SUPPLEMENTARY TABLES

		SD (87)	SRT1720 (87)
Mean age of death (weeks)		112	121
Liver	Steatosis	9.2%	3.4%
	Hepatocarcinoma	26.4%	38.6%
Kidneys	Enlarged	4.6%	3.4%
	Glomerulonephritis	17.2%	18.2%
Spleen	Enlarged	33.3%	46.6% [#]
Heart	Enlarged	9.2%	3.4%
	Ischemic foci	6.9%	6.8%

Table S1, related to Figure 2. Major gross pathologies identified at necropsy.

The percentage of mice with various pathologies is represented. SD, standard diet.

 $p^{*} = 0.09$ comparing SD- to SRT1720-treated mice using Fisher's Exact Test.

		SD	SRT1720
Liver	Lymphocyte infiltration	1.0 ± 0.0 (4/6)	1.0 ± 0.0 (2/8)
	Steatosis	2.3 ± 0.3 (4/6)	$1.0 \pm 0.0 \; (2/8)^*$
Kidney	Lymphocyte infiltration	$1.6 \pm 0.3 (5/5)$	1.9 ± 0.4 (8/8)*
	Glomerulonephritis	$1.2 \pm 0.5 \; (3/5)$	1.0 ± 0 (8/8)
Heart	Lesion	0 (0/6)	0 (0/8)
Spleen	Congestion	6 (6/6)	7 (7/8)

Table S2, related to Figure 2. Blinded histopathological scoring of mice at sacrifice.

Lymphocyte infiltration and fatty change (steatosis) are scored on a scale of 1-4 (most severe); data is mean \pm SEM (%). Heart and spleen data is represented as number of cases. n=6 SD, n=8 SRT1720 (76 weeks age, 38 weeks on diet). * p < 0.05 comparing SD- to SRT1720-treated mice using Fisher's Exact Test.

	Liver		Muscle
Carra	(zratio)	Cana	(zratio)
Gene	SD1720:SD	Gene	SD1720:SD
Socs2	18.05	Cish	19.45
Cish	13.38	Chac1	18.54
Slc25a30	13.03	Clec2d	6.69
Serpina4-ps1	12.76	Ddp	6.10
Hhex	11.21	Pik3ip1	6.07
Txnip	11.17	Car3	5.71
Rgs16	10.36	Cntnap2	5.67
Ctgf	10.14	Bhlhb2	5.60
Chrna4	8.95	Hist1h4j	5.25
Cyp1a2	8.94	Bcl6b	5.09
Rcan1	-10.07	1190002H23Rik	-8.86
Ddit4	-10.60	Cdkn1a	-9.17
Orm2	-11.50	Cmya1	-9.56
Gadd45a	-11.68	Ankrd1	-9.67
*S100a9	-11.98	Mustn1	-10.23
Cdkn1a	-12.20	Ankrd1	-10.40
*S100a8	-14.10	Gadd45b	-10.97
Saa2	-15.06	Axud1	-11.11
Saa1	-15.18	Srxn1	-11.44
Lcn2	-27.10	Mt1	-16.84

Table S3, related to Figure 3. List of the ten most highly up-regulated and down-regulated genes in liver and muscle in response to SRT1720 treatment in SD-fed mice.

Boldface, NF- κ B target genes; *, up-regulates transcription of genes that are under the control of NF- κ B.

	Z-Score
Pathway	SD1720:SD
RIBOSOMAL_PROTEINS	5.66
CHOLESTEROL_BIOSYNTHESIS	4.95
TERPENOID_BIOSYNTHESIS	4.50
BIOSYNTHESIS_OF_STEROIDS	4.10
MALATEXPATHWAY	3.19
APPEL_IMATINIB_UP	3.07
GUO_HEX_UP	2.61
DNA_REPLICATION_REACTOME	2.45
ST_GA12_PATHWAY	2.15
SARCOMAS_LIPOSARCOMA_DN	2.09
CIS_RESIST_LUNG_DN	1.99
SETPATHWAY	1.76
TGFBETA_C4_UP	1.73
TCYTOTOXICPATHWAY	-1.13
LIZUKA_G2_SM_G3	-1.31
TCRMOLECULE	-1.36
ADIPOGENESIS_HMSC_CLASS5_UP	-1.39
ST_IL_13_PATHWAY	-1.44
ST_INTERLEUKIN_13_PATHWAY	-1.44
STRIATED_MUSCLE_CONTRACTION	-1.55
HIVNEFPATHWAY	-1.57
UBIQUITIN_MEDIATED_PROTEOLYSIS	-1.76
FSH_GRANULOSA_DN	-2.00
LH_GRANULOSA_DN	-2.00
PYRIMIDINE_METABOLISM	-2.14
REN E2F1 TARGETS	-2.22

Table S4, related to Figure 3. The most affected pathways in the liver of SD-fed mice with and without SRT1720 supplementation

FLECHNER_KIDNEY_TRANSPLANT_REJECTION_DN	-2.42
SCHUMACHER_MYC_UP	-2.68
GLUTAMATE_METABOLISM	-2.82
TAKEDA_NUP8_HOXA9_3D_UP	-3.00
IFNALPHA_HCC_UP	-3.19
ET743_RESIST_UP	-3.21
MYOD_NIH3T3_UP	-3.46
HEATSHOCK_YOUNG_UP	-3.55
BYSTRYKH_HSC_BRAIN_TRANS_GLOCUS	-4.02
RADAEVA_IFNA_UP	-4.37
ICHIBA_GVHD	-4.39
IL22BPPATHWAY	-4.65
IFNALPHA_NL_UP	-5.05

Table S5, related to Figure 3. The most affected pathways in the muscle of SD-fed mice with and without SRT1720 supplementation.

See excel file.

Table S6, related to Figure 4. List of the most highly expressed genes that weresignificantly up- and down-regulated by SRT1720 treatment in wild-type (WT) MEF cells.This list of genes was sorted using *Sirt1*-KO MEFs for comparison. The last column indicateswhether the SRT1720-mediated change observed for a given gene is significantly differentbetween WT and *SIRT1*-KO MEFs.

		MEF WT	MEF Sirt1-KO	KO:WT
Accession	Symbol	(zratio)	(zratio)	(p value)
		SRT1720:UT	SRT1720:UT	
NM_008216.2	Has2	11.98	4.20	4.95E-05
NM_010217.1	Ctgf	10.15	8.70	0
NM_010496.2	Id2	10.03	8.07	0.499
NM_139307.2	Vasn	7.85	0.93	0.0005
NM_145535.1	Sdcbp2	7.34	3.64	0
NM_010495.2	Id1	7.30	9.15	0
NM_011607.2	Tnc	6.90	-0.53	0
NM_011580.3	Thbs1	6.65	-3.54	0
NM_001039090.1	Skil	6.59	3.29	3.03E-09
NM_009397.2	Tnfaip3	6.48	1.34	2.43E-05
NM_009943.2	Cox6a2	-6.40	-0.47	6.31E-09
NM_025378.2	Ifitm3	-6.50	-0.08	0
NM_019738.1	Nupr1	-6.71	3.46	0
NM_016974.1	Dbp	-6.95	-1.17	0
NM_011333.3	Ccl2	-7.65	1.86	0
NM_007837.2	Ddit3	-8.04	2.03	3.22E-12
NM_007836.1	Gadd45a	-8.12	0.40	9.08E-14
NM_011315.3	Saa3	-8.33	-3.43	0.533
NM_013654.2	Ccl7	-8.39	1.38	0

Boldface, NF-κB target genes; *Italics*, no significant changes versus untreated (UT) cells.

Table S7, related to Figure 4. Partial list of signaling proteins involved in NF-κB activation with altered phosphorylation in response to SRT1720.

Wild-type (WT) and *Sirt1*-KO MEFs were incubated with vehicle or 3 mM SRT1720 for 18 h, after which total lysates were subjected to phospho-antibody microarray analysis. The signal intensities of phosphorylated and total forms of each protein were determined, and the ratio (phospho/total) of each protein was calculated between vehicle (UT)- and SRT1720-treated MEFs. 95% confidence interval (CI) was determined to demonstrate the significance of the signal alteration for each protein. The impact of site-specific phosphorylation on the biological function of these proteins is shown.

	Ratio (MEF WT)		Ratio (MEF KO)		
	SRT/UT	95% CI	SRT/UT	95% CI	Function*
IκBα (Ser(P)- 32/36)	1.66	[1.41-1.91]	0.80	[0.61-0.99]	Inactivation (Winston et al., 1999)
IKK-α/β (Ser(P)- 180/181)	0.91	[0.86-0.96]	0.85	[0.39-1.31]	Activation (Karin, 1999)
IKK-α (Thr(P)- 23)	0.34	[0.26-0.42]	0.92	[0.81-1.03]	Activation (Ozes et al., 1999)
NF-κB-p105/p50 (Ser(P)-907	0.60	[0.54-0.66]	1.00	[0.67-1.33]	Stability (Demarchi et al., 2003)
NF-κB-p65 (Ser(P)-311)	0.24	[0.22-0.26]	0.72	[0.63-0.81]	Activation (Chang et al., 2011)

* Supporting references

SUPPLEMENTAL REFERENCES

Chang, Y., Levy, D., Horton, J.R., Peng, J., Zhang, X., Gozani, O., and Cheng, X. (2011). Structural basis of SETD6-mediated regulation of the NF- κ B network via methyl-lysine signaling. Nucleic Acids Research *39*, 6380-6389.

Cheadle, C., Vawter, M.P., Freed, W.J., and Becker, K.G. (2003). Analysis of Microarray Data Using Z Score Transformation. The Journal of Molecular Diagnostics *5*, 73-81

Demarchi, F., Bertoli, C., Sandy, P., and Schneider, C. (2003). Glycogen synthase kinase-3β regulates NF-κB1/p105 stability. Journal of Biological Chemistry *278*, 39583-39590.

Karin, M. (1999). Positive and negative regulation of I κ B kinase activity through IKK β subunit phosphorylation. Science 284, 309-313.

Kim, S.Y., and Volsky, D.J. (2005). PAGE: Parametric analysis of gene set enrichment. BMC Bioinformatics *6*, 1471-2105

Lee, C., Raffaghello, L., Brandhorst, S., Safdie, F.M., Bianchi, G., Martin-Montalvo, A., Pistoia, V., Wei, M., Hwang, S., Merlino, A., *et al.* (2012). Fasting Cycles Retard Growth of Tumors and Sensitize a Range of Cancer Cell Types to Chemotherapy. Science Translational Medicine *4*, 124ra127

Ozes, O.N., Mayo, L.D., Gustin, J.A., Pfeffer, S.R., Pfeffer, L.M., and Donner, D.B. (1999). NF- κ B activation by tumour necrosis factor requires the Akt serine-threonine kinase. Nature 401, 82-85

Winston, J.T., Strack, P., Beer-Romero, P., Chu, C.Y., Elledge, S.J., and Harper, J.W. (1999). The SCF β -TRCP-ubiquitin ligase complex associates specifically with phosphorylated destruction motifs in I κ B α and β -catenin and stimulates I κ B α ubiquitination in vitro. . Genes & Development *13*, 270-283