SUPPLEMENTARY MATERIAL

High density lipoprotein mediates anti-inflammatory transcriptional reprogramming of macrophages via the transcriptional repressor ATF3

Dominic De Nardo¹*, Larisa I. Labzin¹*, Hajime Kono², Reiko Seki², Susanne V. Schmidt³, Marc Beyer³, Dakang Xu^{4,5}, Sebastian Zimmer⁶, Catharina Lahrmann⁶, Frank A. Schildberg⁷, Johanna Vogelhuber¹, Michael Kraut³, Thomas Ulas³, Anja Kerksiek⁸, Wolfgang Krebs³, Niklas Bode⁶, Alena Grebe¹, Michael L. Fitzgerald⁹, Nicholas J. Hernandez⁹, Bryan Williams⁴, Percy Knolle⁷, Manfred Kneilling^{10,11}, Martin Röcken¹⁰, Dieter Lütjohann⁸, Samuel D. Wright¹², Joachim L. Schultze³* and Eicke Latz^{1,13,14}*

¹Institute of Innate Immunity, University Hospitals, Biomedical Centre, University of Bonn, Germany. ²Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan. ³Life and Medical Sciences Institute (LIMES), University of Bonn, Germany. ⁴Monash Institute of Medical Research, Monash University, Melbourne, Victoria, Australia. ⁵Institute of Ageing Research, Hangzhou Normal University School of Medicine, Hangzhou, China. ⁶Department of Medicine/Cardiology, University of Bonn, Germany. ⁷Institutes of Molecular Medicine and Experimental Immunology, University of Bonn, Germany. ⁸Institute for Clinical Chemistry and Clinical Pharmacology, University of Bonn, Germany, ⁹Lipid Metabolism Unit, Massachusetts General Hospital, Harvard Medical School, Boston, USA. ¹⁰Department of Dermatology and ¹¹Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy Eberhard Karls University, Tuebingen, Germany. ¹²Cardiovascular Therapeutics, CSL Limited, Parkville, Australia. ¹³Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, USA. ¹⁴German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany. * These authors contributed equally to this work.

Supplementary Figure 1 Detailed characterisation of the effect of HDL on TLR-induced cytokine secretion. **a**, C57BL/6 mice were injected i.p with 2 mg recombinant HDL or PBS 6 h before subsequent injection with CpG (20 μ g) and D-gal (10 mg), 1 h later serum was collected and cytokines were measured (IL-18 *n*=10 per group, IL-13 *n*=18 per group). **b** BMDMs were pre-treated with HDL (either 2 mg/ml or as indicated) for 6 h and stimulated overnight with CpG (100 nM or as indicated) and IL-6 measured in culture supernatants by ELISA. **c**, Human PBMCs were pre-treated for 6 h with HDL at indicated concentrations and stimulated overnight with LPS (2.5 ng/ml), R848 (100 ng/ml) or P3C (1 μ g/ml) and IL-6 secretion measured (**c**, left), or PBMCs were stimulated with CpG 2336 (A-type) (1 μ M) and IFN α production was measured by ELISA (**c**, right). **a**, Data are presented as the mean ±S.D. and are representative of three independent experiments. **c**, Data is combined from three individual donors and shown as the mean ±S.E.M.

Supplementary Figure 2 HDL reduces cellular cholesterol and inhibits pro-inflammatory gene expression. **a**, Immortalised-BMDMs were treated with HDL (2 mg/ml) for indicated times and cholesterol measured by mass spectrometry from cell lysates, supernatants or media with HDL. **b**,**c**, Immunoblot of BMDMs pre-treated with HDL (2 mg/ml) for 6 h and stimulated for indicated times with P3C (50 ng/ml) (**b**) and ELISA of IL-6 secretion (**c**). **d**, BMDMs were pre-treated with HDL or native HDL (2 mg/ml) for 6 h and stimulated with CpG (100 nM) for 4 h before mRNA expression was measured by qPCR. **e**, C3H/HeJ mice were injected i.p with 2 mg native HDL or control filtrate 6 h before injection with CpG (20 μ g) and D-gal (10 mg), 1 h later hepatic mRNA expression was measured by qPCR (CpG *n*=10, native HDL+CpG *n*=9). **f**, BMDMs were pre-treated for 6 h with HDL before 4 h with CpG (100 nM) and Actinomycin D (5 μ g/ml) for the indicated times to assess the half-life of IL-6 transcripts. Data is normalised to 0 min Actinomycin D sample for respective conditions. **g**, BMDMs were pre-treated for 12 h HDL before CpG for 4 h and cyclohexamide (10 μ g/ml) treatment for the indicated times to assess the half life of IL-1β protein (relative to β-actin). **a**, A representative graph of two individual experiments is presented (mean ±S.D.). **b-d**, A representative blot (**b**) and ELISA (mean ±S.D.) (**c**,**d**) of three individual experiments is shown. **e**, Data are presented as mean values ±S.E.M, CpG versus native HDL+CpG *p<0.05, **p<0.01. **f**, A representative graph from two independent experiments is shown. **g**, A single immunoblot is shown and densitometric analysis of IL-1β combined from three independent experiments (mean ±S.E.M).

Supplementary Figure 3 Trancriptome analysis of BMDMs treated with HDL. **a-c,e,f**, Transcriptome data are derived from BMDMs pre-treated for 6 h with HDL (2 mg/ml) then stimulated for 4 h with CpG (100 nM). **a**, Principal component analysis of all genes demonstrating sample relationships and group associations of individual samples. **b**, Hierarchical clustering of the 1000 most variable genes within the dataset. **c** Visualisation of genes (fold change values) involved in the cholesterol biosynthesis pathway from HDL treated BMDMs. **d**, Immortalised-BMDMs were treated with 2 mg/ml HDL for indicated times and cholesterol precursors were measured by mass spectrometry. **e**, Network visualization of Gene Ontology Enrichment Analysis (GOEA) based on transcripts reduced by CpG and counter-regulated by HDL (red nodes: GO-terms, red edges: GO-term relations) or induced by CpG and counter-regulated by HDL (blue edges and nodes). **f**, Workflow scheme of transcription factor prediction modelling. **a-c,e,f**, At least three biological replicates per condition were generated. **d**, Representative graphs of two individual experiments are presented (mean ±S.D.).

Supplementary Figure 4 ATF3 does not bind the promoters of control genes but is induced by HDL in a model of atherosclerosis. **a**, Genomic loci of *II18* and *II13* with ChIP-Seq signals for ATF3 binding under the various stimulation conditions. **b**, qPCR analysis of ATF3 mRNA expression in Kupffer cells or hepatocytes isolated from *Apoe*-deficient mice fed on a Western diet and injected i.v. with PBS or HDL (100 mg/kg) (*n*=5 per group). **a**, Data was obtained from 3 biological replicates. **b**, Data are shown as the mean \pm S.E.M, PBS versus HDL injected mice **p<0.01.

Supplementary Figure 5 Transcriptome analysis of WT vs *Atf3*-deficient BMDMs. Microarray analysis of WT or *Atf3*-deficient BMDMs pre-treated with 2 mg/ml HDL for 6 h and subsequently stimulated with CpG (100 nM) or P3C (50 ng/ml) for 4 h. **a**, Visualisation of transcripts induced or repressed by P3C in WT, counter regulated by HDL pre-treatment, and no longer modified in *Atf3*-deficient BMDMs. **b**, Venn diagrams show the overlap between CpG and P3C conditions from genes identified using the model described. **c** Network visualization of GOEA: GO-terms (nodes) and their relation (edges) based on ATF3-independent genes are shown in blue, and those based on ATF3-dependent genes are shown in red. **d**, Visualisation in fold change of genes involved in the cholesterol biosynthesis pathway from HDL treated WT or *Atf3*-deficient BMDMs. **e**, 27 of the 130 transcripts altered by CpG, counter-regulated by HDL and no longer modified in *Atf3*-deficient BMDMs are direct ATF3-target genes. Network visualization of GOEA based on transcripts reduced by CpG, counter-regulated by HDL and no longer modified in *Atf3*-deficient BMDMs are direct ATF3-target genes. Network visualization of GOEA based on transcripts reduced by CpG, counter-regulated by HDL and no longer modified in *Atf3*-deficient BMDMs are direct ATF3-target genes. Network visualization of GOEA based on transcripts reduced by CpG, counter-regulated by HDL and no longer modified in *Atf3*-deficient sections) or induced by CpG and counter-regulated by HDL and no longer modified in *Atf3*-deficient BMDMs showing ATF3 binding by ChIP-Seq (red nodes: GO-terms, red edges: GO-term relations) or induced by CpG and counter-regulated by HDL and no longer modified in *Atf3*-deficient BMDMs showing ATF3 binding (blue edges and nodes). **a-e**, At least three biological replicates per condition were generated and analysed.

Supplementary Figure 6 Transcriptome analysis of carotid injury model. Transcriptome data derived from RNA of carotid arteries of mice subjected to endothelial injury 3 h prior to HDL (20 ug/kg) or PBS i.v. injection. **a** Hierarchical clustering of the 2073 most variable genes within the dataset. **b**, Network visualisation of Gene ontology enrichment analysis (GOEA) based on transcripts regulated in macrophages *in vitro* and in carotid arteries *in vivo*. Enrichment scores of GO-terms based on genes upregulated or downregulated by HDL in vivo. **a**, **b**, At least three biological replicates per condition were generated and analysed.