File S1

Approximations to the LSD for some classes of random matrices

In this appendix, | first state several results on the Limit Spectral Distribution (LSD) of some large random
covariance matrices. This LSD is the nonrandom limit of the distribution of the eigenvalues of a random
matrix, as its dimensions get large (here asn,p — ). The first section merely states various known
results from Random matrix Theory: most are summarized in (TULINO and VERDU 2004). Then | derive an
approximation for the LSD of M in the integrative phenotypic network model presented in the main text
(Figure 1), and for key quantities related to the mutant fitness distribution. In what follows, | refer to the
pdf of the spectral distribution of a given matrix X as px and to the corresponding Limit Spectral
distribution (LSD) of this matrix as px. | refer to any of the transforms of this LSD by an index referring to
that matrix. All the derivations of this Appendix can be checked in a Mathematica® (WOLFRAM RESEARCH
2012) notebook (file S3, in freely readable [.cdf] format) available for download at XXX.

A) The Marchenko-Pastur law and its properties

Limiting Spectral Distribution (LSD): Central to our derivations is the Marchenko - Pastur (M-P) law,
which provides the LSD of a covariance matrix with random entries. Consider a n X p matrix H whose
entries h;; are randomly and independently drawn from possibly different distributions. These
distributions are arbitrary in nature but have mean zero, variance 1/n and fourth moments of
order 0(1/n2), i.e. they are ‘standard’ zero mean distributions, not too leptokurtic (normal, extreme
value, uniform, etc.). Then, if { > 0 is an arbitrary scale factor, the random n X n matrix { H. H* is called
a sample covariance matrix. Its name comes from the fact that { H.H* can describe the covariance
matrix in a sample (of size p) from a multivariate distribution with covariance matrix {I,,. When the
entries of H are normally distributed, n H.H* follows the standard Wishart distribution:
n H.H" ~ W, (I,,) with p degrees of freedom. As (p,n) — oo with a fixed ratio (p/n — B), the spectral
distribution of H. H* converges to a nonrandom LSD whose pdf is given by eq. (1.12) in (TuLiNO and VERDU
2004)

~ -1 +5 ®-x)(x—a) b
pun+ = Pupr(x) = (1 - B)"6(x) + 2mix o xEled] ’ (A1.1)

a=¢(1-yB) andb=¢(1+B)

where (x)* = max(x, 0) and 6(.) is the Dirac delta function.

This pdf has a point mass at zero with weight 1 — § whenever 0 < § < 1, plus a bulk of positive
eigenvalues with weight min(f, 1). When 8 = 1 (our case of interest), the left hand term vanishes and
all eigenvalues are strictly positive: we then retrieve eq. (3) of the main text. The pdf of the bulk

iSP4x) = PAA>0) =/ (b—x)(x —a)/(2m { Amin(B, 1)). As stated in main text, | refer to this
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distribution as the scaled M-P law with scale parameter ¢ and ratio index § and denote the result by the
stochastic representation A; g+ ~ MP(f,{). The mean eigenvalue is E(1) = { B, with variance V(1) =
{?B . Note that the original (and more standard) statement of the M-P law (TULINO and VERDU 2004; BAI
and SILVERSTEIN 2010) is in terms of the LSD of H*. H, which has ratio index 1/ and corresponding scale
{B: Ag*n ~ MP(1/B,{B) in our notation. Note also that, for notational simplicity, | drop the reference
to the scaling factor ¢ in the indexing when referring to the LSD of sample covariance matrices

(P~ (x), veu- (x) etc.).

One powerful property of the M-P law (and of random matrix theory in general) is that the actual
spectral distributions of finite random covariance matrices converge quickly to their limit: for any single
draw of a matrix H with dimensions, say, n = 10 and p = 100 the spectral distribution of H.H* is
already well described by the M-P law given above, in that it is bounded within the predicted domain
[a, b] in eq. (A1.1), and that the pdf p(x) is close to the M-P law. However, it is difficult to represent this
pdf with small min(n, p) as there are then only few eigenvalues to show. This is why | show examples
with larger dimensions (e.g. n = 100,p = 500). However, when simulating the DFE | will use smaller
parameter values and show the convergence of the DFE to the predicted distribution based on Random
Matrix Theory.

Transforms of the LSD: Various transforms of the LSD of random matrices have been defined in Random
Matrix Theory, | propose here a quick overview, drawn from section 2.2 of (TULINO and VERDU 2004). The
purpose of these transforms is akin to that of generating functions in standard probability theory. These
transforms can be derived from one another and allow to derive various properties of the LSD, or to
compute the LSD of the sum or product of random matrices, which will prove useful in our case. Each
transform fully characterizes a given LSD, just as the pdf p(x) does. The mutual relationships between
these transforms are illustrated in the notebook file S3.

Let p(x) be the pdf of the LSD of a random matrix, defined on some finite or infinite range
[Amin> Amax]- The first important transform is the Stieltjes transform: S(z) = fj"fax 1/(x — z)p(x)dx

with z € C the set of complex numbers. It provides the range and pdf of the eigenvalues of the matrix, in
particular p(x) = lir(r)l+ S(x +iw) where i is the complex unit number. The n transform:n(z) =
w-—

f;ﬁi" 1/(1 + zx)p(x)dx, with z € R*(positive real numbers) is defined for positive semi-definite
matrices only (with eigenvalues all positive or zero, [Amin, Amax] € RT). This function is a generating
function for the raw moments of the LSD: we have 7(0) = 1andn[—z] = Y5, z¥E(A¥). The 7
transform is related to the Stieltjes transform vian(z) = S(—1/z)/z. For the scaled M-P law in eq.

(A1.1), the n transform is given by

man(2) =1-9¢(2)/(4z{)

#(2) = (\/bz+1—\/az+1)2 ' (A1.2)
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where (a, b) are given in eq. (A1.1). Taking the limit at infinity provides the weight of the point mass at
zero (the proportion of zero eigenvalues) lim 1y g+ (z) = max(1 — 3, 0).
Z—00

Central to our applications is the Shannon transformv(z) = f;m,ax log(1 + x z) p(x)dx, also
min

defined only for positive semi-definite matrices ([Admin, Amax] € RY), with z € R*. It is related to the n
transform via v(z) = f(l — n(z))/z dz. For the scaled M-P law the Shannon transform is

(A1.3)

4 477

vuu*(2) :,Blog<1+(z—%z)>+log<l+(zﬁ—

Where ¢(.) is given in eq.(A1.2).

The two next transforms are key to compute the LSD of sums or products of random matrices
whose entries are drawn independently, more specifically matrices that are asymptotically free, meaning
that their LSD are independent (see details on free probability in section 2.4 p. 77 of TULINO and VERDU
2004). In the next section, we will use these transforms to compute approximations of the spectral
distribution of various covariance matrices in terms of an M-P law with modified parameters. The R
transform is related to the Stieltjes transform via R(z) = S™1(z) — 1/z where S™1(.) is the functional
inverse of S such that S‘l(S(z)) = z. The R transform of the LSD of the sum of two matrices (A and B)
with entries independently drawn is the sum of the components’ R transforms: Rpy,g(2z) = Rp(2) +
Rg(2). For the scaled M-P law, the R transform is

B<
1—-2z¢

Ryn+(2) = (A1.4)

The S transform plays the exact same role as the R transform for products of semi-definite matrices. It is
related to the 1 transform via 2(z) = —(z + 1)/zn~1(z + 1) where n71(.) is the functional inverse
of n. The S transform of the LSD of the product of two positive semi-definite matrices (A and B), with
entries independently drawn, is 4 g(x) = Z5(x)Zg(x). For the scaled M-P law, the S transform is

un+(2) = (AL1.5)

_1
B+2)7

Another formula will prove particularly useful in what follows: for any n X n positive semi-definite
matrix T whose LSD exists and has S transform Z1(z), we have (adapted from 2.216 p. 91 of TuLINO and
VERDU 2004):

Tpra(2) = %EH*.H (%) Xt (%) = ((Z—]:i'ﬁ)ZT (%) : (Al.6)
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The last transform used here is the D transform, introduced in (BENAYCH-GEORGES and NADAKUDITI
2011). It will prove useful to predict the behavior of the maximal eigenvalue when the entries h;; have
non zero mean. In this article, it is defined in terms of the distribution of singular values of H (when H =
H, has entries with a zero mean). As the singular values of H are simply the square roots of the non zero
eigenvalues of H. H*, the D transform in (BENAYCH-GEORGES and NADAKUDITI 2011) can also be expressed in

terms of the spectral distribution of H.H*. More precisely, letp(z) = f; z/(z? — x)p(x)dx =
n(—1/z%)/z, the D transform is D(z) = @(2)(¢(2)/B + (1 — 1/B)/z) which, for the M-P law, yields

Dyy+(2) = z 1- \]1 + (B -12-222(1+pB))

257 g —-(1+p8)¢ : (A1.7)

In what follows we use these transforms and their approximations to derive an M-P law approximation
for the spectral distribution of M when 1 K n < p.

B) Spectral distribution of M with high phenotypic integration

In this section, | study the matrix M of mutational covariance among optimized traits, under the model of
integrative phenotypic network described in Figure 1. | first describe its structure in detail, then derive
an approximation of its LSD in terms of an M-P law.

Structure of the mutational covariance matrix M: Matrix B = {bij} is an n X p matrix of

i€[1,n],je[1,p]
pathway coefficients given by the first derivatives of the developmental function about the parent

phenotype. As explained in the main text, the1l X p vectorb; ={bij}je[1p] of the p pathway

coefficients determining a given trait y; is a single draw from a multivariate distribution. This distribution
has mean vector ug and positive-definite p X p covariance matrix Cg. Otherwise the nature of these
distributions is unspecified. As its entries are randomly distributed, M = B.V.B* has the structure of a
sample covariance matrix (BAl and SILVERSTEIN 2010).

In order to go any further, we must characterize the structure of M in more mathematical detail. Let us
first ignore any potential bias in the b;; (ug = 0) and denote by B, the matrix of pathway coefficients in
this case. By assumption (8), the matrix B, can be decomposed into the product B, = H. A where H is
an n X p matrix with independent entries h;; with mean 0 and variance V(hi]-) =1/n,and Aisap X
p matrix introduced to generate the suitable covariance among b;;’s (matrix bending). By this
definition, Cg = E(B.B*) = A*. A/n, which is positive-definite as required. The matrix A can thus be set
asA =+n C]13/2’ the Cholesky decomposition of n Cg, but there will typically be many other possibilities.
By definition, a given draw of the matrix B, corresponds to a given draw of the matrix H. This matrix H is
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the building block of most models of Random Matrix Theory, and we derive the structure of B.V.B* in
terms of this building block.

From now on, we take the expectation E(.) to mean the expected outcome of a given draw of
the random coefficients b;; (and the corresponding h;;). Importantly, the random entries in matrix H. H*
are independent of Cg. If we now consider the general model where pg # 0, the bias in the distribution
of the pathway coefficients b;; boils down to adding an n X p matrix Ug to B,. We can write B = B, +
Ug where B, = H. A and matrix Ug has all its n line vectors equal to pg , so by construction Ug has rank
1.

We can now derive the structure of the random matrix B.V.B*: it can be decomposed
into B. V.B* = K.K* where K = K, + Ug with K, = H.A.VY/2 and Uk = Ug.V'/2. The singular values
of K, are the square roots of the eigenvalues of K,.K; = H.W.H*, where W = A.V.A* is a positive-
definite p X p matrix. The spectral distribution of W is equal to that of n V. Cg. Like Ug, matrix Uk is a
rank 1 matrix by construction. Indeed, basic properties of the rank of matrix products imply that 0 <
rank(Ug) < min(rank(UB),rank(V)) = min(1,p) = 1. Therefore, Uk has a single non-zero singular
value 6 which can be computed by using the fact that Uk. Uk then has a single non-zero eigenvalue
equal to 62 by definition. Therefore, its matrix trace Tr(.) must satisfy 8% = Tr(Ug.Ug). By
construction of matrix Ug = Ug.V1/2, we also have Tr(Ugk. Ug) = pj. V. ug so the unique singular value

of Ugis 8 = \/pg. V. pg.

To summarize, matrix M has the same eigenvalues as a (non-standard) sample covariance matrix
K.K* where K = K, + Uy with K, = H.W'/2 3 ‘standard’ random matrix H multiplied by a positive-
definite ‘constant’ matrix W = A.V.A*. Matrix Uk is of rank 1 and its unique singular value is 8 =
\/m. Both components are n X p matrices. This whole decomposition argument is exemplified in
the notebook file S3.

Existence of the LSD of M: A cornerstone result of RMT is that the spectral distribution of H. H* admits a
limit whennp — oo, given by the M-P law: Ay g+ ~ MP(p/n,1). In the absence of a bias among
pathway coefficients (ug = 0), M = B,.B; = H. W.H" is a non-standard sample covariance matrix: as
the entries of H are independent of W, the existence of an LSD for this matrix is also certain (chapter 4
of BAl and SILVERSTEIN 2010). This LSD is fully determined by that of W and H. HT taken separately, and is
still independent of the nature of the distributions of the entries in H. Tools from RMT can then be used
to compute explicit approximations for the LSD of such a matrix product. The effect of bias, as we will
see, does not affect the existence of an LSD, as it only modifies the leading eigenvalue of M.

Approximation to the LSD of matrix M when pg = 0: Here, | describe how the LSD of the sample
covariance matrix { H.H* is modified by inner multiplication by the matrix W, yielding the LSD of M =
H.W.H".
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As shown above, the matrix W = A. V. A" is an unspecified positive-definite matrix, whose eigenvalues
are the same as those of n V.Cg. Overall, W gathers all the correlation among mutation effects on
mutable traits and among pathway coefficients within B. It is impossible to have a general a priori
knowledge on the structure of W, so we must rely on an approximate treatment under less general
conditions, in order to keep as much generality as possible regarding W. This is possible if we assume
that the phenotypic integration from mutable to optimized traits is high (our assumption (4): =
p/n> 1).

First, let us note that the LSD of H. W. H* always exists as long as W is positive-definite and has a
bounded spectral distribution (Chapter 4 in BAI and SILVERSTEIN 2010). Under the additional assumption
that n/p — 0 (or § — ), we can approximate eq. (A1.6) to obtain a simple limit for this LSD. Let nw(z)
be the (unspecified) 1 transform of the spectral distribution of W, and let 7y (x) be the functional
inverse of this transform. From the relationship between n and S transforms (2(z) = —(z+ 1)/
zn~1(z + 1)) we can express eq. (A1.6) as Zgwn*(x) = — 1wt (1 + x/B)/x . Assuming that f3 is large,
we can then take a series expansion of ny! (1 + x/B) for small x /B which gives

il (143) =m0+ S () + 5 w0 + 0 (5) (AL

g
This Taylor series can be expressed in terms of the derivatives of 7y (z) taken at z = 7y (1) = 0 (e.g.
applying the method in KOeEPF 1994), and we find that 1y (1) = 1/nw'(0) and r]w1 (1) = —nw''(0)/
(mw'(0)3). Recalling that the 1 transform is a moment generating function for the LSD (n[—z] =
Y, zKE(F)), we have gt (1) = —1/¢w and nwt (1) = 2(1 + cv2)/{w, where {y is the mean of
the eigenvalues of W and cvyy is their coefficient of variation. Plugging these expressions into eq. (A1.8),

we obtain a simple expression for the inverse n transform, which depends only on the mean and
coefficient of variation of the eigenvalues of W:

x) x2(1+cvg)—xp +0 ({)2 - (A1.9)

w (1+ﬁ Tw B B

Plugging eq. (A1.9) into the formula Ty wn*(x) = — nwt (1 + x/B)/x, we obtain a linear function of x:
introducing the parameters {, = {w(1 + cv ) and B, = B/(1 + cvd):

-1 X
() = Zyw (0 = M (i + B) _ Zlﬁ (1 _ ﬁﬁ) +o (i) ! (A1.10)

which can be rearranged into Zy(x) = (;1(x + ﬁe)_l + o(xf2). To first order in x/32, we retrieve the
S transform of an M-P law (eq.(A1.5)) with parameters {, and f3,.

Therefore, we obtain a simple approximation to the LSD of the mutational covariance,
accounting for arbitrary covariance matrices among mutation effects on metabolic traits or among
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pathway coefficients. This approximation is to the second order in 1/ and is thus relatively robust: it
remains valid even when p is not much larger than n. All along, we made no assumption on the mean or
variance of the spectral distribution of W (on {y or cv@). Therefore, eq. (A1.10) remains valid even with
high correlations and heterogeneity within V or B. As expected, we retrieve the original M-P law
when W = {yl,: in this case cvi = 0 (all the eigenvalues of W are equal to their mean {y) so that 8, =
B and {, = {y, and multiplication by W results in a mere scaling.

Obviously, this derivation cannot claim full mathematical rigor: caution might be necessary on how the
approximation of the S transform implies convergence in distribution to the corresponding LSD. Yet,
Figure 4.a and other extensive simulations (not shown) do suggest that this approximation is valid: the
convergence of the spectral distribution of M to this modified M-P law is good, even with very high
heterogeneity in the eigenvalues of W (here cvd, = 2.1).

Effect of a non-zero mean in b;;: The above treatment describes the LSD of K,,. K that equals that of M
whenever the b;’s are unbiased (ug = 0), see main text. However, in general we want to allow for
arbitrary pg # 0. To do so, we rely on Theorem 2.9 of Benaych-Georges & Nadakuditi (2011) on the
effect of small rank perturbations on the singular value distribution of random rectangular matrices
(such as K,). As the singular values of K are simply the square roots of the eigenvalues of K. K* and thus
of M, this provides the required result.

Let us order the eigenvalues of M in decreasing order (1; = 1,..> 1, > 0). To generate K, the random
matrix K, (the standard one with zero mean entries) is “additively perturbed” by a small rank matrix Uk:
K = K, + Uk has a number of singular values that differ from those of K,. When K is a large random
matrix, these differing eigenvalues are the r largest in general, where r is the rank of the perturbation
matrix (BENAYCH-GEORGES and NADAKUDITI 2011). The perturbation Uk is of rank 1 with a unique singular
value 6 = ,/pg.V.ug (see above). Therefore, only the leading singular value \/A—l is affected by the
perturbation, while all the lower singular values \/A_l of K retain the same distribution as those of K.
The leading singular value \/1—1 shows a phase transition behavior that is determined by what the
Benaych-Georges and Nadakuditi dubbed the D-transform of the singular value distribution, which is the
expectation D(z) = E,(z/(z? — 0,))) over the distribution of the singular values g, of the unperturbed
matrix, in their notation. In our context, the unperturbed matrix is K, and it is useful to express D(z) in
terms of the eigenvalues, = 62 of K,. This gives: D(z) = E, (z/(z% — 2,)) over the spectral
distribution of K,.K;. Now as we have seen above, the spectral distribution of K,.Kj can be
approximated by an M-P law: A,~MP(f,,{.), so the corresponding D transform is Dy g+ (z) given above
(eq.(A1.7)) for the M-P law.

To summarize: the effect of the bias in the b;; is (i) no effect on the bulk of lower eigenvalues
(Ajz1 ~ MP(B.,{.)) and (ii) a “phase transition” behavior for the leading eigenvalue 4,. Denote 8;, =

1/\/Dynu-(maxo,) the functional inverse of the D transform, taken atmaxo, = max./4,.
Whenever 0 < 62 < 02, all eigenvalues (including 1;) pertain to the M-P law so that 1; —» max ],
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which is the expected maximum of the spectral distribution of the unperturbed matrix. However,

whenever 6% > Gtzh, A4 rises above the bulk of smaller eigenvalues, to a higher value \//'1—1 -

Dy (1/6%).

Using the M-P law approximation to the LSD of K. K}, (1,~MP(f,,{.)), the maximum of the M-P law is
2

max o2 = maxA, = (1 + ,/ﬁe) ., so the threshold for the phase transition is

1
On = = :831/4 e

\/DH_H* (max \//1_0)

The limit reached by the leading eigenvalue beyond the phase transition depends on the functional
inverse of the D transform of A,, which, for the M-P law, is (from eq. (A1.7)):

(A1.11)

. j(1+zze>(;+zceﬁe> A
This yields the limit:
(1Y) L Gt 0 (Bege +69) . (ALD)
A 9>_)9th Duw (ﬁ) B 62 '

We can express this result in more intuitively amenable terms. Define cv = \/Tr(CB.V)/(u’]g.V. Kg) ,
which is analogous to a coefficient of variation of the means u; but modified by the mutational
covariance V. When V « L,,, this is exactly the mean coefficient of variation of the linear coefficients bij
across mutable traits x;. Recall that {, = {w p/p. and that the p X p matrix W has the same spectrum as
n V.Cg: its mean eigenvalue is therefore {y = Tr(n V.Cg)/p = n/p Tr(Cg.V). Putting this together,
we get

02 02 Jn e

% o B

We see that when the bias in the coefficients b;; is small enough, cv? is large enough to outweigh \/n p,.

By a “small enough bias”, we mean specifically that the cumulated variance of mutational effects on
mutable traits, and of the linear coefficients is larger than pg.V.pg. Otherwise, a phase transition
appears and the leading eigenvalue rises above the bulk of lower eigenvalues, by a factor

M, (1+ n) 1+2) 5 142 (A1.15)
E(A,) 6>6¢n cv? De ) Pe—o  cV? '
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This is our eq. (6), except that we replaced A, (all eigenvalues of K. K* when pg = 0) by 1;.; (the set
of n — 1 smallest eigenvalues, namely the “bulk” eigenvalues in the general situation (arbitrary pg). The
latter is distributed as A,, except that it is depleted of its maximal value A4, so it is very slightly
(unnoticeably if n > 1) biased downwards.

The accuracy of this result is checked Figure 4b. In this figure, the actual LSD of M is not exactly the M-P
law because of the covariances in mutable traits (V # I,,) and pathway coefficients (Cg # I,,), so that
H.W.H" # {,,H. H*. However, the prediction for the phase transition behavior, which is based on the
M-P law approximation (derivation above), is accurate. This is simply because the behavior of 1; is
entirely determined by the spectral distribution of the unperturbed matrix (4,), which was shown to be
accurately captured by the M-P law approximation as long as n < p (e.g. Figure 4a).

Extensions to allow for correlations among the rows of B: In the end of the Discussion, | stress the fact
that in the model as formulated, it is impossible to have substantial correlations among the rows of B,

namely among the b;;, across i, for a givenj. This is because the covariance Cg is of full rankp. A

ijr
possible way to incorporate such correlations was suggested by one of the reviewers, by letting B =
A;.H. A, stilln X p, with A; ann X n matrix and A, a p X p matrix, both invertible (our model so far
corresponds to A; = I, and A, = A). | provide a quick analysis of this case, but merely to illustrate how
extensions can be made, and mostly in the form of conjectures rather than proofs. A full treatment of

this more general model is beyond the scope of this article.

The covariance of b;; among the rowsi is now given by thep Xp matrixC; = E(B*.B) =
E((A%.H*.A}).(A;.H.A3)). WhenA; =I,andA; = A (our former model), this givesC; = Cg =
A" E(H*.H).A =A".A/n, as E(H*.H) = 1/n. Even in the general case (A; #1,,), withn < p and
A;.A] of full rankn, we have convergence to C; < Aj.A;/n. Conversely, the covariance of the b;;
among the columns j is now given by the n X n matrix C; = E(B.B*) = E((Al. H.A,). (AS. H*.A*l)). In
our former model C; = E(H.A,.A5. H"): asn/p — 0 with A,. A5 of full rank p, we get C; < I,,, and in
the general case, we get C; < A;.A}. Therefore the introduction of matrix A; does introduce a
potential for correlations among the rows i, which is effectively negligible otherwise (providedn < p
and Cg is of full rank p), as conjectured.

Let us now see how the mutational covariance M is affected by multiplication of B on the left by A;. In
our extension, if we let M = H.A,.V.A%.H* be the former form of the mutational covariance, we now
have M’ = A;.M. A}, as the new mutational covariance. The LSD of M’ is the same as that of C;.M
where we define C; = A4. A7 which is approximately the covariance matrix of b;; among rows i. As the
elements in C; are independent of those in H, M' has S transform given by Zy, (x) = Zy(x)Z; (x) where
¥, is the S transform of the LSD of C;.

We must now approximate each S transform. We have seen above that the LSD of M is
approximately the M-P law so that Zy(x) = 1/({.(x + B.)) with {,, B, given above. | could not derive a
general result for X, (. ) without making an additional assumption. | assume that the spectral distribution
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of C4 is not widely spread. More precisely, defined¢, and set, without loss of generality, that E(Acl) =1
(all the scaling can be absorbed into {,). | assume that (i) v; = V(Acl) « 1 and that (ii) the higher raw
moments of the LSD of C4 scale with this variance E()l’c‘l) = 0(vK) for all k > 2. This simply implies that
the eigenvalues of C; are not too spread apart, corresponding to mild correlations among the rows of B.
In this case, we can find a first order approximation for the S transform of the LSD of C; and a
corresponding approximation for the LSD of M’ again in terms of an M-P law with modified parameters.
As for the rest of the Appendix, details of the computations can be found in the notebook file S3.

Definen;(x) = E(1/(1 + A¢,x)) then transform of the LSD of C; and n7 () the functional inverse
such thatz =n, (n;l(z)). First, take the Taylor series expansion for ratio: 1/(1 +n71(2) A¢,) to order

/1%1 ; then take expectations with respect to the distribution of A¢, : this yields

2
TR 1 (@) 1 y
s (@) = (1 +072) ﬂc1> (@) e o) - (ALIe)

Solving for nl_l(z), we retrieve four solutions, but only one has the correct behavior when v; = 0:
namely, it converges to the solution when all 1¢, = E(Acl) = 1, which isn;1(z) = (1 — z)/z. Taking
this solution, we can compute the S transform X, (x) of C; under the approximation. The expression is
analytic but unpractical. Yet, after taking a series of 1/Z;(x) to leading order in v; , we obtain an
approximate expression:

5,60 =~ e+ 1 : (A1.17)
xX)=——— X X — . .
! X T v<1 1+vx

Interestingly, this approximation is exact when C4 is a sample covariance matrix, with LSD given by the
M-P law (A¢, ~ MP(By,1/B;) and arbitrary f; > 0). Note that, in this particular case, this result should

thus be valid for an arbitrary level of variation in the eigenvalues of C4 (arbitrary 8; > 0).

Using eq. (A1.17), we can compute the S transform of the LSD of M": Zy,(x) = Zy(x)Z;(x) =
1/((x +B.) ¢ (1+ le)) . In general, this S transform is not related to any specific form of random
matrix. However, when the ratio index of M = H,.H; is large (B, > 1), we retrieve a simple
approximation in terms of an MP law. Taking the leading order when v; = o(1) while S,v; = 0(1)
(vi €K1 and B, > 1), we get the S transform of an M-P law with modified parameters {, =

(e (1 + Bevy) and g = B /(1 + Bevy):

1 1
<1 L+ B,) (Lt vix) b1 /(L + B %)

I () = Em(0)Z1(x) (A1.18)

As expected, we retrieve the original MP law when v; — 0 (our former model: M’ = M, with B, = f8,).
The approximation in eq. (A1.18) must break whenever v, is large enough or 8, small enough that 0 <
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Be < 1. Indeed, in this case, the approximation would predict that a portion (1 — f3,) of eigenvalues
should be zero whereas in fact there are none (8, > 1 and C4 is positive-definite). This sets a limit for
the validity of eq. (A1.18): we must have 0 < v; < (B, —1)/B., i.e. v; < 1 in the best case scenario

(Be = ).

To conclude, the effect of correlations in the rows of B is thus to further reduce the shape parameter of
the LSD of the mutational covariance, while retaining the M-P law structure. Whenn/p — oo, so
that B, « 8 — oo, we retrieve a finite shape parameter this time:

: 1
Be P

- ~ — Al1.19
e = A+ Bovn) bty (AL19)

Then, there is mild anisotropy, all the more as v; gets larger, namely as the rows of B get more
correlated. The effective dimensionality in the sense of the matching moment approximation in (MARTIN
and LENORMAND 2006), isn, = n/(1+ cv(1)?) where cv(1) is the coefficient of variation of the
eigenvalues of M. With our M-P law approximation we have cv(1)? = 1/, so that

n

n, ~ ——— A1.20
e n«p (1 + 171) ( )

In the main text, | refer directly tov; = cvﬁ as the coefficient of variation of the eigenvalues of the
covariance matrix of the b;; among rows i, to avoid stating the scaling E(A¢,) = 1 that was made here

for mere notational simplicity. Simulations (not shown) suggest that this new M-P law approximation is
indeed accurate as long as v, is small and 8, is large (0 < v; < (8. —1)/B.).
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