. Percent bias and mean squared error (MSE) corresponding to the interaction pa-
rameter estimates from Tukey’s 1-df model (f) and AMMII model (d;) using a two-step regres-
sion procedure under compound symmetric and autoregressive(1) correlation structures (both with
p = 0.5)

Assumed Correlation Structure for Analysis

Parameter True o? CS AR(1) ARH UN IND
Percent Bias (%)
1 -0.2 -0.2 -0.2 -0.2 -0.2
0 CS 4 0.2 0.3 0.3 0.2 0.3
8 0.8 0.8 0.8 0.8 0.7
1 0.1 0.1 0.1 0.1 0.1
AR(1) 4 0.7 0.7 0.7 0.7 0.7
8 -04 -0.4 -0.4 -04 -04
1 1.2 1.2 1.2 1.2 1.2
dq CS 4 3.0 3.0 3.0 3.0 3.1
8 6.8 6.8 6.9 6.8 7.0
1 1.0 1.0 1.0 1.0 1.0
AR(1) 4 1.9 1.9 1.9 1.9 1.8
8 3.6 3.3 3.3 33 3.7
MSE
1 0.090 0.090 0.090 0.090 0.090
0 CS 4 0.182 0.185 0.185 0.183 0.185
8 0.263 0.268 0.268 0.263 0.270
1 0.078 0.077 0.077 0.077 0.078
AR(1) 4 0.163 0.162 0.162 0.162 0.163
8 0.239 0.239 0.239 0.239 0.239
CS 1 0.101 0.102 0.103 0.101 0.104
dy 4 0.199 0.204 0.204 0.200 0.206
8 0.278 0.282 0.282 0.278 0.284
AR(1) 1 0.096 0.093 0.093 0.093 0.095
4 0.178 0.175 0.176 0.176 0.179
8 0.252 0.250 0.250 0.251 0.253

CS = compound symmetric; AR(1) = autoregressive(1); ARH = autoregressive heterogeneous; UN
= unstructured; IND = independence
True =d; =1



TABLE S.3. Estimated interaction matrices from fitting a saturated model (adjusted for baseline
age, time, and squared time) and the corresponding singular value decompositions: I'g. g for
gene-environment (HFE x Lead) interaction analysis based on the Normative Aging Study data

A

fGXE AHFE D B,Lead
1.92 0.77 -2.68 -0.59 057565 0 |-043 -0.38 0.82
-0.19 1.14 -0.94 -020 -0.79 | 0 1.24| 0.69 -0.72 0.03
-1.73 -190 3.63 0.79 0.22

TABLE S.4. P-values corresponding to different tests for GEI between HFE genotypes and tibia
lead levels in the Normative Aging Study stratified by baseline age at the time of recruitment are
reported. LRT-CM and LRT-PB stand for the two likelihood ratio tests based on cell means and
al mixed-effects regression model, respectively. The model adjusts for baseline age (years), time
since baseline, and squared time. For LRT-CM, the residuals from the adjusted model were used
to form cell means corresponding to G X E cross-tables.

Baseline Age < 66 Baseline Age > 66
Model Hypothesis LRT-CM LRT-PB LRT-CM LRT-PB
Model (a) Hy:0=0 0.054 0.208 0.001 0.001
Model (b) Hy : Ay = 0 (Lead) 0.143 0.080 0.003 0.001
Model (c) Hy :n; = 0 (HFE) 0.133 0.142 0.001 0.002
Model (d) Hy:0=MX\=mn;=0 0.234 0.184 0.002 <.0001
Model (e) Hy:dy =0 <0.10 0.250 <0.005 0.001
Saturated Model HFE x Lead NA 0.284 NA 0.002
Model (a): Tukey's one df Model (b): Mandel's column Model (c): Mandel's row Model (d): Tukey's row—column
OTheozreticaT Quafrsniles ior xfw 0Theoreticsal QuantiIIZs for )(,2_15 ?I'heoreticsal QuantiTZs for xf,lls 'I?heoretic:I Quantilzos for x?, Jf

Fig. S.1. Comparison of empirical quantiles of the likelihood ratio test (LRT) statistics to the corre-
sponding theoretical quantiles of chi-squares under the null hypothesis based on / x J cell means.
The LRT statistic follows a chi-square distribution with df = 1,7 — 1,J — 1, and I + J — 3 for
models (a), (b), (c), and (d), respectively (I = J = 3).
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Fig. S.2. (a) Type I error and (b) percentage of interactions detected by each of the five multi-
plicative models using tests in Barhdadi and Dubé (2010) and the proposed methods in the same
simulation settings as described in the section of Simulation Settings. The top label within each
box represents the true simulation model. The horizontal-axis labels indicate the tests carried out.
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Fig. S.3. Cell mean of pulse pressure and number of observations (shown in table below the graph)
for three genotypes of the HFE gene and lead exposure levels (Low, Medium, High) across eight
age intervals in the Normative Aging Study
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Fig. S.4. Subject-specific contributions and age-specific contributions to the second interaction
factor in the HFE x Lead interaction based on the Normative Aging Study data



