Supplementary Material

Claim: Correlation between B(i), B(j), the *i*th and the *j*th components of B is negative when *i*,*j* are alternative features, which implies the assumption that $f(X) = f(X_{swap(i,j)})$, and X and $X_{swap(i,j)}$ follows the same distribution. $X_{swap(i,j)}$ is the matrix from exchanging the *i*th column and *j*th column of X.

Proof:

Denote X as the feature vector, a D dimensional random vector, and Y is the responding variable. First we assume the ground true model is represented by the following formula.

Y = f(X)

When two genetic variants X_i , X_j are a pair of alternative genetic variants for a responding variable, we assume that exchanging their values will not change the responding variable. Formally, it is defined as

$$f(X_{\mathrm{swap}(i,j)}) = f(X)$$
(2)

We also assume $X_{swap(i,j)}$ and X follows the same distribution. The optimal solution of a sparse model can be written as B.

$$B = \operatorname{argmin}_{B}[f(X) - X^{T}B]^{2} + \lambda |B|_{1}$$
(3)

So the solution will satisfy the following Karush–Kuhn–Tucker condition. $\nabla_B[(Y-XB)^2 + \lambda |B|_1] = 0$ which is

$$X[X^T B - f(X)] = \nabla_B[\lambda |B|_1].$$
⁽⁴⁾

Since $X^T B = X^T_{\text{swap}(i, j)} B_{\text{swap}(i, j)}$ and $f(X_{\text{swap}(i, j)}) = f(X)$, we have the following,

$$X[X_{\operatorname{swap}(i,j)}^T B_{\operatorname{swap}(i,j)} - f(X_{\operatorname{swap}(i,j)})] = \nabla_B[\lambda |B|_1].$$

We can also swap the *i*th and *j*th column of each side of the equation. $X_{\text{swap}(i,j)}[X_{\text{swap}(i,j)}^T B_{\text{swap}(i,j)} - f(X_{\text{swap}(i,j)})] = \nabla_{B_{\text{swap}(i,j)}}[\lambda | B_{\text{swap}(i,j)} |_1]$, which is

$$X \left[X^{T} B_{\operatorname{swap}(i,j)} - X_{\operatorname{swap}(i,j)} f(X_{\operatorname{swap}(i,j)}) \right] = \nabla_{B_{\operatorname{swap}(i,j)}} \left[\lambda | B_{\operatorname{swap}(i,j)} |_{1} \right]$$

Then we compute the expectation of the left side over all X and get the following equation.

$$E[XX^{T}]B_{swap(i,j)} - E[X_{swap(i,j)}f(X_{swap(i,j)})] = E[XX^{T}]B_{swap(i,j)} - E[Xf(X)] = \nabla_{B_{swap(i,j)}}[\lambda|B_{swap(i,j)}|_{1}].$$
(5)

Therefore, $B_{swap(i,j)}$ and B are solutions of the equation

$$E[XX^{T}]B - E[Xf(X)] = \nabla_{B}[\lambda|B|_{1}].$$
(6)

Then from a linear convex combination of Equations (5) and (6), we can know $(1-a)B + aB_{swap(i,j)}$, 0 < a < 1, is also an optimal solution of the problem in Equation (3).

Because $B(i) = B_{swap(i,j)}(j)$ and $B(j) = B_{swap(i,j)}(i)$, for all the model $(1-a)B + a B_{swap(i,j)}$, the *i*th component is going from B(i) to B(j), while the *j*th component is going from B(j) to B(i). Thus on the condition that there is a solution with $B(i) \neq B(j)$, the correlation coefficient of the *i*th and the *j*th component among all those models is -1. Q.E.D.