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I. Wire-bundle characterization

Figure S1 shows a STM image of two bundles of YSi2 wires of different widths together with a

line profile taken at the location indicated by the black line. At this yttrium coverage (0.5±0.1

ML), the second silicide layer does not form a continuous structure over the whole length of the

wire. Therefore we assume the height of the conducting wires to be that of a single YSi2 layer, i.e.

0.5 ± 0.1 nm.

Figure S 1: Scanning probe characterization of YSi2 bundles. Top panel shows a STM image with
YSi2 wires assembled in bundles. The bright protrusions are segments of second layer silicide.
Tunneling parameters are −1.9 V and 0.05 nA. Bottom panel shows a line profile taken at the
location indicated by the black line. The horizontal dotted lines are guides for the first and second
silicide layer heights.1

Defect analysis from STM images

The number of defects in the wires is estimated from STM images of the uncapped wires. Figure

S2 displays the frequency distribution of defects when adatoms and vacancies are considered. In
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both cases the distributions peak at frequencies less then 10 nm per defect. This analysis includes

both single wires as well as bundled wires. A STM image of a nanowire segment displaying several

defects is shown in the inset of Figure S2.
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Figure S 2: Wire-defect analysis. Histogram indicating the defect frequency in the YSi2 nanowires
determined by defect counting from the STM images of the uncapped wires. Inset presents a STM
image of a YSi2 nanowire fragment displaying such defects. The solid (dotted) circle highlights an
adatom (vacancy) defect site. Tunneling parameters are 0.05 nA, −1.7 V. Scale bar: 2 nm.

II. Control measurement: Platinum leads

To better understand and interpret the transport data obtained for the YSi2 nanowires, we have in-

dependently determined the transport properties of the Pt leads. Pt wires having similar dimensions

as the Pt leads used, were fabricated using electron beam induced deposition (EBID) of a precursor

molecule, trimethyl(methylcyclopentadienyl)platinum(IV) (see Experimental section).2 These Pt

wires contain some fraction of organic material hence their electrical properties differ greatly from

Pt wires fabricated from pure metal targets. Figure S3a, illustrates a SEM image of two Pt wires

(cross section of 20 nm×10 nm) connected by five square Pt electrodes. Figure S3b displays the
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temperature dependence of the resistivity of such Pt wires. The measured resistivity at 300 K is

0.003 Ωcm and increases at lower temperatures. Similar values were reported by V. Gopal et al.2

a

b

Figure S 3: Transport measurements of the Pt wire leads. (a) SEM image showing two Pt wires
connected by 5 Pt electrodes (squares) (scale bar: 2 µm). (b) Temperature dependence of the
resistivity of the Pt wires.

III. Control measurement: YSi2 wetting layer

To further verify that the electronic transport detected when measuring the YSi2 wire-samples

occur through the wires, not the wetting layer, we have measured the conductivity of the wetting

layer, i.e. the (2×7) reconstruction seen in the STM, using a similar measurement scheme. Square

Pt electrodes were fabricated using the EBID technique (see Experimental section) onto the wetting

layer to be contacted by the STM tips during the transport measurements. A SEM image of two

rows of Pt electrodes is presented in the inset of Figure S4, panel a. I − V characteristics were

measured at several temperatures between 300 K to 80 K. Unlike the YSi2 nanowires, the wetting

layer measurements show nonlinear I −V curves up to 300 K and exhibit a pronounced hysteresis

at temperatures below 200 K (Figure S4a, b). The sheet conductivity of the wetting layer at room
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temperature is determined to be σS = 1.2 × 10−8Ω−1, considering C(4pp) = πσs/ln2, where

C(4pp) is the measured four-probe conductance.3 The measured conductivity is a few orders of

magnitude lower than what we have measured for the nanowires, indicating that the electronic

transport takes place indeed through the nanowire and not the substrate. Note also that the Schottky

barrier, created at the interface between the substrate and the wire,4 will electrically isolate the

wires from the substrate at low voltages.

a b

Figure S 4: Transport measurements for the YSi2 wetting layer. (a) I − V characteristic at 300 K.
Inset displays an SEM image of two rows of Pt square contacts build over the wetting layer (scale
bar: 2µm). (b) I − V characteristics show a pronounced hysteresis at low temperatures.

IV. YSi2 bundle networks

I − V characteristics measured for a device that included three YSi2 wires are displayed in Fig-

ure S5. All the I−V curves are fitted using the circuit model II from section VII with the fits being

displayed as solid lines. The temperature dependence of the corrected wire resistance is displayed

in Figure 3b in the main text.
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Figure S 5: YSi2 wire network (wire 14). (a) to (d), I − V characteristics of wire 14 device that
consists of a network of three YSi2 nanowires. The solid lines are fits to the data using the circuit
model II (see section VII).

V. Polaron hopping in a single wire

The current through a quasi-one-dimensional disordered conductor as a function of temperature

and voltage has been derived by Osipov et al.5 The derivation is based on the probability of phonon-

assisted hopping between neighboring impurity sites, computed using the Fermi golden rule. At

elevated temperatures, the absorption of a phonon to raise the electron energy by E to an excited

impurity state leads to a Boltzmann factor exp(−E/kT ) in the transition rate, while tunneling

through the barrier potential between two impurity sites leads to an exponential factor exp[−S(E)],

where S(E) is expressed5 in terms of the polaron shift Ip (the energy lowering of the defect levels

resulting from the local bond deformation or restructuring upon electron capture), the voltage drop
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between the two impurity sites V12 (contained within the barrier potential U(z)),and the phonon

frequency ω,

S(E) =
Ip

2h̄ω

∫
dz
√

2[U(z)− E], (1)

where U(z) is the barrier potential between the impurities.

For the limit of V12 � Ip, the transition rate between two neighboring impurity sites is evalu-

ated to yield,5

ν12 ∝ exp

[
−2Ip
h̄ω

tanh(h̄ω/4kT ) +
|eV12|
2kT

]
. (2)

Here we keep an additional term in V12 compared to Ref. 5 in order to fit the experimental I-V

curves to higher voltages.

Now we consider a nanowire containing a sequence of impurity centers, labeled by 1, 2, ..., i,

..., N . The transition rate between two neighboring centers, i− 1 and i, is

νi−1,i = Ci−1,i exp

[
−2Ii−1,i

h̄ω
tanh(h̄ω/4kT ) +

|eVi−1,i|
2kT

]
, (3)

where Ci−1,i is a prefactor independent of temperature and voltage. The current is

I(V, T ) = e[fi−1 − fi]νi−1,i = e2Vi−1,iDimpνi−1,i, (4)

where we have assumed νi−1,i = νi,i−1 and fi−1 − fi = DimpeVi−1,i which defines an effective

impurity state density of states Dimp. This is simply a resistor in series problem and the steady

state solution is,

I(V, T ) =
e2V Dimp∑

i ν
−1
i−1,i

. (5)

If we neglect the fluctuations from impurity to impurity, and set the values Ii−1,i = Ip, and

Vi−1,i = V/n where n is the number of impurities in the wire, we find,

I(V, T ) =
e2V Dimpν

n
, (6)
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where ν is the polaron hopping frequency, which using eq 3 leads to,

I(V, T ) = J0V exp

[
−2Ip
h̄ω

tanh(h̄ω/4kT ) +
|eV |
2nkT

]
. (7)

with J0 = e2DimpC/n.

VI. Polarization-induced resistance, model I

Suppose there are two parallel wires, one with a small resistance and one with a large resistance due

to a single, strong scattering center. As the current is increased, the wire with the large resistance

will build up a local charge proportional to the current. The Coulomb field from this charge buildup

may create a scattering potential in the other wire. For sufficiently strong coupling this can shut

off transport in the other wire.

Figure S 6: Circuit model for the four-probe measurement with two nanowires. R1 is the resistance
of the Pt lead connected to the first voltage probe. R2 and R3 are resistances of the sections of the
first nanowire. R4 is the resistance of the second nanowire.
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Suppose two nanowires are in parallel in the four-probe measurement, as shown in Figure S6,

where the two current leads are indicated by I (with the arrows indicating the current direction),

and the two voltage leads are indicated by V1 and V2, respectively. R2 and R3 represent the wire

with the small (zero current) resistance and R4 is the wire with the large resistance. Therefore

when I = 0, R4 � R2 andR4 � R3. As the current is increased, the inhomogeneity in the second

wire causes the charge to build up, whose Coulomb field in turn changes the resistances R2 and

R3. If R2 has a strong coupling to R4 we should see a nonlinear increase of the resistance as a

function of the voltage. However, if R2 couples weakly to R4 but R3 couples strongly to R4, then

a decrease of the measured voltage V = V2 − V1 as a function of the increasing current can occur.

From the circuit model in Figure S6, we find,

V = V2 − V1 =
R2R4 −R1R3

R1 +R2 +R3 +R4

I. (8)

If we assume that R2 does not change with the voltage on R4 but R3 is proportional to it, then

R3 = λ|V4| = λ|I| (R2 +R3)R4

R1 +R2 +R3 +R4

, (9)

where V4 is the voltage drop on R4 and λ is the coupling constant between R3 and R4. Solving for

R3 and keeping only the positive root, we find,

R3 =
1

2
[(λ|I| − 1)R4 −R1 −R2] +

√
1

4
[(λ|I| − 1)R4 −R1 −R2]2 + λ|I|R2R4. (10)

If λ|I| � 1 then,

R3 ≈ (λ|I| − 1)R4. (11)

If λ|I| � 1 then,

R3 ≈ λ|I|R2. (12)
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Interpolating between these two limits, the voltage drop depends nonlinearly on the current,

V ≈ aR2 − λ|I|R1

a+ λ|I|
I, (13)

where a is a constant for the interpolation.

At small currents, the measured resistance is R2. At large currents, the measured resistance is

−R1. This can be further written as

V =
B − |I|
C + |I|

R1I, (14)

which we use to fit the experiment. Here B = aR2/λR1 and C = a/λ. Alternatively, if R2 is

proportional to the voltage drop V4 on resistor R4 but R3 is independent,

R2 = λ|V4| = λ2|I|
(R2 +R3)R4

R1 +R2 +R3 +R4

(15)

then we find the opposite result, where the resistance is negative for small current and positive for

large current. This is the opposite of what is seen experimentally at low temperatures (see Figure

S4 (a)). Thus we conclude that R2 does not vary with the current at low temperatures.

VII. Polarization-induced resistance, model II

In Figure S7 we show a more complex circuit made of three nanowires. In this case the measured

voltage drop is,

V = V2 − V1 =

{
R3 −

(R1 +R3)[(R3 +R4)(R2 +R5) +R3R4]

(R1 +R3 +R6)(R2 +R4 +R5) +R4(R2 +R5)

}
I. (16)

If R4 � R1 +R2 +R3, then,

V ≈ R3R6 −R1(R2 +R5)

R1 +R2 +R3 +R5 +R6

I. (17)
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Figure S 7: Circuit model for the four-probe measurement with three nanowires. R1, R2 are
the resistances of the segments of the Pt leads connected to the voltage probes. R3 and R4 are
resistances of the sections of the first nanowire. R5 is the resistance of the second nanowire, and
R6 is the resistance of the third wire.

Consider the Coulomb field from R4 and R6 on R5. If we assumed that the resistance R5 is,

R5 = λ1|I1|R6 + λ2|I − I1 − I2|R4, (18)

then,

x = R2 + λ2|I|R4 +
(λ1R6 − λ2R4)(R3 +R4)x+ λ1R3R4R6 − λ2(R1 +R3 +R6)R

2
4

(R1 +R3 +R4 +R6)x+R4(R1 +R3 +R6)
|I|, (19)

where x = R2 +R5. Assuming that R4 � R1 +R2 +R3, the approximate solution is,

R5 ≈ λ|I| R4R6

R4 +R6

, (20)
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where λ = λ1 + λ2.We have,

V ≈ (R3R6 −R1R2)(R4 +R6)− λ|I|R1R4R6

(R1 +R2 +R3 +R6)(R4 +R6) + λ|I|R4R6

I. (21)

This I-V curve is also the form of eq 14, with both B and C proportional to 1/λ, similar to model

I, but the fitted ratio B/C is related to the resistances,

R3R6 −R1R2

R1 +R2 +R3 +R6

=
B

C
R1. (22)

To further simplify the above expression, we assume an average single wire resistance RWIRE =

(R3 + R6)/2 ≈
√
R3R6, and an average contact resistance RC = (R1 + R2)/2 ≈

√
R1R2,

neglecting the difference between the arithmetic and geometric averages, where RC is assumed to

be the resistance due to the Pt wires. We finally obtain,

RWIRE ≈ 2
B

C
R1 +RC . (23)

For data measured below 150 K, we can fit with three parameters B, C, and R1. But for data

measured above 150 K only the slope of the I-V curve can be reliably determined, which gives us

(B/C)R1. At high temperatures (B/C)R1 becomes negative, which gives a lower bound for the

values of RC . If we assume that RC follows the same temperature dependence as the Pt wires,

whose resistivity is measured separately, then the only fitting parameter needed to determine RC

is the length of the Pt wire. We can fit this length by requiring that the high temperature part of the

data all fall on an Arrhenius curve. Fitting to wires 14 and 15 yielded effective lengths of 1.5 µm

and 2.25 µm, respectively, for the Pt wire lengths.

We have used two different circuit models to derive a simple nonlinear I-V formula, eq 14. We

assert that eq 14 can be generally assumed for an interacting network of nanowires mediated by a

Coulomb field through the substrate. Of course the particular meanings of the fitting parameters

R1, B and C should depend on the details of the circuit model. While a four-probe setup can
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eliminate the problem of contact resistance for single wires, for a wire network one would need two

additional probes for each wire branch to completely eliminate the problem of contact resistance.

Nonetheless, with the help of our circuit model, we are able to take full advantage of the four-probe

measurement setup and reduce the final number of fitting parameters to two or three (see eq 14 and

eq 23 or eqs 2 and 3 of the main document). The negative resistivity observed at high temperatures

for some of the samples is now easily explained by eq 23: if the wire resistance RWIRE is less than

the contact resistance RC , then B/C becomes negative.

VIII. Temperature dependence of the inter-wire coupling

The temperature dependence of the inter-wire coupling arises from the contribution to the polaron

activation energy Ea from neighboring wires due to the coupling through the substrate. According

to Vannikov et al,6 this contribution is,

∆Ea =
e2

4πε0

(
1

ε∞
− 1

ε(ωp)

)(
1

a0
− 1

ρ

)
, (24)

where ε∞ is the optical dielectric constant for the medium,ε(ωp) is the dielectric constant at the

polaron hopping frequency ωp = 2πν, a0 is the separation between the nanowires,and ρ is the

average distance between the impurities in the nanowire. The dielectric constant ε(ωp) can be

approximated in a simple form,7

ε(ωp) = ε∞

(
1 +

Ω2
p

ω2
TO − ω2

p

)
, (25)

where ωTO is the transverse optical (TO) phonon mode, Ω2
p is a parameter that relates to the oscil-

lator strength of the TO phonon,and we assumed a single mode for simplicity. At low temperatures

when the polaron hopping frequency ωp is small, ε(ωp) > ε∞, therefore ∆Ea > 0 and the polaron

activation energy is increased by inter-wire coupling through the medium. At a certain tempera-

ture Tc, when ωp ≈ ωTO, the dielectric constantε(ωp) encounters a resonance. Somewhat above
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this temperature ∆Ea vanishes, the inter-wire coupling becomes zero, and the polaron activation

energy returns to the value for a single wire. Thus near Tc we should observe two effects, the

disappearance of the inter-wire coupling, and a discontinuity of the conductance as a function of

temperature. From experimental data, this happens at about Tc ≈ 150 K. Although we cannot

measure the polaron hopping frequency directly, we can estimate it from the measured single wire

resistance R(T ) by applying eq (6) at the critical temperature, Tc,

ωTO ≈
2πn

e2R(Tg)Dimp

, (26)

where we recall that n is the number of impurities in the wire. This relationship may be used to

check the validity of the polaron model.

IX. Density functional theory calculations of wire defects

To assess possible values for the impurity DOS we performed electronic structure calculations of

defective wires. We employed density functional theory and the plane wave projector augmented

wave method8–11 within the local density approximation.12 We used supercells containing a slab

with nine layers of Si atoms depth and sufficient width to study independent 5a0 wires. All atomic

positions were fully relaxed, except for the lowest plane of Si atoms. The rear surface was passi-

vated with hydrogen atoms. Other parameters were identical to our earlier studies.13 We studied

the electronic structure of a supercell containing 8 repeats of the 5a0 wire, with a single Y vacancy

introduced in the centre of the wire. Our final supercell contained 1191 atoms, yielding a periodic

vacancy-vacancy separation of 3.055 nm. Brillouin zone integration used a 3×2×1 gamma-point

centred k-point grid.

To determine the impurity DOS we compared the wavefunctions and bandstructure within a

1eV window of the Fermi energy with those of a perfect wire (vacancy free) supercell. To clearly

identify impurity states, we computed the integrated charge of each state with distance from the

vacancy site. Using the criteria that 60% of the integrated charge must be within 1nm of the
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vacancy, we identified two impurity states. Visualization of these states verified their vacancy-

related character. The most localized state has ≈ 65% of its charge within 1nm of the vacancy

site. Modest variations of these criteria consistently identify one or two impurity states. Weaker

criteria consistently identified less-localized non-impurity states already present in the perfect wire

supercell. We therefore conclude that Dimp ≈ 1 eV−1 for this wire. Bond counting arguments

and the similarity of local structures suggests that other common defects are likely to yield DOS

similar values.

Figure S 8: Visualization of the localized vacancy state in defective YSi2 wires. The clouds repre-
sent the isosurfaces of the square of the most localized state. The vacancy (missing blue Y atom)
is "behind" the lower visible Y in the centre of the plot.
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