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Summary

Personally experienced events include multiple elements,
such as locations, people, and objects. These events are

thought to be stored in episodic memory as coherent repre-
sentations [1] that allow the retrieval of all elements from a

partial cue (‘‘pattern completion’’ [2–6]). However, direct
evidence for coherent multielement representations is

lacking. Their presence would predict that retrieval of one

element from an event should be dependent on retrieval of
the other elements from that event. If we remember where

we were, we should be more likely to remember who we
met and what object they gave us. Here we provide evidence

for this type of dependency in remembering three-element
events. Dependency was seen when all three elements

were encoded simultaneously, or when the three overlap-
ping pairwise associations comprising an event were

learned on separate trials. However, dependency was only
seen in the separated encoding condition when all possible

within-event associations were encoded. These results
suggest that episodic memories are stored as coherent

representations in which associations between all within-
event elements allow retrieval via pattern completion.

They also show that related experiences encountered at
different times can be flexibly integrated into these coherent

representations.
Results

Participants learned events composed of three or four ele-
ments (locations, people, and objects or animals) during a
study phase (Figure 1 and Experimental Procedures). For
example, for one event, they were presented with the words
‘‘kitchen,’’ ‘‘Barack Obama,’’ and ‘‘hammer’’ and required to
imagine the three elements interacting. Using multielement
events (as compared to simple pairwise associations) is crit-
ical to assess dependency. We can ask whether successful
retrieval of one within-event association (e.g., retrieving loca-
tion when cued with person) is dependent on retrieval of other
associations from the same event (e.g., retrieving location
when cued with object). During the test phase, each trial
consisted of a cue (e.g., a location), with participants required
to select the associated element (e.g., the person) among five
other elements of the same type from different events. Each
event was tested for all possible associations (e.g., location-
person), in both directions, resulting in six retrieval trials per
event.
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We created contingency tables showing the dependency in
performance when retrieving different associations from the
same event (following [7–10]), e.g., the 23 2 table for retrieving
the object or the person when cued by the location. The
dependency measure reflects the proportion of events in
which both associations were retrieved correctly or both
incorrectly. By comparing this dependency to Independent
and Dependent models of retrieval, we assessed within-event
dependency for each participant, controlling for their accuracy
and level of guessing (see Table 2, Experimental Procedures,
and Supplemental Information available online). The Indepen-
dent model predicts the contingency table corresponding to
unrelated retrievals of different associations from the same
event. The Dependent model predicts the contingency table
corresponding to dependent retrieval of all associations from
the same event. The models provide lower and upper bounds
to the expected level of dependency.
In experiment 1, half of the ‘‘events’’ were seen in single en-

coding trials containing all three elements (the Simultaneous
condition; Figure 1A); the other half were seen as three over-
lapping pairs of elements across three separate encoding
trials (the Separated Closed-Loop condition; Figures 1B and
1D). For example, in the Separated Closed-Loop condition,
we presented the location and person on one trial, then the
location and object, and finally the person and object (with
each encoding trial separated by trials from other unrelated
events). All 72 trials, corresponding to 18 events in each condi-
tion, were presented in interleaved order. Memory for each
association (six per event) was then tested in 216 interleaved
trials (six-alternative forced-choice).
Performance was good (76%; Table 1 and Supplemental

Information). Contingency tables for the Simultaneous con-
dition provided evidence for dependency (Figure 2A). Depen-
dency exceeded the Independent model, t(15) = 2.95,
p < 0.01, and did not differ from the Dependent model, t(15) =
0.81, p = 0.43 (see also [9]). The Separated Closed-Loop condi-
tion also showed greater dependency than the Independent
model, t(15) = 3.14, p < 0.01, and did not differ from the Depen-
dent model, t(15) = 1.32, p = 0.21. Importantly, the Simulta-
neous and Separated conditions showed similar dependency
relative to their respective Independent models, t(15) = 0.25,
p = 0.81.
Dependency comparable to the Dependent model was

observed when the three elements of an ‘‘event’’ were pre-
sented simultaneously or in three separate pairwise encoding
trials. These data suggest that episodic memories are stored
as coherent representations and that related experiences
encountered at different times can be integrated into these
representations.
Experiment 2 aimed to replicate the finding of dependency

in the Separated condition and to probe the conditions
required for such dependency. In the Separated Closed-
Loop condition, triads of the presented paired associates
formed three-element events with an all-to-all or ‘‘closed-
loop’’ associative structure (Figure 1D). Experiment 2 in-
cluded triads of paired associates that formed four-element
events (object-location-person-animal) with an open-loop
associative structure (the Separated Open-Loop condition;
Figure 1E). For example, participants would first encode
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Figure 1. Trial Sequence for Study and Test

Phases across Experiments

(A) Trial sequence and timing for the Simulta-

neous condition of experiment 1.

(B) Trial sequence (excluding 1 s fixation cross

between encoding trials) for the Separated

Closed-Loop and Separated Open-Loop condi-

tions of experiments 1 and 2. Dotted lines are

for illustrative purposes only (i.e., were not shown

at encoding) to emphasize within-event pairs.

Within-event pairs were not separated by a single

intervening trial but had a mean of 36 intervening

trials.

(C) Trial sequence of cued-recognition during the

test phase of experiments 1 and 2. Within-event

pairs were not tested consecutively but were

separated by a mean of 36 intervening trials.

(D) Associative structure of the Simultaneous

condition of experiment 1 and Separated

Closed-Loop condition of experiments 1 and 2.

(Note that half the Separated Closed-Loop

events of experiment 2 were animal-location-

person triads rather than object-location-person

triads.)

(E) Associative structure of the Separated Open-

Loop condition of experiment 2.
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location-object, then person-animal, and finally location-per-
son. The 108 paired associates for 18 events from each con-
dition were presented in interleaved trials (nine Closed-Loop
events contained object-location-person, and nine contained
animal-location-person).

As in experiment 1, performance was good (65%; Table 1
and Supplemental Information), and we saw dependency for
the Separated Closed-Loop condition: dependency exceeded
the Independent model, t(14) = 4.66, p < 0.001, and did not
differ from the Dependent model, t(14) = 1.93, p = 0.07 (though
we note a trend; Figure 2B). By contrast, we saw no evidence
for dependency in the Separated Open-Loop condition:
dependency did not differ from the Independent model,
t(14) = 0.63, p = 0.54, and was significantly less than the
Dependent model, t(14) = 4.78, p < 0.001. Importantly, the
Closed- and Open-Loop conditions differed in dependency
relative to their respective Independent models, t(14) = 3.48,
p < 0.01.

Dependency is seen when an event is presented across
separate encoding trials (the Separated Closed-Loop condi-
tion). However, this dependency was only seen when all
possible within-event pairs were encoded (i.e., the Separated
Open-Loop condition did not show dependency). This lack of
dependency in the Open-Loop condition was replicated,
despite changing the order of the encoded pairs (experiment
S1), and using paired associates from three-element events
with an open-loop structure (where only two of the three
possible associations were encoded; experiment S2). Thus,
coherent event representations can be constructed across
multiple encoding trials, but this depends on the associative
structure presented, with a closed loop of three associations
producing dependency, but not an open chain of three (or
two) associations.

Discussion

Episodic memories are thought to be stored as coherent rep-
resentations of the multiple elements comprising an event
(‘‘event engrams’’). We found dependency in the retrieval of
different elements of the same event, even when the event
was formed from overlapping pairwise associations presented
across separate trials, but only when all possible pairwise
associations in the event were presented.
The associative structure of events has been investigated

using partial cuing techniques [11, 12]; however, this approach
does not address within-event dependency or variation across
events. Dependency has also been assessed in memory for
subordinate features (e.g., location on a screen and font size)
of single elements (e.g., words) [13–15]. However, here we
are interested in event memory, the binding of indepen-
dently represented multimodal elements into coherent repre-
sentations. Furthermore, these previous studies concerned
‘‘events’’ encoded on single trials and did not assess depen-
dency for overlapping but independently encoded pairwise
associations (i.e., our Separated conditions).
Dependency for events formed from simultaneously pre-

sented elements could reflect trial-by-trial modulation of
attention (see [9]), since attention at encoding can modulate
memory performance (e.g., [16–18]). However, we saw similar
dependency for events formed from overlapping pairs of ele-
ments presented over different trials, ruling out an attentional
explanation. These results also challenge models in which
item information is associated via a time-varying context
signal (e.g., [19, 20]), as its time-varying nature would cause
independence in the Separated Closed-Loop condition. If a
common ‘‘context’’ representation mediates within-event as-
sociations, it must predominantly comprise the within-event
elements themselves. This forces us toward a mechanism in
which within-event associations can be encoded indepen-
dently but are retrieved in a dependent manner.
We suggest that dependency results from the associative

structure of the ‘‘event.’’ If all possible within-even pairs are
encoded, a partial cue can cause retrieval of all within-event
elements (regardless of whether they are being tested or
not). This pattern completion process is thought to be a
core function of the hippocampus [2–6], a region critical for



Table 1. Memory Performance across Experiments 1 and 2

Cue Type

Retrieved Type

Location Person Object Animal

Experiment 1

Sim. Closed Location NA 0.80 (0.20) 0.72 (0.22) NA

Person 0.79 (0.23) NA 0.76 (0.22) NA

Object 0.74 (0.23) 0.76 (0.20) NA NA

Sep. Closed Location NA 0.77 (0.18) 0.78 (0.20) NA

Person 0.77 (0.19) NA 0.76 (0.26) NA

Object 0.77 (0.22) 0.79 (0.18) NA NA

Experiment 2

Sep. Closed Location NA 0.64 (0.19) 0.68 (0.22) 0.80 (0.15)

Person 0.60 (0.21) NA 0.69 (0.19) 0.61 (0.14)

Object 0.71 (0.18) 0.67 (0.22) NA NA

Animal 0.70 (0.17) 0.64 (0.19) NA NA

Sep. Open Location NA 0.51 (0.22) 0.76 (0.20) NA

Person 0.51 (0.24) NA NA 0.58 (0.15)

Object 0.75 (0.19) NA NA NA

Animal NA 0.64 (0.18) NA NA

Proportion correct cued recognition (and SD) for each retrieved type

(i.e., the element the participants were tested on; columns) and each cue

type (i.e., the element the participants were cued with; rows) across the

Simultaneous Closed-Loop (Sim. Closed) and Separated Closed-Loop

(Sep. Closed) conditions of experiment 1 and Separated Closed-Loop and

Separated Open-Loop (Sep. Open) conditions of experiment 2.

Figure 2. Dependency Analyses across Experiments 1 and 2

Dependency for the data, Independent model, and Dependent model

across Simultaneous Closed-Loop and Separated Closed-Loop conditions

of experiment 1 (A) and Separated Closed-Loop and Separated Open-Loop

conditions of experiment 2 (B). Error bars represent 6 1 SE. ***p < 0.001; **

p < 0.01; ns, not significant.
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episodic memory [21–23]. We suppose that hippocampal
neurons selectively code for individual elements of any given
event, consistent with ‘‘place cells’’ in rat [24] or human [25]
hippocampus that represent specific locations and single
neurons in the human hippocampus representing specific
famous people [26].

In this view, it is the closed-loop structure of within-event
associations that constitutes a coherent representation and
allows pattern completion. This can be captured by simple
autoassociative memory models (e.g., [2, 5, 6, 27]), in which
reactivation of an individual element depends on the strengths
of association between all elements within the event. In this
case, retrieval performance on any one trial will reflect the
strength of all within-event associations. The Dependent
model captures this by assuming that performance on a
retrieval question reflects the mean performance on the
other questions regarding that event (the episodic factor E;
see Experimental Procedures and Supplemental Information).
Within this account, the lack of dependency in the Open-Loop
condition reflects an absence of pattern completion: the only
route for the cue to reactivate the target is via the cue-target
association itself.

It is possible that pattern completion occurs at encoding
(as well as at retrieval), allowing simultaneous encoding of all
preceding within-event associations, which could introduce
dependency in their strengths (see [28] for a related proposal).
For example, when encoding the last pair (e.g., A-C), both the
A-B and C-B associations could be retrieved, possibly leading
to explicit imagery of all three elements. Note that this account
still relies on the presence of pattern completion, albeit at en-
coding, and as such is constrained by the associative struc-
ture of the event: only occurring for closed-loop structures.

Our results have implications for how coherent event repre-
sentations are formed from continuous experience. Features
of the incoming stream of information can form contextual
boundaries, segmenting our perception of the world into
discrete events (e.g., [29, 30]) and influencing what information
is bound within an event engram (e.g., [31, 32]). The presence
of an ‘‘event boundary’’ can trigger the binding of all elements
experienced in the preceding context, a process in which the
hippocampus has been implicated (e.g., [33]). However, the
presence of such an event boundary, demarcating a contig-
uous segment of time, may not be a necessary precondition
for such binding to occur. Our results suggest that depen-
dency can result from the associative structure of the related
elements, rather than necessarily depending on their having
been presented within the same context (cf. [19, 20]).
Although dependency was not seen for open-loop associa-

tive structures, presenting pairs A-B and A-C in experiment S2
led to above-chance performance for the nonencoded pairs
(B-C), suggesting the presence of a weak association of non-
encoded pairs, perhaps due to reactivation of A-B on presen-
tation of A-C [28]. This association was presumably too weak
to result in strong pattern completion of all three elements at
retrieval, as dependency was not seen. Perhaps dependency
for open-loop structures would be seen if nonencoded asso-
ciations were sufficiently strengthened, by repetition or offline
consolidation [34–37], potentially allowing for generalization
across elements that have not been directly associated, a pro-
cess that may also be mediated by the hippocampus [38–40].
The formation of integrated closed-loop structures over time

might relate to the concept of ‘‘schema’’ [11, 41–43], consoli-
dated memory structures that allow the integration of new
related information. Our focus was on episodic memory and
single presentations of memoranda, rather than long-term
learning of statistical relationships over multiple presenta-
tions, which is the traditional focus of semantic learning and
systems consolidation [2, 5, 44, 45] and in which ‘‘chunks’’
can be formed from higher-order relationships [46, 47]. None-
theless, our ‘‘associative structures’’ may represent building
blocks from which schema can be built. Although the exact
relationships between traditionally defined ‘‘events,’’ our



Table 2. The Independent and Dependent Models

Retrieval of Element (C)

Retrieval of Element (B)

Correct (PAB) Incorrect (1 2 PAB)

Independent Model

Correct (PAC)
P

i=1
NPABPAC

P
i=1

NPAC (1 2 PAB)

Incorrect (1 2 PAC)
P

i=1
NPAB (1 2 PAC)

P
i=1

N(1 2 PAB)(1 2 PAC)

Dependent Model

Correct (PAC)
P

i=1
NṔ i

ABṔ i
AC

P
i=1

NṔ i
AC (1 2 Ṕ i

AB)

Incorrect (1 2 PAC)
P

i=1
NṔ i

AB (12 Ṕ i
AC)

P
i=1

N(1 2 Ṕ i
AB)(1 2 Ṕ i

AC)

Contingency tables for the Independent and Dependent models, giving the

frequency (over events) of the four combinations of correct or incorrect

retrieval of elements B and C when cued by element A. The Dependent

model replaces the probability of correctly recalling B when cued by A

(across all events; PAB) with Ṕ i
AB = Ei

AB(PAB 2 PG/c) + PG/c, where the

episodic factor Ei
AB reflects performance on event i relative to other events

(based on retrievals other than B and C cued by A), PG is the probability of

guessing, and c = 6 is the number of choices in a test trial. PAC is replaced

similarly (see Supplemental Information for details). The Dependent model

equates to the Independent model if the episodic factors are set to 1.
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separately encoded ‘‘associative structures,’’ and ‘‘schema’’
are currently unclear, our approach presents opportunities
for bridging the fields of episodic memory and the segmenta-
tion, generalization, and consolidation of experience.

Conclusions

Theories of episodic memory propose the existence of
coherent event representations, allowing retrieval of all event
elements via pattern completion. Here we present evidence
that such event engrams exist and are built from multiple
overlapping associations that can be encoded independently.
Performance in retrieving any within-event association is
related to performance for retrieving other associations from
the same event. We suggest this dependency results from a
retrieval-related pattern completion process, requiring the
presence of a closed-loop structure of associations between
within-event elements. Our results shed light on how the
episodic memory system can rapidly incorporate new infor-
mation into associative structures, and how multielement
events are retrieved through a process of pattern completion.

Experimental Procedures

Participants

All experiments were approved by the University College London Research

Ethics Committee (NB/PWB/26102011a), and all participants gave informed

consent (see Supplemental Information for participant details).

Materials

Stimuli were 36 locations (e.g., a swimming pool), famous personalities

(e.g., David Cameron), common objects (e.g., a bicycle; see [9]), and animals

(e.g., a dog).

Procedure

Experiments consisted of single study and test phases. At study, triads

(for the Simultaneous condition) or pairs (for the Separated conditions) of

elements were serially presented (Figure 1). Triads/pairs were presented

for 6 s, as words, and participants were required to imagine the elements

on the screen ‘‘interacting in a meaningful way as vividly as possible.’’

Experiment 1 presented triads and pairs; experiment 2 presented only pairs

(see Supplemental Information).

At test, participants were presented with an element and had to choose

the associated element from six alternatives (Figure 1). All ‘‘events’’ were

tested with every cue-test pair (e.g., cue: location, test: object), resulting

in six cued-recognition trials per event. One of the test items was the
element associated with the cue; the other five were elements of the same

category (e.g., objects) randomly selected from other events (regardless

of condition). Participants were required to respond as accurately as

possible within 6 s with a key press and to rate their confidence on a scale

of 1 to 5.

Assessing Dependency

We created 2 3 2 contingency tables of each participant’s performance for

specific pairs of associations across events, including tables for retrieving

two elements (e.g., person and object) when cued by the remaining element

(e.g., location; ‘‘ABAC’’ analyses) and for retrieving one element (e.g., loca-

tion) when cued by its associated elements (e.g., person and object;

‘‘BACA’’ analyses). This resulted in six 2 3 2 tables per participant per con-

dition in experiments 1 and S2, one for each element (item type) and analysis

type (ABAC or BACA), and four tables per participant per condition in ex-

periments 2 and S1 (testing the four pairs of associations common to

both Open- and Closed-Loop conditions; see Supplemental Information).

To assess dependency, we took the proportion of events in which both

associations were either correctly or incorrectly retrieved and averaged

this measure across the contingency tables for a given condition. We also

calculated Yule’s Q measure of dependency (see [8, 10, 48]) for the data

for all experiments (see Supplemental Information).

For each contingency table, we created predicted tables corresponding

to ‘‘Independent’’ and ‘‘Dependent’’ models of retrieval (see Table 2, Sup-

plemental Information, and [9] for details). The Independent model predicts

the dependency corresponding to the participant’s mean level of perfor-

mance for the two associations across events. In the Dependent model,

the predicted retrieval performance for a given question is adjusted by the

mean performance over other questions for that event (the episodic factor

E). It predicts the maximal level of dependency, given the participant’s

mean level of performance for the two associations, their overall level of

guessing, and the amount of variance in their overall performance across

events. The Independent and Dependent models serve as theoretical lower

and upper bounds for comparison to the level of dependency in the data, for

each participant in each condition.

Supplemental Information

Supplemental Information includes Supplemental Results, one figure, and

Supplemental Experimental Procedures and can be found with this article

online at http://dx.doi.org/10.1016/j.cub.2014.03.012.
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Supplemental Results 

Further analyses of Experiments 1 & 2 

Cued-recognition performance 

 Experiment 1 

A 2x3 (Simultaneous vs. Separated x Cue-type) within-subjects ANOVA of retrieval 

performance, collapsed across Retrieved-type, failed to reveal any significant effects, 

F’s<1.07, p’s>.34, ηP
2’s<.07. A similar 2x3 (Simultaneous vs. Separated x Retrieved-type) 

ANOVA, collapsed across Cue-type, also failed to reveal any significant effects, F’s<1.35, 

p’s>.27, ηP
2’s<.08. Thus, no differences in performance were seen across the three item 

types (location, people and objects), either as the cue-type or retrieved-type. Further, no 

difference in performance was seen between the Simultaneous and Separated conditions. 

Experiment 2 

A 2x4 (Closed-loop vs. Open-loop x Cue-type) within-subjects ANOVA of retrieval 

performance, collapsed across Retrieved-type, revealed a Closed-loop vs. Open-loop x Cue-

type interaction, F(1.6, 22.1) = 4.58, p<.05, ηP
2=.25, and a main effect of Cue-type, F(2.1, 

29.5) = 6.56, p<.001, ηP
2=.32. Despite a trend, no significant difference was seen between 

Closed-loop vs. Open-loop, F(1, 14) = 3.86, p=.07, ηP
2=.22. The interaction was characterised 

by an effect of Cue-type in the Open-loop condition, F(2.0, 27.4) = 9.03, p<.01, ηP
2=.39, with 

better performance when cued by an object relative to the other three elements, but no 

Cue-type effect in the Closed-loop condition, F(1.9, 26.2) = 1.67, p=.21, ηP
2=.11. 
 
 



A similar 2x4 (Closed-loop vs. Open-loop x Retrieved-type) ANOVA, collapsed across 

Cue-type, revealed a similar Closed-loop vs. Open-loop x Cue-type interaction, F(3.0, 41.38) 

= 12.24, p<.001, ηP
2=.47, as well as main effects of Retrieved-type, F(2.1, 30.1) = 5.68, p<.01, 

ηP
2=.29, and of Closed-loop vs. Open-loop, F(1, 14) = 6.34, p<.05, ηP

2=.31. Again, the 

interaction was characterised by an effect of Retrieved-type in the Open-loop condition, 

F(2.5, 35.3) = 11.04, p<.001, ηP
2=.44, with better performance when retrieving the object 

relative to the other three elements, but no Retrieved-type effect in the Closed-loop 

condition, F(1.8, 24.9) = 1.77, p=.19, ηP
2=.11. To summarise, performance was better in the 

Closed-loop than Open-loop condition, though this only reached significance in the analysis 

across Retrieved-type, and performance was more variable across the four elements in the 

Open-loop than Closed-loop condition. 

 The differences in memory performance across the four item-types (locations, 

people, objects and animals) in the Open-loop but not Closed-loop condition suggest an 

underlying difference in memory strength across item types, with better memory for 

objects. However, when dependency is seen (i.e., in the Closed-loop condition), accuracy 

becomes more similar across item types. This finding is consistent with the presence of 

pattern completion in the Closed-loop condition, in which performance reflects all within-

event associations rather than just the association between the specific elements tested. 

Analysis of dependency across Analysis-type and Item-type 

 Experiment 1 

A 2x2x3 (Simultaneous vs. Separated x Analysis-type x Item-type) ANOVA on dependency of 

the observed data failed to reveal any main effects or an interaction (F’s<2.23, p’s>.15, 
 
 



ηP
2’s<.13). Analysis-type refers to ‘ABAC’ versus ‘BACA’ analyses (see Experimental 

Procedures). Item-type refers to the type of the common element in the dependency 

analysis (i.e., the element referred to as A in the above description of analysis-type).  

 Experiment 2 

A 2x2x2 (Closed-loop vs. Open-loop x Analysis-type x Item-type) ANOVA on dependency of 

the observed data revealed a main effect of Closed-loop vs. Open-loop, F(1, 14) = 12.87, 

p<.01, ηP
2=.48, reflecting the difference in dependency between the two conditions (but 

potentially also reflecting accuracy differences, which are controlled for by the comparisons 

to Independent and Dependent models in the main text). No further main effects or 

interactions reached significance, F’s<1.7, p’s>.22, ηP
2’s<.11. 

 

 
 

 

Table S1, related to Figure 2. Mean dependency (D) (and standard deviation) for the ABAC and BACA analyses for 
the observed data across the Simultaneous Closed-loop (Sim. Closed) and Separated Closed-loop (Sep. Closed) 
conditions of Experiment 1 and Separated Closed-loop (Sep. Closed) and Separated Open-loop (Sep. Open) 
conditions of Experiment 2. 

Analysis: ABAC BACA 

Item-type: Location Person Object Location Person Object 

Experiment 1       

  Sim. Closed .76 (.14) .77 (.17) .74 (.16) .76 (.17) .71 (.21) .74 (.15) 

  Sep. Closed .79 (.17) .77 (.15) .73 (.19) .75 (.18) .74 (.18) .75 (.18) 

Experiment 2       

  Sep. Closed .69 (.16) .61 (.18) n/a .63 (.13) .68 (.15) n/a 

  Sep. Open .55 (.17) .54 (.17) n/a .53 (.20) .53 (.13) n/a 

 

 



Analysis of encoding order in the Separated Closed-loop condition 

In Horner & Burgess (S1), we raised the possibility that dependency could change across the 

6 retrieval trials per event. Interestingly, although we saw an increase in accuracy from 

retrieval trial 1-6, we saw no evidence for any increase in dependency when pairing the 1st 

and 2nd, 3rd and 4th and 5th and 6th retrieval trials for each event. In fact, the analyses raised 

the possibility of a small decrease in dependency, once the overall increase in accuracy was 

taken into account. In previous studies, an ‘event’ was presented in a single trial with all 

elements shown on the screen at the same time (equivalent to the Simultaneous condition 

of experiment 1). Given that we introduced a ‘Separated’ condition for the current studies, 

we can ask a similar question at encoding. Does dependency differ as a function of when 

each pairwise association was encoded? To do this, we paired up retrieval trials for the 1st 

vs. 2nd encoded pair, 2nd vs. 3rd encoded pair and 1st vs. 3rd encoded pair of each event, and 

conducted the same dependency analyses as in the main text. Note, this analysis was only 

performed on the Separated Closed-loop conditions of experiments 1 and 2 (as these were 

the Separated conditions that showed evidence for dependency). 
 

 Experiment 1 

A one-way ANOVA (1st vs. 2nd vs. 3rd encoded pair) analysing cued-recognition performance 

showed a significant main effect, F(1.7, 25.6) = 3.63, p<.05, ηP
2=.20, revealing greater 

performance for 1st (81%), than 2nd (76%) and 3rd (75%) encoded pairs. However, 

dependency does not appear to be affected by encoding order. A one-way ANOVA 

comparing the raw dependency measure for 1st vs. 2nd, 2nd vs. 3rd and 1st vs. 3rd encoded 

pairs was not significant, F(1.8, 27.5) = .93, p=.41, ηP
2=.06. A similar ANOVA on the 

difference between dependency in the data and the Independent model (i.e., controlling for 
 



accuracy differences) for the same 3 pairings was also not significant, F(1.7, 26.8) = .84, 

p=.43, ηP
2=.05. Thus, we could find no evidence for differences in dependency as a function 

of the order of encoded pairs. 

Experiment 2 

A one-way ANOVA (1st vs. 2nd vs. 3rd encoded pair) analysing cued-recognition performance 

showed a significant main effect, F(1.8, 25.7) = 6.91, p<.01, ηP
2=.33, revealing greater 

performance for 1st (72%), than 2nd (66%) and 3rd (62%) encoded pairs. Again, dependency 

does not appear to be affected by encoding order. A one-way ANOVA comparing the raw 

dependency measure for 1st vs. 2nd, 2nd vs. 3rd and 1st vs. 3rd encoded pairs was not 

significant, F(1.5, 21.5) = 2.05, p=.16, ηP
2=.13. A similar ANOVA on the difference between 

dependency in the data and the Independent model (i.e., controlling for accuracy 

differences) for the same 3 pairings did reach significance, F(1.9, 27.3) = 3.79, p<.05, ηP
2=.21, 

with less dependency for the 1st vs. 2nd pair (dependency for Data – Independent model = 

0.01) than 2nd vs. 3rd (0.06) or 1st vs. 3rd (0.04).  

Although this difference was unexpected, a full 2x3 mixed ANOVA across 

experiments 1 and 2, comparing the difference between the data and Independent model 

across the 3 pairings failed to reveal a main effect of encoding pair, F(1.9, 55.3) = 1.35, 

p=.27, ηP
2=.05, with no interaction between this factor and Experiment, F(1.9, 27.3) = 2.78, 

p=.07, ηP
2=.08 (though we note a trend). Thus, across experiments we could not find 

consistent evidence for differences in dependency as a function of the order of encoded 

pairs. 
 
 

 



 

Analysis of reaction times 

Though not central to our main hypotheses, it is conceivable that differences in reaction 

times (RTs) between our conditions of interest may have contributed to differences in 

dependency. For example, perhaps longer RTs in one condition might allow participants to 

explicitly retrieve all associated elements of an event, leading to increases in dependency 

for that condition (i.e., such a finding  might help to interpret our observations of 

dependency). In experiment 1, no difference was seen between the Simultaneous (mean: 

3270msecs) and Separated Closed-loop (3233msecs) conditions, t(15) = .53, p=.60. In 

experiment 2, no difference was seen between the Separated Closed-loop (3550msecs) and 

Separated Open-loop (3668msecs) conditions, t(14) = 1.46, p=.17. Thus, we could find no 

evidence for RT differences at retrieval between our main experimental conditions. 

 

Supplemental Experiments S1 & S2 

Experiment S1 – Closed- vs. Open-loop 4-item events 

The Open-loop condition of experiment 2 presented the paired associates for each event in 

a specific order. For example, if the location-object pair was encoded first, the 2nd pair 

would have been person-animal and the last pair was always location-person (see 

Supplemental Experimental Procedures). Thus, the 2nd encoded pair never overlapped with 

the 1st encoded pair. This was not the case in the Closed-loop condition, where the 2nd 

encoded pair by necessity had to overlap with the 1st encoded pair. Experiment S1 

controlled for this possible encoding order issue. Regardless of the 1st encoded pair, the 2nd 

encoded pair in the Open-loop condition always overlapped with the 1st pair (see 
 



Supplemental Experimental Procedures). For example, if participants first learned location-

object, the next encoded pair would be location-person and then person-animal. Thus, any 

lack of dependency in the Separated Open-loop condition of experiment S1 could not result 

from the fact that the first two learned pairs for any ‘event’ were completely unrelated (and 

only subsequently connected by the final encoded pair). 

Cued-recognition performance 

Performance was well above chance for both the Closed-loop (61%) and Open-loop (62%) 

conditions. A 2x4 (Closed-loop vs. Open-loop x Cue-type) within-subjects ANOVA on 

retrieval performance, collapsed across Retrieved-type, revealed a Closed-loop vs. Open-

loop x Cue-type interaction, F(2.6, 34.2) = 7.43, p<.01, ηP
2=.36, as well as a main effect of 

Cue-type, F(2.7, 35.5) = 3.49, p<.05, ηP
2=.21. No main effect of Closed- vs. Open-loop was 

seen, F(1, 13) = .23, p=.64, ηP
2=.02. The interaction was characterised by a larger effect of 

Cue-type in the Open-loop condition, F(2.6, 33.5) = 9.21, p<.001, ηP
2=.42, relative to the 

Closed-loop condition, F(2.8, 36.1) = 4.42, p<.05, ηP
2=.25, with better performance when 

cued by an object relative to the other three elements in the Open-loop condition. A similar 

2x4 (2x4 (Closed-loop vs. Open-loop x Retrieved-type) ANOVA, collapsed across Cue-type, 

failed to reveal any significant effects or interactions, F’s<2.2, p’s>.13. As in experiment 2, 

performance was more variable across item-type in the Open-loop than Closed-loop 

condition (albeit only for the Cue-type analysis in experiment S1). 

Dependency analysis 

A 2x2x2 (Closed-loop vs. Open-loop x Analysis-type x Item-type) ANOVA on dependency of 

the observed data revealed a main effect of Closed-loop vs. Open-loop, F(1, 13) = 18.62, 
 
 



p<.001, ηP
2=.59 (as in Experiment 2). Apart from a trend towards a Closed- vs. Open-loop x 

Item-type interaction, F(1, 13) = 3.49, p=.09, ηP
2=.21, no further main effects or interactions 

were seen, F’s<1.3, p’s>.26. As in experiments 1 & 2, we collapsed across Analysis-type and 

Item-type for comparisons between the data and the models. 

 Dependency for the data, Independent model and Dependent model for Closed-loop 

and Open-loop events is shown in Figure S1. For the Closed-loop events, dependency was 

greater than the Independent model, t(13) = 2.85, p<.05, and did not differ from the 

Dependent model, t(13) = 1.41, p=.18. For the Open-loop events, dependency did not differ 

from the Independent model, t(13) = 1.89, p=.08 (though we note a trend in the opposite 

direction, i.e., less dependency in the data than the Independent model), but was less than 

the Dependent model, t(13) = 8.35, p<.001. Importantly, the difference in dependency 

between the data and Independent model (Data – Independent model) was greater in the 

Closed-loop than Open-loop condition, t(13) = 3.37, p<.01. Experiment S1 therefore 

replicates the results of experiment 2. An open-loop associative structure shows less 

dependency than a closed-loop structure, even when we change the encoding order to 

ensure all 2nd encoded pairs overlap with 1st encoded pairs regardless of condition.  

 

 
 



 

Figure S1, related to Figure 2. Dependency for the data, Independent model and Dependent model across the 
Separated Closed-loop and Separated Open-loop conditions of (a) experiment S1 and (b) experiment S2. Error 
bars represent +/- 1 standard error; *** p<.001; ** p<.01; * p<.05; ns = not significant. 

 

Experiment S2 – Closed- vs. Open-loop 3-item events 

The Open-loop condition of experiments 2 & S1 included a fourth element in the associative 

structure of the event engram. This was done to equate the number of associations within 

the engram, as well as familiarity with the location and person elements of the events, 

between the Open-loop and Closed-loop conditions. However, it is possible that it was the 
 
 



fourth element, as opposed to the open-loop structure, of the event engram that resulted in 

the decrease in dependency seen in experiment 2 and S1. To rule out this possibility, we ran 

a fourth experiment where participants were only presented with 3-element events 

(location-person-object triads).  

In a between-subject manipulation, half the participants were presented with all 

three possible pairs during encoding (across separate encoding trials; the Separated Closed-

loop condition) and half the participants were presented with only two out of the three 

possible pairs (the Separated Open-loop condition). For example, they might be shown the 

location-person and person-object pair, but not the location-object pair, at encoding (see 

Supplemental Experimental Procedures). Therefore, the Open-loop condition of experiment 

S2 controls for the number of elements within an ‘event’, but not the number of 

associations, whereas the Open-loop condition of experiment 2 and S1 controlled for the 

number of associations, but not the number of elements. If the decrease in dependency in 

experiment 2 and S1 was due to the open-loop associative structure of the event engram (as 

opposed to the number of elements within an event), we should see a similar decrease in 

dependency when only two out of the three possible pairs of a triad are presented. 

Cued-recognition performance 

Performance was well above chance for both the Closed-loop (75%) and Open-loop (66%) 

conditions.  A 2x3 (Closed-loop vs. Open-loop x Cue-type) mixed ANOVA failed to reveal any 

significant effects on performance, F’s<1.70, p’s>.20, ηP
2’s<.06. A similar ANOVA across 

Retrieved-type showed a trend for a main effect of Retrieved-type, F(1.9, 53.2) = 3.16, 

p=.05, ηP
2=.10. This effect appeared to be driven by greater accuracy when retrieving the 

Person relative to Locations and Objects. No further significant effects were seen, F’s<1.63, 
 
 



p’s>.21, ηP
2’s<.06. Thus, no difference was seen in accuracy between the Closed-loop and 

Open-loop group.  

Dependency analysis 

A 2x2x3 (Closed-loop vs. Open-loop x Analysis-type x Item-type) mixed ANOVA on 

dependency of the observed data revealed a main effect of Closed-loop vs. Open-loop, F(1, 

28) = 6.08, p<.05, ηP
2=.18, with greater dependency in the Closed-loop than Open-loop 

condition. Apart from a Closed-loop vs. Open-loop x Item-type interaction, F(1.8, 49.7) = 

4.79, p<.05, ηP
2=.15, no further significant effects were seen, F’s<2.70, p’s>.08, ηP

2’s<.09. As 

in experiments 1 & 2, we collapsed across Analysis-type and Item-type for comparisons 

between the data and the models. 

Dependency for the data, Independent model and Dependent model for Closed-loop 

and Open-loop events is shown in Figure S1. For the Closed-loop events, dependency was 

greater than the Independent model, t(13) = 2.76, p<.05, replicating the findings of 

experiments 1,2 & S1. As in experiment 2 & S1, we saw no difference between the data and 

Independent model for the Open-loop events, t(15) = .94, p=.36. Importantly, the difference 

between the data and Independent model for the Closed-loop group was greater than for 

the Open-loop group, t(28) = 2.41, p<.05. Finally, both the Closed-loop, t(13) = 3.29, p<.01, 

and Open-loop, t(15) = 5.67, p<.001, groups showed less dependency than the Dependent 

model. Experiment S2 therefore confirms the findings of experiment 2 & S1. An open-loop 

associative structure shows less dependency that a closed-loop structure, even when the 

number of elements within an event are controlled for. 

 

 
 



Non-encoded pairs in the Open-loop condition 

Finally, we analysed accuracy and dependency for pairs in the Open-loop condition that 

were not encoded. For example, if the participant encoded the location-person and 

location-object pairs for a specific event, we assessed accuracy for the non-encoded person-

object pair. Dependency was assessed for the non-encoded pair relative to one of the other 

encoded pairs (e.g., cue person, retrieve object vs. retrieve location). Note, we were unable 

to perform this analysis for experiment 2 and S1 as participants were only tested on the 

encoded pairs.  

Collapsing across all Cue-types and Retrieved-types, performance was 38%. This was 

significantly above chance (16.66% given the 6-alternative forced-choice), t(15) = 4.63, 

p<.001. However, we saw no evidence of dependency; dependency in the data (D = 0.56) 

did not differ from the Independent model (D = 0.55), t(15) = .31, p=.76, and was 

significantly less than the Dependent model (D = 0.60), t(15) = 3.74, p<.01. Thus, although 

participants can sometimes deduce the correct answer for a non-encoded pair, presumably 

via the encoded within-event associations, their performance for non-encoded pairs was 

not dependent on performance for the encoded pairs. We speculate that the noisy and 

inaccurate process that allows performance to be above chance for the unseen association 

(e.g. B-C) does utilize the encoded associations (e.g. A-B, A-C), but does so via a process that 

itself introduces too much variation across events to be sensitive to “dependency” (i.e., co-

variation with performance across events in the much better recall of A-B and A-C). 

 

 
 

 



Further analyses 

Yule’s Q 

To complement the modelling approach used in the main analyses, we further computed 

Yule’s Q for the data for each contingency table and each individual participant. Yule’s Q is a 

measure of correlation within a 2x2 contingency table, varying from +1 (complete 

dependence), through zero (independence), to -1 (negative dependence) (S2). For a 2x2 

contingency table, where a = correct/correct, b = correct/incorrect, c = incorrect/correct and 

d = incorrect/incorrect, Yule’s Q = [ad-bc]/[ad+bc]. It has previously been used to assess 

dependency between recognition and recall, A-B vs. A-C associations (see also experiment  

S2), and symmetric vs. asymmetric associations within an A-B pair (see S3–7).  

Yule’s Q is highly sensitive to the presence of a zero in the 2x2 contingency table 

(which forces Q to be 1, -1, or undefined). Given the high proportion of tables containing 

one of more zeros across all experiments (mean: 37%), the main analyses used a 

proportional measure (i.e., the proportion of counts on the leading diagonal of the 

contingency table, see Experimental Procedures), comparing proportional dependency 

between the data and the models. To get around this problem (but compromising the 

interpretation of the outcome), we added 0.5 to all cells for every contingency table prior to 

calculating Yule’s Q for the data.  

Experiment 1 revealed mean Yule’s Q values of 0.46 (SD=0.30) (a relatively strong 

positive correlation) for the Simultaneous condition and 0.50 (SD=0.31) for the Separated 

condition (collapsed across Analysis-type and Item-type). In experiment 2, mean Yule’s Q for 

the Separated Closed-loop condition was 0.34 (SD=0.26), however for the Separated Open-
 
 



 

loop condition it was 0.02 (SD=0.25). Thus, for the Simultaneous and Separated Closed-loop 

condition Yule’s Q was relatively high, ranging between 0.35 and 0.50, whereas for the 

Open-loop condition it was close to zero. This same pattern was seen for experiment S1 (see 

Supplemental Experimental Procedures), with Yule’s Q in the Separated Closed-loop 

condition 0.33 (SD=0.27) and Separated Open-loop condition -0.09 (SD=0.19) and in 

experiment S2, with Yule’s Q in the Separated Closed-loop condition 0.41 (SD=0.32) and 

Separated Open-loop condition 0.06 (SD=0.38). 

Inter-experimental analyses 

One difference between the results of experiment S2 and experiments 1 and 2 and S1 is that 

we saw significantly less dependency in the data than the Dependent model in the 

Separated Closed-loop condition (though dependency was still greater than the 

Independent model). It is unclear why this may have occurred, although a similar result was 

also seen  in Horner & Burgess (S1) where all events were presented simultaneously. As 

such, less dependency than the Dependent model is unlikely to be a function of the 

separated encoding conditions in experiment S2. To further investigate this possible 

difference we conducted a 2x4 (Data vs. Dependent model x Experiment) mixed ANOVA, 

focussing on the difference in dependency in the data and Dependent model across 

experiments 1,2, S1 and S2. This revealed a significant difference between the data and 

Dependent model, F(1, 55) = 15.43, p<.001, ηP
2=.22. No main effect of Experiment was seen, 

F(3, 55) = 2.38, p=.08, ηP
2=.12 (though we note a trend), nor was there an interaction 

between the two factors, F(3, 55) = 0.77, p=.52, ηP
2=.04.  

Thus, the difference between the data and Dependent model did not vary 

systematically across experiments. When pooling data across experiments, we see less 
 



dependency in the data than Dependent model. However, note that our main conclusions 

are based on significant differences in dependency between the Closed-loop and Open-loop 

conditions (relative to the baseline of the Independent model), and do not rest on the 

absence of difference between dependency in the data and Dependent model in the Closed-

loop condition. Note also that the Dependent model acts as an upper bound for the amount 

of dependency present in the data. Any source of (independent) noise will decrease 

dependency in the data, relative to the Dependent model. 
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xperiment 1  

articipants – Twenty participants (10 female) gave informed consent to participate. The 

ean age was 25.0 (SD = 4.4). Four were excluded due to poor performance across all 

onditions (<30% accuracy), leaving 16 participants (1 left handed).   

aterials – Stimuli were 36 locations (e.g., a swimming pool), famous personalities (e.g., 

avid Cameron) and common objects (e.g., a bicycle; see S1). Four randomised sets of 

vents (i.e., location-person-object triads) were created and counterbalanced across 

articipants. 

rocedure – Experiments consisted of single study and test phases.  At study, participants 

ere serially presented with all 36 events. Half the events were seen in single encoding 

rials containing three elements (Simultaneous Closed-loop condition), whereas the other 

alf were seen as three overlapping pairs of elements across three separate encoding trials 

Separated Closed-loop condition). The order of pair presentation for each “event” in the 

eparated Closed-loop condition was randomised such that, across participants, all possible 

air orders will have been seen in roughly equal proportions. This resulted in 72 encoding 

rials, 18 triads and 54 pairs, all of which were presented in interleaved fashion (Fig 1).  

At test, participants were presented with an element and had to choose the 

ssociated element from six alternatives. All 36 events were tested with every cue-test pair 

e.g., cue: location, test: object), resulting in 6 cued-recognition trials per event. One of the 

est items was the element associated with the cue. The other 5 elements were of the same 

ategory (e.g., objects) but were associated with other elements, randomly selected from 
 



 
 

Simultaneous Closed-loop and Separated Closed-loop events.  Participants were required to 

respond as accurately as possible within 6secs with a key-press, and following this rated 

their confidence on a scale of 1-5.  

Assessing Dependency – We created 2x2 contingency tables of each participant’s 

performance for specific pairs of associations (e.g., A-B and A-C) across events. We assessed 

dependency for retrieving two elements (e.g., person and object) when cued by the 

remaining within-event element (e.g., location; ‘ABAC’ analyses), as well as for retrieving one 

element (e.g., location) when cued by its associated elements (e.g., person and object; 

‘BACA’ analyses). This resulted in six 2x2 tables per participant per condition, one for each 

element (item-type) and analysis-type. 

Each contingency table shows how performance retrieving one association from an 

event (e.g., retrieving B cued by A) depends on performance retrieving another element 

from that event (e.g., retrieving C cued by A). For any given participant, the mean 

proportion of correct retrievals of B (over N events) when cued by A is denoted by PAB. We 

then created tables for an Independent model for each participant, where the probability of 

correctly or incorrectly retrieving two associations is simply the product of the mean 

probability for each association (i.e., the proportion of events for which both B and C were 

correctly retrieved when cued by A would be PABPAC), see Table 2.  

The Dependent model modifies the Independent model by weighting performance 

by an “episodic factor” (Ei) that varies across events. This factor captures the extent to 

which the probability of correctly retrieving the elements comprising a specific event differs 

from the average probability across all events. For example, when retrieving B cued by A for 

event i: 



 
 

Ei
AB = (Ti

BA+Ti
BC+Ti

CA+Ti
CB)/(PBA+PBC+PCA+PCB)    (1) 

where, Ti
BA=1 if the participant correctly retrieves A when cued by B (otherwise, 

Ti
BA=0), and similarly for Ti

BC etc. Note that the episodic factor, for retrievals cued by A, is 

estimated from retrievals not cued by A (i.e., excluding Ti
AB, T

i
AC, PAB, PAC). Note also that we 

have previously shown the Dependent model is not significantly affected by whether Ei is 

calculated with or without retrieval trials relating to the same cue element (e.g., calculating 

Ei
AB only using Ti

BC and Ti
CB compared to only using Ti

AB and Ti
BA (see S1). The probability of 

correctly retrieving an association from event i is weighted by the episodic factor for that 

event, i.e., PAB becomes ṔAB=Ei
ABPAB. The Dependent model also takes into account the level 

of guessing, so that Ei weights the probability of deliberate correct retrieval but not the 

probability of guessing correctly (which should be independent of other responses). So the 

Dependent model follows the Independent model, with Pi
AB

 (and similarly Pi
AC) replaced by: 

Ṕi
AB = Ei

AB(PAB- PG/c)+ PG/c      (2) 

where PG is the proportion of guesses, of which PG/c will be correct in c-way forced 

choice cued-recognition.  PG is estimated as c/(c-1) times the proportion of errors.  See Table 

2 and (S1). The Independent model corresponds to setting Ei = 1 across all events. 

The two models estimate the contingency tables corresponding to independent or 

dependent retrieval of elements within an event, controlling for overall accuracy and the 

level of guessing. To compare the data with the models we calculated a dependency 

measure based on the proportion of events where the retrieval of two associations is either 

both correct or both incorrect, where 1 = full dependency and 0.5 = full independence. Note 

that this dependency measure is modulated by accuracy. As such, only comparisons 



between dependency in the data and the models (which explicitly control for level of 

accuracy) are meaningful. After analysing dependency across the ABAC and BACA analyses 

and across Item-types (see Supplemental Results), we averaged across these factors for 

comparisons between the data and the models. We also calculated Yule’s Q measure of 

dependency (see S2–4) for the data for all experiments (see Supplemental Results). 

Experiment 2 

Experiment 2 was identical to experiment 1 with the following exceptions. 

Participants – Sixteen participants (10 female) gave informed consent to participate. Their 

mean age was 23.4 (SD = 3.6). One was excluded due to poor performance across all 

conditions (<30% accuracy), leaving 15 participants (1 left-handed). 

Materials – A further 36 animals (e.g., a monkey) were included in the stimulus set to create 

4-element open-loop events (Fig 1). 

Procedure – All “events” were presented as three separate pairs across three separate 

encoding trials (as in experiment 1 Separated Closed-loop condition; Fig 1). For the 

Separated Closed-loop condition, half the events were location-person-object (L-P-O) triads 

and the other half location-person-animal (L-P-A) triads. For the L-P-O triads, the 

presentation order of the pairs was P-O, L-O, L-P. For the L-P-A triads the order was L-A, P-A, 

L-P. For the Separated Open-loop condition half the events were presented in the order P-A, 

L-O, L-P; and half in the order L-O, P-A, L-P. The final pair presented for both conditions was 

always the location-person association. Whereas in experiment 1 we analysed dependency 

for all combinations of pairs, in experiment 2 we only analysed dependency for the location 

and person elements (relative to the other associated elements), as this controls for item 
 
 



 

familiarity (each person and location being presented twice in each condition, once in a 

person-location association and once in association with another type of element). The test 

phase was identical to Experiment 1, all pairs presented during the study phase were tested 

in both directions (e.g., retrieve person cued by location, as well as retrieve location cued by 

person). 

Analyses – We report accuracy for all four elements across the Separated Closed-loop and 

Separated Open-loop conditions. Note, however, that event numbers vary for the animal 

and object elements in the Separated Closed-loop condition as half the events were L-P-O 

triads and half were L-P-A triads. Dependency was assessed only for associations including 

location and person. For the Closed-loop condition, we assessed dependency between 

retrieval of the object (or animal) and person when cued by the location, and for retrieval of 

the object (or animal) and location when cued by the person (ABAC analyses). We also 

assessed dependency between retrieval of the location cued by the object (or animal) and 

by the person, and retrieval of the person when cued by the object (or animal) and by the 

location (BACA analyses).  

For the Open-loop condition, we assessed dependency between retrieval of the 

object and person when cued by the location, and retrieval of the animal and location when 

cued by the person (ABAC analyses). We also assessed dependency between retrieval of the 

location when cued by the object and by the person, and of the person when cued by the 

animal and location (BACA analyses). This resulted in 4 dependency measures per participant. 

Independent and Dependent models were constructed for each contingency table, as in 

experiment 1. We again averaged across these conditions for comparisons of dependency 

between the data and models (see Supplemental Results for analyses of dependency for the 
 



data across these conditions). 

Experiment S1 

Experiment S1 was identical to experiment 2 with the following exceptions. 

Participants – 15 participants (12 female) gave informed consent to participate. Participants 

had a mean age of 22.5 (SD = 4.3). One was excluded due to poor performance across all 

conditions (<30% accuracy), leaving 14 participants. By self-report, all participants were 

right-handed. 

Procedure – Experiment S1 was designed to rule out possible order effects at encoding in 

experiment 2. Whereas in experiment 2 the 1st and 2nd encoded pairs for each Open-loop 

“event” were unrelated (e.g., location-object then person-animal), the 2nd pair in 

experiment S1 always overlapped with the first encoded pair in both the Closed- and Open-

loop conditions. Four orders were used for both conditions. In the Closed-loop condition, 

pairs were seen in the orders: (1) P-O, L-P, L-O (2) L-A, L-P, P-A (3) L-P, L-O, P-O and (4) L-P, L-

A, P-A. In the Open-loop condition, pairs were seen in the orders: (1) P-A, L-P, L-O (2) L-O, L-

P, P-A (3) L-P, L-O, P-A and (4) L-P, P-A, L-O. 

Experiment S2 

Experiment S2 was identical to experiment 2 with the following exceptions. 

Participants - 34 participants (19 female) gave informed consent to participate. 17 

participants were assigned to the Separated Closed-loop and 17 participants to the 

Separated Open-loop condition. Participants had a mean age of 24.1 (SD = 4.1). Three were 

excluded from the Closed-loop group and one from the Open-loop group due to poor 
 
 



performance across all conditions (<30% accuracy), leaving 14 participants in the Closed-

loop group and 16 in the Open-loop group. By self-report, four participants were left-

handed, the remainder right-handed.  

Procedure - Half of the participants saw all three pairs of an event at encoding (the Closed-

loop condition), resulting in 108 trials at Study. The other half saw only two out of the 

possible three pairs of an event at encoding (the Open-loop condition), resulting in 72 trials 

at Study. Of the 36 events in the Open-loop group, 12 events presented the location-person 

and location-object pairs, 12 the location-person and object-person pairs and 12 the 

location-object and object-person pairs. As in experiment 1, the presentation order of pairs 

for each “event” was randomised. At test, all pairs were tested (including the non-encoded 

pairs in the Open-loop group). 

Analyses - The main analyses of the Open-loop events were restricted to those pairs that 

were encoded. Thus, we assessed accuracy and dependency only for pairs that the 

participant had actually seen. For the dependency analysis this meant both associations for 

a particular contingency table (e.g., the A-to-B vs. A-to-C associations) had to have been 

seen by the participants at encoding. Analysis of the Closed-loop events was identical to 

experiment 1.  
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