Supporting Information

Binding Free Energies for Nicotine Analogs Inhibiting Cytochrome P450 2A6 by a Combined Use of Molecular Dynamics Simulations and QM/MM-PBSA Calculations

Haiting Lu,^{1,2,a} Xiaoqin Huang,^{1,a} Mohamed Diwan M. AbdulHameed,¹ and Chang-Guo Zhan^{1,*}
¹Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789
South Limestone Street, Lexington, Kentucky 40536 and ²College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, P. R. China

Running title: CYP2A6-inhibitor Binding Free Energies

Correspondence:

Chang-Guo Zhan, Ph.D. Professor Department of Pharmaceutical Sciences College of Pharmacy University of Kentucky 789 South Limestone Street Lexington, KY 40536 TEL: 859-323-3943 E-mail: <u>zhan@uky.edu</u>

^{*} Corresponding author. E-mail: <u>zhan@uky.edu</u>

^{*a*} These authors contributed equally to this work.

Figure S1. Tracked positional root-mean square deviation (RMSD) for C α atoms of the binding structure of CYP2A6 binding with each of nicotine analogs along MD trajectories. The C α RMSD was calculated based on the starting X-ray crystal structure (PDB entry code: 2FDW for CYP2A6-Nic2a complex, 2FDV for CYP2A6-Nic2b complex, 2FDU for CYP2A6-Nic2c complex). The positional RMSD for non-hydrogen atoms of CYP2A6-Nic2a complex was calculated based on the X-ray crystal structure of CYP2A6-Niconine (PDB entry code: 4EJJ).

Figure S2. Superimposition of CYP2A6-Nic2a binding structure with the X-ray crystal structure of CYP2A6-Nicotine complex (PDB entry code: 4EJJ). The CYP2A6-Nic2a complex (colored in cyan) is the same as that in Figure 1 in the text, *i.e.* derived from MD trajectory and minimized using QM/MM approach. The proteins are represented as ribbons, with CYP2A6-Nicotine complex colored in gold. The heme group of CYP2A6 is shown in stick-style. Residues F118, N297, I300, T309 and F480 of CYP2A6, which are within the 5 Å of the ligand, are shown in ball-and-stick style. Both ligands (Nic2a and Nicotine) are shown in stick style and colored by atom-types.

Figure S3. (A) The cavity around the Nicotine-binding site in CYP2A6-Nicotine (PDB entry code: 4EJJ). (B) The cavity around Nic2a-binding site in CYP2A6-Nic2a complex. CYP2A6 is represented as colored ribbon, and the cavity is represented as mesh surface calculated by using program HOLLOW.¹ The ligands (Nicotine and Nic2a) are not shown for the reason of clarity. The orientation of CYP2A6 is along the Helix I, ~180° turn for residue F480 when compared with the position of F480 in Figure S2. Residues F209, T305, I366 and F480 are shown in stick-style and colored by atom types. As indicated in the X-ray crystal structures of CYP2A6 and CYP2A13,² the conformational change of residues F209, T305, I366 and F480 is recognized as the gating of the channel for ligands accessing to the binding site.

CYP2A6-Nic2A complex

Figure S4. The tracked shortest distances for CYP2A6-Nic2A binding structure along the MD trajectories. F209(side chain0---T305(side chain) represents the shortest distance between non-hydrogen atoms at F209 side chain and the non-hydrogen atoms at T305 side chain; F209(side chain0---I366(side chain) represents the shortest distance between non-hydrogen atoms at F209 side chain and the non-hydrogen atoms at I366 side chain; and T305(side chain0---I366(side chain) represents the shortest distance between non-hydrogen atoms at F209 side chain and the non-hydrogen atoms at I366 side chain; and T305(side chain0---I366(side chain) represents the shortest distance between non-hydrogen atoms at T305 side chain and the non-hydrogen atoms at I366 side chain; and T305(side chain0---I366(side chain) represents the shortest distance between non-hydrogen atoms at T305 side chain and the non-hydrogen atoms at I366 side chain.

No	$E_{QM/MM}(com)^a$	$E_{QM}(lig)^b$	$E_{MM}(rec)^{c}$	$\Delta E_{QM/MM}^{d}$	ΔG_{solv}	ΔE_{bind} or ΔH^{e}	-T Δ S (0.93) ^{<i>f</i>}	$\Delta \operatorname{G}_{\operatorname{bind}}{}^{g}$
	(Hartree)	(Hartree)	(kcal/mol)	(kcal/mol)	(kcal/mol)	(kcal/mol)	(kcal/mol)	(kcal/mol)
1	-565.2844124	-571.7842825	4134.60	-55.87	22.94	-32.93	22.33	-10.60
2	-565.4536488	-571.7842825	4026.90	-54.36	23.20	-31.16	22.53	-8.63
3	-565.3879875	-571.7842825	4068.00	-54.26	23.24	-31.02	24.90	-6.12
4	-565.25158	-571.7842825	4155.00	-55.66	22.24	-33.43	24.08	-9.35
5	-565.3443749	-571.7842825	4095.40	-54.29	22.87	-31.42	22.14	-9.29
6	-565.4685668	-571.7842825	4017.90	-54.73	22.79	-31.93	23.62	-8.31
7	-565.5077392	-571.7842825	3993.00	-54.41	23.63	-30.78	23.09	-7.68
8	-565.4607552	-571.7842825	4023.30	-55.22	23.77	-31.46	21.58	-9.88
9	-565.6032297	-571.7842825	3934.00	-55.33	22.97	-32.36	23.11	-9.25
10	-565.2777678	-571.7842825	4137.70	-54.80	22.92	-31.88	24.42	-7.46
Ave. ^h				-54.89	23.06	-31.84	23.18	-8.66

Table S1. Detailed energetic results (kcal/mol) obtained from the QM/MM-PBSA calculations at T = 298.15 K and P = 1 atm for the ten snapshots (No.1 to 10) of CYP2A6 complexed with Nic2a.

 a E_{QM/MM}(com) represents the energy of complex which is calculated at the B3LYP/6-31G(d):Amber level using the combined program of Gaussian03 and Amber8 software developed in our lab.^{1,2}

 b E_{QM}(lig) is the energy of ligand which is the most stable structure calculated at the B3LYP/6-31G(d) level in gas phase.

 c E_{MM}(rec) represents the energy of MM subsystem calculated by Amber8 programm.

^{*d*} The QM/MM gas-phase binding energy. $\Delta E_{QM/MM} = E_{QM/MM}(com) - E_{MM}(rec) - E_{QM}(lig)$.

^e The binding energy. $\Delta E_{bind} = \Delta E_{QM/MM} + \Delta G_{solv}$.

^{*f*} The entropy contribution. The scaling factor *w* was 0.93 for the entropy calculations.

^{*g*} The binding free energy. $\Delta G_{\text{bind}} = \Delta E_{\text{QM/MM}} + \Delta G_{\text{solv}} - T\Delta S$.

^{*h*} The average values calculated for 10 snapshots.

No	$E_{QM/MM}(com)^a$	$E_{QM}(lig)^b$	$E_{MM}(rec)^{c}$	$\Delta E_{QM/MM}^{d}$	ΔG_{solv}	ΔE_{bind} or ΔH^{e}	-T Δ S (0.93) ^{<i>f</i>}	$\Delta \operatorname{G}_{\operatorname{bind}}{}^{g}$
110	(Hartree)	(Hartree)	(kcal/mol)	(kcal/mol)	(kcal/mol)	(kcal/mol)	(kcal/mol)	(kcal/mol)
1	-604.5891176	-611.0913628	4135.70	-55.48	25.84	-29.63	21.28	-8.35
2	-604.6484445	-611.0913628	4098.30	-55.30	25.35	-29.95	22.33	-7.63
3	-604.5578043	-611.0913628	4154.50	-54.63	26.65	-27.98	22.51	-5.46
4	-604.5788341	-611.0913628	4139.70	-53.02	24.71	-28.32	22.07	-6.24
5	-604.3259586	-611.0913628	4297.30	-51.94	25.33	-26.61	22.31	-4.30
6	-604.4627184	-611.0913628	4214.10	-54.56	26.28	-28.28	23.07	-5.20
7	-604.5913711	-611.0913628	4131.00	-52.19	24.77	-27.42	21.45	-5.98
8	-604.5449415	-611.0913628	4159.80	-51.86	24.80	-27.05	22.32	-4.73
9	-604.4303878	-611.0913628	4233.70	-53.87	25.49	-28.39	22.29	-6.10
10	-604.5900034	-611.0913628	4135.70	-56.03	25.74	-30.29	21.45	-8.84
Ave. ^h				-53.89	25.50	-28.39	22.11	-6.28

Table S2. Detailed energetic results (kcal/mol) obtained from the QM/MM-PBSA calculations at T = 298.15 K and P = 1 atm for the ten snapshots (No.1 to 10) of CYP2A6 complexed with Nic2b.

^{*a*} E_{QM/MM}(com) represents the energy of complex which is calculated at the B3LYP/6-31G(d):Amber level.

^b $E_{QM}(lig)$ is the energy of ligand which is the most stable structure calculated at the B3LYP/6-31G(d) level in the gas phase. ^c $E_{MM}(rec)$ represents the energy of the MM subsystem calculated .

^d The QM/MM gas-phase binding energy. $\Delta E_{OM/MM} = E_{OM/MM}(com) - E_{MM}(rec) - E_{OM}(lig)$.

^{*e*} The binding energy. $\Delta E_{bind} = \Delta E_{QM/MM} + \Delta G_{solv}$. ^{*f*} The entropy contribution. The scaling factor *w* was 0.93 for the entropy calculations.

^g The binding free energy. $\Delta G_{\text{bind}} = \Delta E_{\text{QM/MM}} + \Delta G_{\text{solv}}$ - T ΔS .

^{*h*} The average values calculated for 10 snapshots.

No	$E_{QM/MM}(com)^a$	$E_{QM}(lig)^b$	$E_{MM}(rec)^{c}$	$\Delta E_{QM/MM}^{d}$	ΔG_{solv}	ΔE_{bind} or ΔH^{e}	-T Δ S (0.93) ^{<i>f</i>}	$\Delta \operatorname{G}_{\operatorname{bind}}{}^{g}$
	(Hartree)	(Hartree)	(kcal/mol)	(kcal/mol)	(kcal/mol)	(kcal/mol)	(kcal/mol)	(kcal/mol)
1	-644.017397	-650.4014525	4055.70	-49.64	23.00	-26.64	20.63	-6.01
2	-643.8258067	-650.4014525	4177.70	-51.42	24.83	-26.59	20.46	-6.12
3	-644.1779389	-650.4014525	3957.00	-51.68	24.16	-27.52	20.50	-7.02
4	-644.0601322	-650.4014525	4026.40	-47.16	22.50	-24.65	20.02	-4.63
5	-643.8355732	-650.4014525	4169.50	-49.35	23.30	-26.05	20.68	-5.37
6	-643.8687773	-650.4014525	4147.70	-48.38	24.55	-23.83	22.20	-1.63
7	-644.0144532	-650.4014525	4059.80	-51.89	25.00	-26.90	20.63	-6.26
8	-644.2459105	-650.4014525	3915.00	-52.34	24.66	-27.67	21.49	-6.18
9	-644.182057	-650.4014525	3952.70	-49.97	24.30	-25.67	18.79	-6.88
10	-643.9320033	-650.4014525	4108.00	-48.36	23.46	-24.90	18.86	-6.03
Ave. ^h				-50.02	23.98	-26.04	20.43	-5.61

Table S3. Detailed energetic results (kcal/mol) obtained from the QM/MM-PBSA calculations at T = 298.15 K and P = 1 atm for the ten snapshots (No.1 to 10) of CYP2A6 complexed with Nic2c.

^{*a*} E_{QM/MM}(com) represents the energy of complex which is calculated at the B3LYP/6-31G(d):Amber level.

^b $E_{QM}(lig)$ is the energy of ligand which is the most stable structure calculated at the B3LYP/6-31G(d) level in the gas phase. ^c $E_{MM}(rec)$ represents the energy of MM subsystem calculated .

^d The QM/MM gas-phase binding energy. $\Delta E_{OM/MM} = E_{OM/MM}(com) - E_{MM}(rec) - E_{OM}(lig)$.

^{*e*} The binding energy. $\Delta E_{bind} = \Delta E_{QM/MM} + \Delta G_{solv}$. ^{*f*} The entropy contribution. The scaling factor *w* was 0.93 for the entropy calculations.

^g The binding free energy. $\Delta G_{\text{bind}} = \Delta E_{\text{QM/MM}} + \Delta G_{\text{solv}}$ - T ΔS .

^{*h*} The average values calculated for 10 snapshots.

No	$E_{QM/MM}(com)^{a}$	$E_{QM}(lig)^b$	$E_{MM}(rec)^{c}$	$\Delta E_{QM/MM}^{d}$	ΔG_{solv}	ΔE_{bind} or ΔH^{e}	-T Δ S (0.93) ^{<i>f</i>}	$\Delta \operatorname{G}_{\operatorname{bind}}{}^{g}$
110	(Hartree)	(Hartree)	(kcal/mol)	(kcal/mol)	(kcal/mol)	(kcal/mol)	(kcal/mol)	(kcal/mol)
1	-756.3811177	-762.9582147	4179.70	-52.51	26.51	-26.00	19.17	-6.83
2	-756.3065483	-762.9582147	4228.40	-54.41	26.81	-27.60	20.27	-7.33
3	-756.3631751	-762.9582147	4193.70	-55.25	27.74	-27.51	20.05	-7.46
4	-756.4086644	-762.9582147	4164.80	-54.89	27.08	-27.81	18.14	-9.67
5	-756.5171634	-762.9582147	4096.80	-54.98	28.04	-26.94	18.26	-8.68
6	-756.4214671	-762.9582147	4157.00	-55.13	27.13	-28.00	19.97	-8.02
7	-756.4366903	-762.9582147	4147.40	-55.08	27.60	-27.48	18.09	-9.40
8	-756.3556229	-762.9582147	4199.00	-55.81	27.78	-28.03	19.23	-8.80
9	-756.4381811	-762.9582147	4145.70	-54.31	26.72	-27.59	21.02	-6.57
10	-756.5856228	-762.9582147	4051.70	-52.83	26.81	-26.02	20.17	-5.85
Ave. ^h				-54.52	27.22	-27.30	19.44	-7.86

Table S4. Detailed energetic results (kcal/mol) obtained from the QM/MM-PBSA calculations at T = 298.15 K and P = 1 atm for the ten snapshots (No.1 to 10) of CYP2A6 complexed with Methoxsalen.

^{*a*} E_{QM/MM}(com) represents the energy of complex which is calculated at the B3LYP/6-31G(d):Amber level.

 b E_{QM}(lig) is the energy of ligand which is the most stable structure calculated at the B3LYP/6-31G(d) level in the gas phase. c E_{MM}(rec) represents the energy of MM subsystem calculated. d The QM/MM gas-phase binding energy. Δ E_{QM/MM} = E_{QM/MM}(com) - E_{MM}(rec) - E_{QM}(lig).

^{*e*} The binding energy. $\Delta E_{bind} = \Delta E_{QM/MM} + \Delta G_{solv}$. ^{*f*} The entropy contribution. The scaling factor *w* was 0.93 for the entropy calculations.

^g The binding free energy. $\Delta G_{\text{bind}} = \Delta E_{\text{QM/MM}} + \Delta G_{\text{solv}}$ - T ΔS .

^{*h*} The average values calculated for 10 snapshots

Table S5. Calculated binding free energies (kcal/mol, with standard deviations) for CYP2A6 binding with inhibitors by using the MM-PBSA method in comparison with the experimentally-derived binding free energies.

	$\Delta E_{ m MM}$	$\Delta G_{ m solv}$	$\Delta E_{\rm bind}$	$-T\Delta S$	$\Delta G_{ m bind}^{ m calc}$	$\Delta G_{ m bind}^{ m expt}$ a
Nic2a	-47.3±2.0	26.8±1.2	-20.5±2.0	10.8 ± 0.7 (12.7) ^b	-9.7 ± 1.3 $(-7.8)^{b}$	-8.5
Nic2b	-48.0±2.3	30.9±1.4	-17.1±2.3	9.6 ± 1.1 (11.3) ^b	-7.5 ± 2.1 $(-5.8)^{b}$	-7.2
Nic2c	-45.3±2.2	27.7±1.4	-17.6±2.1	8.6 ± 0.7 (10.2) ^b	-9.0 ± 1.4 $(-7.5)^{b}$	-5.5
Methoxsalen	-49.4±2.0	31.3±1.0	-18.1±1.9	8.2 ± 1.1 (9.7) ^b	-9.9 ± 0.7 (-8.4) ^b	-7.8

^{*a*} The experimental binding free energies were calculated from the corresponding experimental K_i values via $\Delta G_{bind}^{expt} = RT \ln K_d = RT \ln K_i$. The binding free energies as listed in Table S5 were calculated by using the molecular mechanics-Poisson-Boltzmann surface area (MM-PBSA) method.³ The procedure for the MM-PBSA calculations is similar to that used in our previous studies,^{4,5} and is also similar to the QM/MM-PBSA methods described in the text of the present paper (with w=0.93). The final binding free energy ΔG_{bind} for CYP2A6 inhibitor each inhibitor was taken as the average of the ΔG_{bind} values calculated for the equally-distributed 100 snapshots of the last 9.0 ns MD trajectory.

^b The values in parentheses were obtained by re-calibrating the *w* based on the MM-PBSA data.

References

³ P. A. Kollman, I. Massova, C. Reyes, B. Kuhn, S. Huo, L. Chong, M. Lee, T. Lee, Y. Duan, W. Wang, O. Donini, P. Cieplak, J. Srinivasan, D. A. Case, T. E. Cheatham. *Acc. Chem. Res.* **2000**, *33*, 889.

¹ B. K. Ho, F. Gruswitz, *BMC Struct. Biol.* **2008**, *8*, 49.

² N. M. DeVore, E. E. Scott, J. Biol. Chem. 2012, 287(32), 26576.

⁴ D. Li, X. Huang, K. Han, C.-G. Zhan. J. Am. Chem. Soc. 2011, 133(19), 7416.

⁵ X. Huang, H.-H. Gu, C.-G. Zhan. J. Phys. Chem. B 2009, 113, 15057.