Supplementary Material

Claim: Correlation between $B(i)$, $B(j)$, the ith and the jth components of B is negative when i,j are alternative features, which implies the assumption that $f(X) = f(X_{swap(i,j)})$, and X and $X_{swap(i,j)}$ follows the same distribution. $X_{swap(i,j)}$ is the matrix from exchanging the ith column and jth column of X.

Proof:

Denote X as the feature vector, a D dimensional random vector, and Y is the responding variable. First we assume the ground true model is represented by the following formula.

$$
Y = f(X)
$$

When two genetic variants X_i , X_i are a pair of alternative genetic variants for a responding variable, we assume that exchanging their values will not change the responding variable. Formally, it is defined as

$$
f(X_{\text{swap}(i,j)}) = f(X) \tag{2}
$$

We also assume $X_{swap(i,j)}$ and X follows the same distribution. The optimal solution of a sparse model can be written as B.

$$
B = \operatorname{argmin}_{B} [f(X) - X^T B]^2 + \lambda |B|_1.
$$
\n(3)

So the solution will satisfy the following Karush–Kuhn–Tucker condition. $\nabla_B[(Y - XB)^2 + \lambda |B|_1] = 0$ which is

$$
X[X^T B - f(X)] = \nabla_B[\lambda |B|_1].
$$
\n(4)

Since $X^T B = X^T_{\text{swap}(i,j)} B_{\text{swap}(i,j)}$ and $f(X_{\text{swap}(i,j)}) = f(X)$, we have the following,

$$
X\left[X_{\text{swap}(i,j)}^T B_{\text{swap}(i,j)} - f(X_{\text{swap}(i,j)})\right] = \nabla_B[\lambda|B|_1].
$$

We can also swap the i^{th} and j^{th} column of each side of the equation. $X_{\text{swap}(i,j)} [X_{\text{swap}(i,j)}^T B_{\text{swap}(i,j)} - f(X_{\text{swap}(i,j)})] = \nabla_{B_{\text{swap}(i,j)}} [\lambda | B_{\text{swap}(i,j)}|_1],$ which is

$$
X\left[X^T B_{\text{swap}(i,j)} - X_{\text{swap}(i,j)}f(X_{\text{swap}(i,j)})\right] = \nabla_{B_{\text{swap}(i,j)}}[\lambda|B_{\text{swap}(i,j)}|_1].
$$

Then we compute the expectation of the left side over all X and get the following equation.

$$
E[XX^T]B_{swap(i,j)} - E[X_{swap(i,j)}f(X_{swap(i,j)})] = E[XX^T]B_{swap(i,j)} - E[Xf(X)] = \nabla_{B_{swap(i,j)}}[\lambda | B_{swap(i,j,)}|_1].
$$
 (5)

Therefore, $B_{swap(i,j)}$ and B are solutions of the equation

$$
E[XXT]B - E[Xf(X)] = \nabla_B[\lambda|B|_1].
$$
\n(6)

Then from a linear convex combination of Equations (5) and (6), we can know $(1-a)B + aB_{swap(i,j)},$ $0 < a < 1$, is also an optimal solution of the problem in Equation (3).

Because $B(i) = B_{swap(i,j)}(j)$ and $B(j) = B_{swap(i,j)}(i)$, for all the model $(1-a)B + a B_{swap(i,j)}$, the ith component is going from $B(i)$ to $B(j)$, while the jth component is going from $B(j)$ to $B(i)$. Thus on the condition that there is a solution with $B(i) \neq B(j)$, the correlation coefficient of the ith and the jth component among all those models is -1 . Q.E.D.