


| _ |
|---|
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |

|                      | 10               | 20 3             | 0 4        | 0 5        | 3 60       | 70         | )         |
|----------------------|------------------|------------------|------------|------------|------------|------------|-----------|
| dpy-13               | AGGAGAGCGT GGAAT | CTGTC CAAAGTACTG | CGCCATCGAT | GGAGGAATCT | TCTTCGAGGA | CGGAACTCGC | CGCTAA    |
| sqt-3                | AGGAGAGAAG GGAAT | CTGTC CAAAGTATTG | CGCTCTCGAT | GGAGGAGTCT | TCTTCGAGGA | CGGAACCAGA | CGATAA    |
| col-34               | AGGAGAGCGT GGAAT | CTGTC CAAAATACTG | TGCTATCGAC | GGAGGAGTCT | TCTTCGAAGA | CGGAACTCGT | CGTTAA    |
| col-43               | AGGAGAGAAG GGAAT | CTGTC CAAAGTACTG | CGCTCTCGAT | GGAGGAGTCT | TCTTCGAGGA | CGGAACTCGC | CGCTAA    |
| col-93               | CGGAGAGAAG GGAAT | CTGTC CAAAGTACTG | CGCCATCGAC | GGAGGAGTAT | TCTTCGAGGA | CGGAACCCGC | AGAAA     |
| col-94               | CGGAGAGAAG GGAAT | CTGTC CAAAGTACTG | CGCCATCGAC | GGAGGAGTCT | TCTTCGAGGA | CGGAACCCGC | AGAAAGTAA |
| col-122              | AGGAGAGAAG GGAAT | CTGTC CAAAATACTG | TGCTATCGAT | GGAGGAGTCT | TCTTCGAGGA | CGGATCCAGA | CGCTAG    |
|                      |                  |                  |            |            |            |            |           |
|                      |                  |                  |            |            |            |            |           |
|                      |                  |                  |            |            |            |            |           |
| dpy-13g (RNAi)       | AGGAGAGCGT GGAAT | CTGTC CAAAGTACTG | CGCCATCGAT | GGAGGAATCT | TCTTCGAGGA | CGGAACTCGC | CGCTAA    |
| dpy-13g(ml) (RNAi)   |                  | G                |            |            |            |            |           |
| dpv-13g(m2) (RNAi)   |                  |                  |            |            | G          |            |           |
| dpy-13g(mlm2) (RNAi) |                  | G                |            |            | G          |            |           |
|                      |                  |                  |            |            |            |            |           |

С

| RNAi            | eri-1(-);dpy-13(-) | eri-1(-);dpy-13(-);nrde-3(-) |
|-----------------|--------------------|------------------------------|
|                 |                    |                              |
| dpy-13 (723mer) | ++++               | ++                           |
| g(76mer)        | ++++               | ++                           |
| g(m1)           | ++++               | ++                           |
| g(m2)           | ++++               | ++                           |
| g(m1m2)         | ++++               | ++                           |

Fig. s1

Figure S1 (A) Identification of a 76-nt sequence, dpy-13g, which targets the 3' end of the dpy-13 mRNA, induced the superdumpy-like phenotype after RNAi. A series of dpy-13 sequences were cloned in the L4440 dsRNA expression plasmid and fed L1 animals of eri-1(mg366). Dumpiness was scored based on their relative length to that of N2 animal. Without RNAi, N2 and eri-1(mg366) were scored as 0 at the scale of 1 to 4 or – at the scale of – to ++++. After dpy-13 RNAi, eri-1(mq366) exhibited a worm-ball-like phenotype, which was scored as 4 or ++++. The length of dpy-13(e458) animal is approximately half of that of N2, which is denoted as "dumpy" and scored as 2 or ++. Animals that exhibited a length less than 25% of that of N2 were usually classified as superdumpy or superdumpy-like and scored as 3 / 4 or +++ / ++++. (B) The 76-nt sequence in dpy-13 is highly similar between collagen genes. Shown below are mutations introduced into the dpy-13g. (C) Nuclear RNAi was required for dpy-13g-mediated off-target silencing.