File S1
Additional Methods

1 Details of the model

We denote the frequencies on the island of haplotypes A; By, A1Bs, A>B1, and A; By by 21, 22, x3, and x4, respectively.
The haplotype frequencies are related to the allele frequencies (p, ¢) and the linkage disequilibrium (D) as follows (e.g.
Burger 2000). The frequencies of A; and B; on the island can be expressed as p = x1 + x5 and ¢ = x1 + x3. Accordingly,
the frequencies of A and Boare 1 —p = 3 +x4and 1 — g = xo + x4. Moreover, 1 = pg+ D, x5 = p(1 - ¢q) - D,
23=(1-p)g—D,and x4 = (1-p)(1-¢q) + D, and the linkage disequilibrium can be expressed in terms of the haplotype
frequencies as D = x124 — x2x3. Thereby, we must recall the constraints x; >0 (¢ = 1,...,4) and Zil x; = 1, which are
equivalentto 0 < p,q < 1and

-min{pg, (1 -p)(1-¢)} <D <min{p(l -q),(1-p)g}. (26)

The matrix of relative fitnesses on the island is

BlBl BlBQ B2BQ

AAL [ wn w12 Wa2
W = A1As | wis  wia=wes W |, (27)
Az As w33 W34 W44

where w;; is the relative fitness of the genotype composed of haplotypes i and j (¢, j € {1,2,3,4}). For additive fitnesses,
we use Eq. (1) in the main text. The marginal fitness of haplotype i on the island is defined as w;. = Z;*:l w;jx; and the

X . . = 4
mean fitness of the island population as w = Zi,j Wi TiTj = isq Wiels.

Straightforward extension of two-locus models without migration (cf. Lewontin and Kojima 1960 or Burger 2000, chap.
2) yields the recursion equations for the haplotype frequencies,

33,1 = (1-m)(z1wi.— rwiaD)/w, (28a)
xy = (1= m)(wawa. + rwi4 D) [, (28b)
2 = (1 -m)(z3w3.+ rwi4D) /[0 + mqe, (28¢)
2y = (1 -m)(zgwg.— rwia D) /D +m(1 - q.), (28d)

where 7 is the recombination rate, m the migration rate, and ¢. the frequency of B; on the continent. For a monomorphic
continent, ¢. = 0. For this case, a continuous-time version of Eq. (28) has been fully described (Blrger and Akerman 2011).

2 Approximating the dynamics for rare A;

Because A; arises as a novel mutation in our scenario (see main text), the haplotype frequencies z1 and x» are initially
small. We therefore ignore terms of order z;z; (,j € {1,2}) and higher in Eq. (28). Moreover, we assume that, upon
invasion of A1, the frequency of B stays constant at the one-locus migration—selection equilibrium (g = gg). In principle,
q approaches an internal equilibrium ¢, but the change is small compared to the change in p (Burger and Akerman 2011).
Wethenhave xg3 =g-x1 ~dgandxzy =1-¢q— x5 » 1 - gg for z1 and x5 small. As a consequence, the dynamics in Eq.
(28) reduces to a system with only two equations in z; and x5,

= (1 -m)[wizy + rwiazage — rwiazi (1 - gg)] /w, (29a)
= (1 -m) [waws — rwiaw2gs + rwisx1 (1 - 4s)] /w, (29b)

where w; and wo are the marginal fitnesses of the A, B; and A B> haplotypes, respectively. These are given by

wy = wi3de + wia(1 - gg), (30a)
wg = w4 (1 - ) + wr4ds. (30b)
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Moreover, w is the mean fitness of the resident population on the island, which is assumed to be monomorphic at locus A:
w :cjéw33+2cjg(1—qB)w34+ (1—(13)211}44. (31)

This holds approximately if A; is rare on the island. Equation (29) can be written more compactly in matrix form as x’ = xL,
where x = (z1, z2) is a row vector, and

L= () 62
with
A= (1=m) [wy = 7(1 - g)wia] /w, (33a)
A2 = (1=m)r(1 - gs)wia/w, (33b)
A21 = (1 =m)rdgwis/w, (33¢)
A2z = (1 =m) [wz - rdgwis] /. (33d)

Setting m = 0, we recover the dynamics derived by Ewens (1967) for a panmictic population and a focal mutation occurring
in linkage to a background locus at which overdominant selection maintains B; at frequency ¢gg. We note that Egs. (29) to
(33) are valid for both a monomorphic and a polymorphic continent. The difference comes in only via ¢g, which is derived
in the following section. Matrix Lk will be encountered again as the mean matrix of the two-type branching process used
to study the invasion probability of A; (see also the following section).

Note the difference between w; and w;.: the former refers to the resident population under the assumption of the
branching process (this section), whereas the latter applies to the island population in the general two-locus model (previ-
ous section). The same distinction holds for w and w.

3 Marginal one-locus migration—selection model

We denote the marginal one-locus migration—selection equilibrium by Eg = (p = 0,q = 4g, D = 0). This equilibrium is
assumed to be realised on the island before occurrence of the A; mutation. The equilibrium frequency ¢g of allele By plays
an important role. It determines the division of the resident island population into two genetic backgrounds and provides
the weights for computing the average invasion probability of A; given the haplotype-specific invasion probabilities (see
sections 2 and 4). Analysis of the one-locus dynamics (File S2) shows that ¢g is obtained by solving

w1
ag = (1-m)-=qs +mqec = go (34)
for gg, where Wy = w33qs + w34(1 — ¢g) is the marginal relative fitness of the B; allele and

W = qggwss +2qa(1 - gg)wsa + (1 - gg)*was (35)

the mean fitness in the island population. From Eq. (34), one obtains

 wga(1—m) — b+ \/4(1 ~ m)mg(wss - wga) i + [G - (1-m)] 6
B~ 2(1—777,)(11}34—1033) ’

which simplifies to gg = [w34(1 —m) — @]/ [(1 — m) (w34 — w33)] for a monomorphic continent (g. = 0). The equilibrium
Eg is asymptotically stable if the migration rate is smaller than a critical value,

m< P Y (37)
W34

We note that @ is a (non-linear) function of gg, and hence of m. Therefore, Eq. (36) is only an implicit solution and
condition (37) notimmediately informative. However, for additive fitnesses (see Eq. 1 of the main text) and a monomorphic
continent (g. = 0) we find the explicit solution given in Eq. (2). Thisis an admissible polymorphic equilibrium (i.e. 0 < gg < 1),
if the migration rate is below a critical value,

=mg. (38)
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Because a < 1 was assumed, mg is always positive. Straightforward calculations show that Eq. (38) is also the condition
for asymptotic stability of E/g within its marginal one-locus system. That is, under the marginal one-locus dynamics, Ejg is
stable whenever it is admissible (see File S2, or Nagylaki 1992, chap. 6.1).

When the mutation Ay occurs, there is a transition from one- to two-locus dynamics. It is therefore crucial to study the
stability of Eg also under the full two-locus dynamics. We find that Ejg is not hyperbolic if m = m* orif m = mg > m*,
with m™ given in Eq. (10). In the first case, g changes stability from unstable to asymptotically stable as m increases
above m*; in the second case, Fg leaves the state space as m increases beyond mg. We do not have a complete stability
and bifurcation analysis of Eg. However, some numerical and analytical results suggest that the qualitative behaviour is
the same as in the continuous-time model (Burger and Akerman 2011). Then, the following holds. If Eg exists and is
asymptotically stable under the one-locus dynamics, (i.e. m < min(b,mg)), but unstable under the two-locus dynamics
(i.e. m < m*), then a fully-polymorphic internal equilibrium £, (0 < p,,4, < 1 and D, > 0) exists and is asymptotically
stable. Therefore, if m < m*, a novel mutation A; can invade via Eg. Presumably, the internal equilibrium E, is reached.
Comprehensive numerical computations under the discrete-time dynamics corroborate this conjecture (see File S2 and
Figure S1).

With a polymorphic continent (0 < ¢. < 1) and additive fitnesses, the frequency of B; at the marginal one-locus

migration—selection polymorphism (Eg) is

. b-(1-a)m+2bmg. +VR
7= 20(1 + m) :

(39)

where
R=4b(1-a-b)ym(1+m)q. +[b- (1-a)m +2bmg.]” > 0. (40)

In contrast to the case of a monomorphic continent, where Ej exists only if m < mg, with a polymorphic continent, both
alleles By and B, are introduced by migration and hence Eg always exists and is always asymptotically stable under the
one-locus dynamicsif 0 < g. < 1and 0 <m < 1.

A comprehensive analysis of the stability of Eg involves solving a complicated cubic equation, which results in expres-
sions that are not informative. We could not accomplish a complete analytical treatment, but a combination of analytical,
numerical and graphical approaches suggests the following. Upon occurrence of A; at locus A, Eg may either become un-
stable, in which case A1 can invade and a fully-polymorphic internal equilibrium E, is reached, or Eg may stay asymptoti-
cally stable, in which case A cannot invade. The transition between these two scenarios occurs at a critical recombination
rate

1 .
«_] 3 if m < myx,
" { 7*(m) otherwise, (41)

where 7*(m) is a complicated function of m that we do not present here (but see Eq. 3 in File S2, and Eq. 92 in section 6),
and m,.« is the migration rate at which 7*(m) has a pole. Then, for a given combination of values for a, b, m and ¢., 4;
can invade if and only if 7 < r* (Figure S2). A similar argument holds for a critical continental frequency ¢ of By, such that
for a given combination of values for a, b, m and r, A; can invade if and only if g. < g; (see File S2 for details). We were
not able to find an explicit expression for a critical migration rate m™ with an interpretation analogous to that of r* or ¢..
However, m* is implicitly defined by »* or ¢’ and can be computed numerically.

As a final remark, we note that for weak evolutionary forces, Egs. (2), (38) and (10) can be approximated by the corre-
sponding equations derived by Blrger and Akerman (2011) for the continuous-time model with a monomorphic continent.
Specifically, scaling a, b, m and r by € and expanding Egs. (2), (38) and (10) into a Taylor series around € = 0 yields

. m
gqB ® 1- 37 (42)
mpg ~ b, (43)
and
m*wa(1+b_a) (44)
r

to first order of ¢ and after rescaling. Equations (42) and (44) correspond to Egs. (3.9) and (3.11) in Blirger and Akerman
(2011).
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4 Branching-process approximation to the invasion probability

For a proper stochastic treatment, the evolution of haplotype frequencies has to be modelled by a Markov process. In
the context of invasion of novel mutations, particularly useful approximations can be obtained using branching processes
(Fisher 1922) and diffusion processes (Kimura 1962). Both approaches deal with the probabilistic effect due to the initially
small absolute number of copies of the mutant allele. The effect of finite population size is only accounted for by the
diffusion approximation, however. In the first part of the main paper, we are concerned only with initial rareness of the
mutation.

We employ a two-type branching process (Harris 1963; Ewens 1968, 1967) to study the dynamics of the two haplotypes
of interest, A; B; (type 1) and A, Bs (type 2) after occurrence of mutation A; (see section 2 above). Let A;; be the mean
number of j-type offspring produced by an i-type parent each generation, and z; the proportion of type ¢ in the island
population. Then the expected proportion of types Ay B; and A B, in the next generation is

E [x'l] = /\11.231 + /\21.132, (458)
E [xé] = /\12.%1 + /\22.’[]2, (45b)

or, in matrix form
E[x'] = xL, (46)

where x = (z1,22), and L = (\;;), i, 7 € {1, 2}, is called the mean matrix (cf. Eq. 32 in section 2). The leading eigenvalue
v of L determines whether the branching process is supercritical (v > 1) and A1 has a strictly positive invasion probability,
or subcritical (v < 1), in which case A; goes extinct with probability 1. Expressions for the \;; were given in Eq. (33).

The leading eigenvalue of L is

1-m -

V= ETe [w1 + W — rwig + \/(w1 —wg)? + 2rwi14(2d¢s — 1) (wy —wa) + 7’2111%4] , (47)
where wq and wq are the marginal fitnesses of type 1 and type 2 defined in Eq. (30), and w is the mean fitness of the resident
population on the island as defined in Eq. (31) (section 2). After some algebra (see File S3), the condition for invasion of
A1, v >1,is found to be equivalent to Eqg. (9) in the main text. Equations (47) and (9) hold for both a monomorphic and a
polymorphic continent.

Let (;; be the random number of j-type offspring produced by a single i-type parent. We assume that (;; and (;2 are
independent and Poisson-distributed with mean \;; and )\;2, respectively (i € {1,2}). Then, the probability-generating
function (pgf) of (;; is

Fii(s;) =E[s$9] = 3 prsh = e (m) i je (1,2}, (48)
k=0

where pi, = P[(;; = k] is the probability that an i-type parent has k offspring of type j. The first two equalities follow
from the definition of the pgf (e.g. Harris 1963), and the third from the properties of the Poisson distribution. Because of
independent offspring distributions for each type, the pgf for the number of offspring (of any type) produced by an i-type
parent is given by

2
fi(s1,82) =[] fij (s5)- (49)
j=1
Inserting Eq. (48) into Eq. (49), we obtain
fi(s1,82) = e (ms) gmhia(lms2) (50a)
fa(s1,82) = e 2 (17s0) L g (lmsz), (50b)

We use @; for the extinction probability of allele A; conditional on initial occurrence on background B;, and 7; = 1-Q);
for the respective probability of invasion. The extinction probabilities (Q; are found as the smallest positive solution to Eq.
(3) in the main text. The average invasion probability 7 is found as the weighted average of w1 and 7> (see Eq. 4 in the
main text). As the problem stated in Eq. (3) amounts to solving a system of transcendental equations, an explicit solution
cannot be found in general. Numerical solutions can be obtained, however (see File S3).
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We proceed by assuming additive fitnesses as defined in Eq. (1) of the main text. The entries \;; of the mean matrix L
in Eqg. (32) are then given by

)\11 :E+F’/‘, (518)
Ao =—-Fr, (51b)
)\21 :HT', (51C)
)\22 =J—H7’, (51d)
where
1+b+am
FP=—"" 52
l-a+b’ (52a)
F:—%, (52b)
_ b—(l—a)m, (520)
b(1-a+0)
1+m(a-10)
J=—. 52d
l-a+b (52d)

Assuming weak evolutionary forces, i.e. replacing a, b, m and r by ae, B¢, ue and pe, respectively, and expanding into
a Taylor series around € = 0, the terms in Eq. (51) are approximated to first order in € by

m m
/\11m1+a—?7“, )\mm?n

)\21N(1—%)7’, )\22N1+a—b—(1—%)?",

after resubstituting @ — a/e, B - b/e, i > m/feand p — r/e.
With additive fitnesses and a monomorphic continent, the dominant eigenvalue of L is

- 2+b-r+m(2a-b-r)+VRy
- 2(1-a+b) ’

(53)

where
Ri=(1+m){b*(L+m)+2b(1-m)r+r[r-m(4-4a-r)]}. (54)

The branching process is supercritical (v > 1) if m < m™* or, alternatively, if r < r*, with m* and r* the critical migration
and recombination rates defined in Egs. (10) and (11) of the main text, respectively (see File S3 for details). Assuming weak

evolutionary forces, v simplifies to
1
v~1+ 5(2a—b—r+\/R2),

where
Ry = b2 + 2br — dmr + 12, (55)
Then, m™ is approximated by Eq. (44) and
. ) if m<a, (56)
rers % otherwise

(see File S3). Note that the critical migration and recombination rates for invasion of A; obtained under the deterministic
model (section 3) and the corresponding two-type branching process are identical. In File S4 we show that this agreement
is generically expected.

To obtain the extinction probabilities of A, given initial occurrence on background B, or By, we plug Eq. (51) into (50)
and solve

fl (81,82) _ e(EJrFr)sl—Frssz =85 (576)

fa(s1,89) = eHrerttIinet — ) (57b)
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for s1 and s5. The smallest solutions between 0 and 1 are the extinction probabilities Q1 =1 — 7 and Q2 = 1 — 75 (cf. Eq.
3 in the main text). An explicit solution is not available and we need to use numerical methods to obtain exact results (File
S3).

We now turn to the case of a polymorphic continent (0 < ¢. < 1), still assuming additive fitnesses. Then,

M1 =E+Fr, (58a)
A1z = Gr, (58b)
Aoy = Hr, (S8e)
Ny = J 4 I, (58d)
with
~ (1—m)(2+b+m+am+2bch+\/}_3)
E: )
2[1—a—bm(1—QQc)+\/ﬁ]
_ (1-m)[b+(1-a)m+2bm(l-q.) - VR]
F=- )
2b[1—a—bm(1—2%)+\/ﬁ]
é_b+m[1—a—21)(1—C]c)]_\/E
- 2b(1—a—b) ’
- b-(1-a)m-2bmg.+\VR
H= )
2b(1-a+0)
~ (1—m)[b—(1—a)m+2bqu+\/ﬁ]
I =- ’
Qb[l—a—bm(l—QqC)‘*\/ﬁ]
j_(1—m)[2+m+am—b(1+2m(1—Qc))+\/ﬁ]

2[1-a-bm(1l-2q.)+VR]

Here, R is as defined in Eq. (40). Assuming weak evolutionary forces, i.e. scaling a, b, m and r by € and expanding into a
Taylor series around € = 0, Eq. (58) is approximated to first order in € by

1 b+m-+R b+m-+R
)\11N5(24—2&4—[)—771—\/]%3,)—27b37"7 AlgﬁTZJ‘T‘,
b-m+~R3 1 b-m++R3
)\21~T7’, )\22~2(2—‘-2(1—&)—’/TL—\/]%3)—TT’7
where
Rs = (b—m)? + 4bmg. > 0. (59)

Note that the continental frequency q. of By enters these equations only via 4bmg. in the radicand R3. For a poly-
morphic continent, the eigenvalues of L are complicated expressions, which we do not show here (but see File S3). The
leading eigenvalue can be identified, though. For weak evolutionary forces, and to first order in ¢, it is approximately

yw1+% Za—m—r—\/ﬁg+\/b2—r(2m—r—2\/R_3):| (60)

(see File S5). Finally, the system of transcendental equations to be solved in order to obtain the extinction probabilities of
A1 becomes

fl (51,82) _ 6—(E~‘+}":'7')(1—81)—67'(1—52) =85 (61a)
fo(s1,82) = e—ﬁr(l—sl)—(j+fr)(1—sz) = 59 (61b)

(cf. Eg. 3 of main text).
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To obtain analytical approximations to the invasion probability of A, we follow Haccou (2005, pp. 127-128) and assume
that the branching process is slightly supercritical (see also Eshel 1984; Hoppe 1992; Athreya 1992, 1993). This means that
the leading eigenvalue of the mean matrix L is of the form

v=v(€)=1+¢, (62)

where ¢ is small and positive. To make explicit the dependence on &, we write Q; = Q;(£) and ; = m; (&) for the extinction
and invasion probabilities, respectively (i € 1, 2). Using the Ansatz in Eq. (62), Haccou et al. state in their Theorem 5.6 that,
as& -0, ¢;(&) converges to 1 and

2[v(§) -1]
B(¢)

Here, vy, =1 is the ith entry of the right eigenvector v = (v1,v2)7 pertaining to the leading eigenvalue v of the mean matrix
L. The matrix B(¢) is defined as

mi(§) =1-4¢i(§) = vi(§) +o(&). (63)

B(¢) = Zu,zv Aij +v(§) [1-v(8)] Z V3, (64)

where u; is the ith entry of the normalised left eigenvector u = (u1, ug) associated with the leading eigenvalue v of L. By
normalised we mean that Zi ug = 1. For Eq. (63) to hold, u and v must in addition fulfill Zizl upvg = 1.

For additive fitnesses (Eq. 1) and a monomorphic continent (g. = 0), we combine Egs. (53) and (62) to identify £ as

2a(1+m)-b-r-m(b+r)+VRy
2(1-a+b) ’

£= (65)
where R; is defined in Eq. (54). Therefore, the assumption of a slightly supercritical branching process will hold for all
parameter combinations that result in a small positive £ in Eq. (65). For weak evolutionary forces, Eq. (65) is approximated
by the simpler expression below Eq. (12) in the maint text. After some algebra using Mathematica (File S5), we obtain the
appropriately normalised left and right eigenvectors of LL as

b(1+m)—(1+m)r+vEL\ |
u= 2(21})_(;_:'2?7)7” (66)

b[b+r+m(b+r)+v/R1]

and
b2(1+m)—2(1—a)77Lr+b(r—mr+\/R1 )

V= (b+r)2+m[(b2—[rb)_2(—14_(al)—£i:’]+(b—r)\/RT , (67)
(b+1)2+m[(b-r)2-4(1-a)r]+(b-r)VR1

respectively. Combining Egs. (51), (53), (66), (67), and (64), we find analytical expressions for the conditional invasion
probabilities 71 (£) and w5 (€) under a slightly supercritical branching process. The weighted average invasion probability
(&) is obtained according to Eq. (4) with gg given in Eq. (2). The resulting expressions are long and not very informative
(see File S5 for details and Figure 2 for a graphical comparison to numerical solutions). However, if we assume weak
evolutionary forces, we obtain the analytical approximations 71 (£) and 72(&) given in Eq. (12) of the main text. The
corresponding average invasion probability 7 (&) is obtained by insertion of Egs. (12) and (2) into Eq. (4) (see main text).

For a polymorphic continent (0 < ¢. < 1), the procedure is analogous to the one outlined above. Intermediate and final
expressions are more complicated as those obtained for the monomorphic continent, though. We therefore refer to File
S5 for details and to Figures S5 and S6 for a graphical comparison to numerical solutions. The approximations 71 (£), 71 ()
and 7:r(£) given in Egs. (7)—(9) in File S5 for weak evolutionary forces and 0 < ¢. < 1 are accurate if £ is small, where

mé[m+r\/R_—\/b2—T(2m—T—2\/R_3):|

and Rs is defined in Eq. (59). Then, the branching process is slightly supercritical (cf. Eq. 62). In practice, the approximations
derived for a polymorphic continent are useful for efficient plotting, but otherwise not very intuitive. Letting g. — 0 and
assuming m < mg (cf. Eq. 38 in section 3), we recover the respective analytical expressions for the case of a monomorphic
continent.
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5 Condition for a non-zero optimal recombination rate

Observation of the mean invasion probability 7 of allele A; as a function of the recombination rate r suggests that 7(r)
may have a maximum at a non-zero recombination rate (r,p¢ > 0) in some cases, whereas it is maximised at rop; = 0in
other cases (Figures 1A and 1B). To distinguish between these two regimes, we note that 7, > 0 holds whenever the
derivative of 7(r) with respect to r, evaluated at r = 0, is positive. This is because 7(r) will always decay for sufficiently
large r. We denote the derivative of interest by

dﬂ'Q(T‘)
dr ’

r=0

+(1-ds)

r=0

(68)

7(0) = 2 [dem (1) + (1= Ge)ma()]|_ = s ™

where 71 and 7o are the invasion probabilities of A; conditional on initial occurrence on the B; and B background,
respectively, and ¢g is the equilibrium frequency of By before invasion of A;. In the following, we obtain 7/(0) via implicit
differentiation. We will first derive a general, implicit condition for 7'(0) > 0, and then proceed by assuming additive
fitnesses to obtain explicit conditions. We will do so first for a monomorphic (¢. = 0) and then for a polymorphic (0 < ¢, < 1)
continent.

We start from Eq. (3) of the main text with probability generating functions f;(s1, s2) (i € 1,2) as defined in Eq. (50) in
section 4. Recall that the extinction probabilities ); = 1 — 7; are the smallest positive solutions to Eq. (3). Assuming that
these solutions have been identified, we know that the invasion probabilities 7; satisfy

1-m = 6*/\1171'1 _6*>\127r2
1-1 = e—>\2171'1 . e—>\227F2.
Taking the logarithm on both sides and making the dependence of both 7; and \;; on r explicit, we have
In [1—7T1(7‘)] = —)\11(7")71'1(7") —)\12(7")7(2(7”) (693)
In [1 - 7'('2(7’)] = —)\21(7‘)’/T1(7’) - )\22(7')7’(’2(7‘). (69b)
Applying the formulae for the A;; () given in Eq. (33), Eq. (69) becomes

In[1-m(r)] = —I_Tm{[wl - (1= gg)rwia]m(r) + (1- QB)Tw14F2(T)} (70a)
In[1-my(r)] = —LTm{dgrwmm(r) + (we — ggrwiy) 7'('2(7“)}. (70b)

Differentiating both sides with respect to r, and setting r = 0 yields

M1 (O) _ (1 =y 2ama() = (A = dg)wna (i = 73)

= (71a)
1-m7 w
ThO0) _ (g 2m(0) + dswss (7§ ~75) 710
1-m3 w

dmi(r)
dr
Ay if itinitially occurs on background By and Bs, respectively, and if there is no recombination (r = 0). Solving the system

in Eq. (71) for 77 (0) and 75(0), and plugging the solutions into Eq. (68), we find after some algebra

where 7(0) =

. fori e {1,2}. Moreover, 7} = w1 (0) and 75 = m2(0) are the conditional invasion probabilities of
r=

—s _ R . o or W14 1-n? 1-m
7(0) = (1 =m)a(l = da)(m — i) == (1 —( —m)(liwi’)wl/w 1-Q —m)(liwg)wg/w)' (72)

Setting r = 0 in Eq. (70) and rearranging, we obtain
(1-m)Z = In(1-3)/x0  ie{l,2}. (73)
w

Insertion of Eq. (73) into Eq. (72) yields

_r _ _ ~ A o o% 1_7-[-; _ 1_7T(2)
(0) = (1 -m)de(1 - Ge)(m; - ) =5 (1+1n(1—7ri’)(1—7r‘1’)/77‘1’ 1+1n(1_7r;)(1—7rg)/7r;)' (74)
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At this point, a closer inspection of Eq. (73) is worthwhile. Straightforward rearrangement leads to
o Wi o .
1-m; :exp[—(l—m)fﬂ'i] ie{1,2}, (75)
w

which has a solution 7{ in (0, 1] if and only if (1 — m)w;/w > 0. Otherwise, the only solution is 7r{ = 0. In our setting,
we always assumed that when A; occurs on the deleterious background (B>), it will form a suboptimal haplotype (41 B>
less fit on the island than A;B;) and go extinct in the absence recombination. This assumption translates into wy < .
As 0 < m < 1, we immediately note that for ¢ = 2, the only possible solution of Eq. (75) is 75 = 0. Therefore, whenever
wy > w/(1 - m) holds, the derivative of interest in Eq. (72) simplifies to

e . o Wi4 w _ 1-n7
(0 = (1 =m)e(l - Ge)mi=7 (w—(l—m)wg 1-(1—m)(1-w;)w1/w)' (76)

After some algebra (File $6), we find that 7/(0) > 0, and hence 74, > 0, is equivalent to Eq. (13) in the main text. Again,
if we set m = 0 in the derivation above, we obtain expressions previously derived by Ewens for a panmictic population in
which the background locus is maintained polymorphic by heterozygote superiority (Ewens 1967).

To obtain more explicit conditions, we assume additive fitnesses (Eq. 1). We start directly from Eq. (57), replacing s;
by the smallest solution (); between 0 and 1. Taking the logarithm on both sides and making the dependence of ); on r
explicit, we find

InQi(r)=(E+Fr)Qi(r) - FrQz(r)-E (77a)
InQa(r) = HrQ1(r) + (J - Hr)Qz(r) — J, (77b)

where E, F, J and H are independent of r and as defined in Eq. (52). Differentiating Eq. (77) on both sides, setting r = 0
and rearranging, we obtain

Q, O o] o
VO (@5 - @) + Q4 0)
Q5
Q, O o o
R R AR EAC)
@5
with Q;(0) = 4@ Here, we used Q7 = Q;(0) for the extinction probability of A; condidtional on initial occurrence

dr r=
on background B; (i € fl, 2}). Solving for Q' (0) and Q%(0) yields

FQT(Q - Q5)

Q1(0) = B (78a)
1

24(0) - HQE(_Q}C;OQE) _ 78)
2

To obtain an explicit solution, we aim at approximating the (); in the following. Going back to Eq. (57) again, but setting
r =0 directly, we find

Qs =eZ-QD e (1,2}, (79)
where
1+b
Z,=F= w7 (80a)
l1-a+b
1 -b
Zyie g = LEmla=b) (80b)
l-a+b

Importantly, the equations for ) and )5 in (79) are now decoupled. Moreover, we note that Eq. (79) has a solution )5 in
[0,1) ifand only if Z; > 1; if Z; < 1, the solution is @} = 1. In other words, in the case of complete linkage (r = 0), type ¢
has a non-zero invasion probability if and only if Z; > 1 (recall that 77 = 1 — Q7). Closer inspection of Eq. (80) shows that,
given our assumptions of a < band 0 < m <1, Z; > 1 and Zs < 1 hold always. Hence, we have 75 = 1 - Q5 = 0, and we
are left with finding an approximate solution of Eq. (79) for 7 = 1. For this purpose, we focus on the case where invasion is
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just possible, i.e. 7] is close to 0 and hence Q)] close to 1. This is equivalent to Z; being close to, but larger than, 1. We
therefore use the Ansatz
Z1=1+¢ (81)

with € > 0 small. We then have QS = ¢~ (1*)(1=Q1) | Noting that QS (e) must be close to 1 for € small, we expand the
right-hand side into a Taylor series around ()] = 1, which results in

Qi =1-(1-@)(1+0) + L (1- QD1+ + O(Q}) 82)

Neglecting terms beyond O(Q9)? and solving for Q3, we obtain QS = (1 + €2)/(1 + €)? (excluding the trivial solution
Q1 =1). To first order in ¢, this is approximated by

{=1-7]~1-2e (83)

We identify € by inserting Eq. (80a) into Eq. (81) and solving for e. To first order in q, this yields € ~ a(1 + m)/(1 +b)
and hence, from Eq. (83), we find
a(l+m)
— +
(1+0)

Note that if we set m = 0 (no migration) and b = 0 (no background selection), we recover Haldane's (1927) well-known
approximation m ~ 2a.

Qy=1-2 O(a)?. (84)

Comparison of Egs. (83) and (84) suggests that the invasion probability 7J increases with the migration rate m. This
may seem counterintuitive. However, with complete linkage (r = 0), the cases of A; occurring on background B, or Bs can
be considered separately. If A; occurs on background By, it forms haplotype A1 B;. From then on it competes against the
resident population consisting of haplotypes A> B and A5 B> at frequencies ¢g and 1 — §g, respectively. Because, initially,
A1 Bj types do not interfere nor contribute to the resident population, what matters is the ratio of the marginal fitness w1
of A1 B to the mean fitness w of the resident population. This follows directly from Eq. (73). Equations (30a) and (31) in
section 2 show that both w; and w depend on {g. For additive fitnesses, ¢g is given by Eq. (2) in the main text; it depends
on m. Therefore, to understand the apparently paradoxical increase of 77 on m, we must compare the dependence on m
of wy and w. We have wy = (1+b+am)/(1+m)and w = (1-m)(1-a+b)/(1+m). Both decrease with m, but w does so
faster. The ratiow; /w = (1+b+am)/[(1 —a+b)(1 —m)]increases quickly with m (File S6). This explains why 7 increaes
with m. It also explains why 71 increases with small m in Figure S3D for very weak recombination. If recombination is too
strong, the effect vanishes (Figures S3E and S3F).

Finally, plugging Eq. (52) from section 4 and Eq. (84) into Eq. (78), we obtain the explicit approximations

2m(l-a+b)[1+b-2a(1+m)]
b(1+b)(1+b+2am) ’

2a[b-(1-a)m]

b(1+b)(a-b) ’

Q1(0) ~ (85a)

Q5(0) ~ (85b)
valid for a small relative to m and b. Noting that 7'(0) = - [gsQ(0) + (1 - §g)Q%(0)] and using gg from Eq. (2) of the
main text for additive fitnesses and a monomorphic continent, we find the approximate derivative of the mean invasion
probability 7 atr =0 as

B 2m(l-a+b)[b-(1-a)m]{2a* +b+b? - 2a[1+b(2+m)]}

7(0) = D2(1+b)(a—b)(L+m)(1+b+2am) ' >

After some algebra, one can show that 7'(0) > 0, and hence 7o > 0, if a > 1 - b/m and a > a*, with a* defined in Eq.
(14) of the main text. Combination of Eq. (14) with our assumption a < b and the condition for existence of the marginal
one-locus equilibrium Eg (a > 1 — b/m, from Eq. 38 in section 3) yields a sufficient condition for rop; > 0 (Figure 3). For
further details, we refer to File S6.

For the case of a polymorphic continent (¢q. > 0), we were not able to derive informative analytical conditions for
Topt > 0. Analytical and numerical computations in File S6 suggest that if we start with a monomorphic continent (¢, = 0)
in a constellation where rop¢ > 0 holds, and then increase g., the maximum in 7 (r) shifts to 0 (rop¢ — 0). There must be a
critical value of g, at which the shift from r,,¢ > 0 to 7ot = 0 occurs, but we could not determine it analytically.
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6 Analysis of the deterministic model in continuous time

For the diffusion approximation in the following section we will need a continuous-time version of our model as a starting
point. Here, we derive this model from the discrete-time version. We will analyse some properties of interest in the
context of invasion and survival of a weakly beneficial mutation arising in linkage to a migration—selection polymorphism.
The continuous-time version with a monomorphic continent (g. = 0) has been completely analysed by Blirger and Akerman
(2011). Therefore, we only summarise some of their results and focus on the extension to a polymorphic continent (0 <
g < 1). We use a tilde (~) to distinguish continuous-time expressions from their analogous terms in discrete time. For ease
of typing, though, this distinction is not made in all Mathematica Notebooks provided in the Supporting Information.

We start from the recursion equations for the haplotype frequencies given in Eq. (28) of this text, with relative fitnesses
w;; according to Eq. (1). As we will assume quasi-linkage equilibrium (QLE) in the following section, it is more convenient to
express the dynamics in terms of allele frequencies (p, ¢) and linkage disequilibrium (D), rather than haplotype frequencies.
This is achieved by recalling the relationships between D, p, q, and the x; (i = 1,...,4) given in section 1. The resulting
difference equations are complicated and only shown in File S7. We obtain the differential equations by assuming that the
changes due to selection, migration and recombination are small during a short time interval At. Scaling a, b, m and r by
At and taking the limit lima;_q % for z € {p,q, D} results in

p= % =ap(l-p)-mp+bD, (87a)
d

Q=" =ba(1-q) ~m(q~qc) +aD, (87b)

D=2 [a(1 - 2) +5(1~20)] D + mp(a - ) - D] - rD. (870)

For a monomorphic continent (g. = 0), one finds the marginal one-locus migration—selection equilibrium FEg for locus
B by setting p = D = 0 and solving ¢ = 0 for g, which yields
Gp=1-2 (88)
b
as the solution of interest (cf. Eq. 42). Burger and Akerman (2011) have shown that this equilibrium is asymptotically stable
in its one-locus dynamics whenever it exists, i.e. when m < b = mg. Moreover, it is asymptotically stable under the two-
locus dynamicsifandonlyif m* < m < b, wherem”* = a (1 + "‘Ta) (cf. Eq. 44 insection 3, and Eq. 3.13 in Blirger and Akerman
2011). Note that Burger and Akerman used mg for what we call m*. Invasion of A; via Fg requires m < min(b, m*). After
invasion, the system reaches an asymptotically stable, fully-polymorphic equilibrium E.. There may exist a second fully-
polymorphic equilibrium E_, but this is never stable and does not exist when Ej is unstable. It is therefore of limited
interest to us. Burger and Akerman give the coordinates of these equilibria in their Eq. (3.15).

For a polymorphic continent (0 < g. < 1), we find the frequency (fB of B at the marginal one-locus migration—selection
equilibrium Eg as
2 b—-m+ AV R3

ds % (89)

with R3 = (b—m)? + 4bmg, > 0 as previously encountered in Eq. (59) in section 4. Equilibrium FEjg always exists and is
always asymptotically stable under its one-locus dynamics (File S7). To know when a weakly beneficial mutation at locus A
can invade, we inyestigate the stability properties of EB under the two-locus dynamics. The Jacobian matrix evaluated at
Eg = (p:()vq:(ijD:O) is

a-m 0 b
s - 0 VE (90
m (b—m - 2bq. +\/R3) /(2b) 0 a-r—-+Rs

and its leading eigenvalue is

17:% 2a—m—r—\/R_3+\/b2—r(2m—r—2\/R_3)] (91)
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(cf. Eq. 60). Equilibrium FEg is unstable if and only if 7 > 0. To obtain explicit conditions, we determine values of  and qc at
which Eg is not hyperbolic (i.e. 7 = 0) and may therefore enter or leave the state space, or change its stability. Equilibrium
Eg is not hyberbolic if the recombination rate is equal to

r 2a2—2a(m+\/R_3)+m[m—b(1—2ch)+\/R_3]

2(a-m) (92)

(File S7). As a function of m, 7** has a pole at m = a, and 7" = 0 if m = a(a + b)/(a + bq.). This holds for a < b, which is
one of our general assumptions. We conclude that Ejg is unstable and A; can invade whenever r < 7g, where

(93)

ot 2

. [ oo if0<m<a,

BT 7 ifm > a.
Figure S7 shows the division of the (m, r')-parameter space into areas where FEg is asymptotically stable (blue) and unstable
(orange), respectively.

By solving v = 0 for ¢., we obtain two critical continental frequencies of B; at which Fg is not hyperbolic. These are

given by
7= 1 . (a-m)(a+r) . (2a - m)\/Ry

9 bm 2bm

where Ry = 4r(a—-m)+ b2. We first investigate the properties of g:* as a function of the migration rate m. A combination
of algebra and graphical exploration given in File S7 suggests that the following cases must be distinguished:

(94)

Casel 2a<band (r<aorb-a<r). Then FEg is unstable if ¢. < de.B, With . g defined as

oo ifm<a,
Ge =13 @i fa<m<a+b-r, (95)
0 ifa+b—r<m.

Case2 (2a<banda<r<b-a)or(2a>bandb-a<r<a). Then FEjg is unstable if e < {c,B, With §. g defined as

oo ifm<a,
dep=1% qf fa<m<a(b-—a+r)/r, (96)
0 ifa(b—a+r)/r<m.

Case3 2a >band2r >banda <r < 2a>banda < r. We distinguish four subcases:

3a m <a. Then Eg is always unstable.

3b a<m<a(b-a+7)/r. Then Eg is unstable if ¢. < G**.

3c a(b—a+7)/r <m<a+b?/(4r). Then Eg is unstable if §* < g. < G**.
3d a+b?/(4r) < m. Then Eg is asymptotically stable.

Case4 2a>band2r >banda >r < 2r >band a > r. We distinguish four subcases:

4a m < a. Then Eg is always unstable.

4b a <m<a+b-r. Then Eg is unstable if ¢, < 477

4c a+b-r<m<a+b?/(4r). Then Eg is unstable if * < g. < G**.
4d o +b%/(4r) <m. Then Eg is asymptotically stable.

Figure S8 shows the partition of the (m, g.)-parameter space into areas where E‘B is asymptotically stable (blue) and
unstable (orange), respectively. There are parameter combinations such that EB is asymptotically stable for very low and
for high values of g., but unstable for intermediate ¢. (Figures S8B and S8C). This effect is weak and constrained to a small
proportion of the parameter space (g. small).

Alternatively, we assess the properties of ¢;* as a function of the recombination rate r. Graphical exploration (File S7)
suggests the following, provided that a < min(m,b) holds. If recombination is weak, i.e. 7 < a(b-a)/(m - a) = 7%,
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then Eg is unstable if ¢, < ¢**. If recombination is intermediate, i.e. 7 < r < b%/[4(m - a)], then Ep is unstable if

~k % n

q:* < q. < G:f. Last, if recombination is strong, i.e. r > b?/[4(m - a)], then Eg is asymptotically stable. Note that 7*
was previously encountered in Eq. (56) in the context of the branching process. Figure S9 shows the division of the (7, ¢.)-
parameter space into areas where FEg is asymptotically stable (blue) and unstable (orange), respectively. As just shown,
there are parameter combinations such that E‘B is asymptotically stable for very low and for high values of ¢., but unstable
for intermediate ¢, (Figures S9A-S9C).

In principle, analogous conditions for asymptotic stability of EB under the two-locus dynamics could be obtained in
terms of a critical migrationr rate m** at which Ej is not hyperbolic (z = 0). However, we were not able to derive infor-
mative explicit conditions (see File S7 for a graphical exploration).

So far, we have described the conditions for instability of the marginal one-locus migration—selection equilibrium Ejg
under the two-locus dynamics, both for a monomorphic (¢. = 0) and a polymorphic (0 < ¢. < 1) continent. In both cases,
there is no other stable equilibrium on the boundary for 0 < m < 1. As mentioned above, for the case of a monomorphic
continent, the coordinates of the fully-polymorphic equilibria can be found (Burger and Akerman 2011) and asymptotic
stability proved (Bank et al. 2012). For a polymorphic continent, simple explicit expressions are not available, but we could
show analytically that at most three candidates for a fully-polymorphic equilibrium exist. Numerical and graphical explo-
rations suggest that if FEg is unstable, at most one of these candidates is an admissible equilibrium, and it is asymptotically
stable (see File S7 for details). Figures S7-S9 therefore directly tell us when A; can be established if introduced near EB
(orange areas).

In the following section, we will derive a diffusion approximation of sojourn and absorption times under the assump-
tion of quasi-linkage equilibrium (QLE), i.e. for > max(m,b). Therefore, we briefly discuss the properties under the
QLE assumption of the fully-polymorphic, asymptotically stable, equilibria mentioned in the previous paragraphs. For a
monomorphic continent, E+ is approximated to first order in 1/r by

bm + ar — m(m +r) ~m  m(b-m)

ps = =1-—+ , (97a)
ar a T a

:+:am+br—m(m+7'):1_@+m(a—m)7 (97b)
br b r b

b, = lemmlOmm _m (y_m) ;) (97¢)
abr r a b

(cf. Eq. 4.3 in Burger and Akerman 2011). As » — oo, Eq. (97) converges to the case of no linkage, where ;5+ =1-m/a,

§+ =1-m/b, and D, =0. Turning to the case of a polymorphic continent, we recall from above that there is at most one
admissible fully-polymorphic equilibrium. To first order in 1/r, its coordinates are

5 _ 2ar +m(b-2bg. —m —2r +\/R3) _ _bch+m(b—m)+m Ry m

. 1 , (98a)
2ar ar 2ar 2ar a
s 1 am(2bg. —b+m-/R3) +m(m+r)(m—\/R3) . b +m(2qc—1)(m+2r) (98b)
&=y 21/ Rs 2%/ R 2R3 9/ R ’
2 - b(1-2q.) —m++/R:
D, = m(a—m) [b(1 - 2qc) ~m + VRa] (98¢)
2abr

Setting ¢. = 0 and recalling that m < m* = a (1 + ”‘Ta) must hold for invasion in this case (section 3), it is easy to verify
that Eq. (98) coincides with Eq. (97). This is why we call the equilibrium in Eq. (98) E+QLE. Graphical exploration in File S7
confirms that F,qrk is asymptotically stable whenever it exists under the QLE regime.

Finally, we ask when E+QLE exists in the admissible state space. We note that @QLE is a strictly decreasing function

of the recombination rate 7, independently of the migration rate m. In contrast, ¢.qrE is a strictly decreasing function of
r if and only if m < a, which is of limited interest, because A; can then be established in any case. We denote by 750

+QLE

and rz; the recombination rates at which p.qrr equals 0 and 1, respectively. Analogously, we use 7z and rz;

PiQLE ) 9;QLE 9;QLE

for the recombination rates at which g,qrr equals 0 and 1, respectively. These critical recombination rates are found to
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be
mm_b(1_2QC)_VR3

2 = 99a
"Maue 2(a-m) (99a)
1
T = 3 (b m — 2bg, + Rg) , (99b)
and
b+m-+R
reo =(m-a) v (100a)
+QLE 2/ R3
b-m++R
ra =(a-m) ————". (100b)
+QLE 2/ R3
As shown in File S7, if m < a, E+QLE exists in the admissible state space if and only if » > max (rlng ,T&]Q ) Ifm>a,
+QLE +QLE

E+QLE exists in the admissible state space if and only if max (7“51 ) <T<TzH . Ata first glance, it may seem
+Q +QLE

T2
LE’ q}QLE
surprising to obtain an upper limit on . However, as is easily verified, 0 is also the critical value at which E, g1
+QLE

coincides with the QLE approximation of EB, which becomes asymptotically stable. Thus, with looser linkage, allele A is
lost.

7 Diffusion approximation to sojourn and absorption times assuming quasi-linkage equilibrium

Although some two-locus diffusion theory has been developped (Ewens 2004; Ethier and Nagylaki 1989, 1988, 1980),
explicit calculation of quantities of interest, such as absorption probabilities or times, seems difficult. Substantial progress
can be made, though, by assuming that recombination is much stronger compared to selection (and migration). Then,
linkage disequilibrium decays on a fast time scale, whereas allele frequencies evolve on a slow time scale under quasi-
linkage equilibrium (QLE) (Kimura 1965; Nagylaki et al. 1999; Kirkpatrick et al. 2002). Here, we employ the QLE assumption
to approximate the expected amount of time the focal allele A; spends in a certain range of allele frequencies (the sojourn
times), as well as the expected time to extinction (the mean absorption time). We do so in detail for a monomorphic
continent (q. = 0) first. For a polymorphic continent (0 < ¢. < 1), we will only give a brief outline and refer to File S7 for
details. Throughout, we closely follow Ewens (2004) in our application of diffusion theory.

We start from the continuous-time dynamics of the allele frequencies (p, q) and the linkage disequilibrium (D) in Eq.
(87), setting q. = 0 for a monomorphic continent. Given that recombination is strong compared to selection and migration,
D will be close to an equilibrium, so that D= dD/dt ~ 0 may be assumed. Moreover, we assume that the frequency of the
beneficial background allele Bj is not affected by establishment of A;. Specifically, ¢ = qB constant, where gg = 1 —m/bis
the frequency of B; at the one-locus migration—selection equilibrium in continuous time (Eq. 88). Equation (87) is therefore
approximated by

dp

p= pn =ap(l-p)-mp+bD, (101a)
. _dg
=—1_0 101b
Q== (101b)
. dD
D=—-=[a(1-2p) +b(1-2¢)] D +m(pq - D) -rD = 0. (101c)

Solving Eq. (101c) for D, plugging the solution into Eq. (101a) and setting g = 58, we obtain a single differential equation in

p:
m(b-m)

102
b—m—a(1—2p)+rp (102)

p=ap(l-p)-mp+

In the limit of  — oo, we recover the one-locus migration-selecion dynamics for the continent—island model, p = ap(1 -
p)-

We now consider the diffusion process obtained from the Wright—Fisher model (Fisher 1930; Wright 1931). More
precisely, we measure time in units of 2NV, generations, where N, is the effective population size, and use T" for time on the
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diffusion scale. Further, we introduce the scaled selection coefficients & = 2N.a and 3 = 2N.b, the scaled recombination
rate p = 2N.r, and the scaled migration rate i« = 2N.m. Equation (102) yields the infinitesimal mean

p(B — )
B-p-a(l-2p)+p

(cf. Eq. 5 in the main text). It expresses the mean change in p per unit of time on the diffusion scale. The infinitesimal
variance is

M(p) =ap(1-p)-up+

V(p)=p(1-p) (103)
(Karlin and Taylor 1981, p. 159).
Later, we will need the ratio of M (p) to V (p), which is

M _
®_, n (1_ B-p ) (104)
V(p) 1-p B-a(l-2p)-p+p
We define the function 1(p) according to Eq. (4.16) in Ewens (2004) as
= -2 d 105
¥(p) exp[ Vo) Z] (105)
Inserting Eq. (104), we find,
a+ 1(B- L(p=0)
Y(p) = € 2P (1= p) #5055 (B — =+ p)aines [B— (L= 2p)a— pu+ p] =0 mos (106)

The derivation assumes that (o — 3 + p1 — p) /(ap) < 0 holds. Recalling from section 3 that, for instability of the marginal
one-locus equilibrium Eg, it is required that m < m* = a (1 + b:—“) and that then a < min(b,r), one can show that
(=B +p—-p)/(ap) <0 holds indeed (see File S7).

We now turn to the sojourn times as defined in Ewens (2004, pp. 141-144). We denote the initial frequency of the
focal mutation A; by py and introduce the function ¢(p; po) to describe the sojourn-time density (STD). The interpretation
of t(p; po) is the following. The integral

p2
f t(p;po)dp

p1

approximates the mean time in units of 2N, generations allele A; spends at a frequency in the interval (p1, p2), conditional
on the initial frequency pg. According to Egs. (4.38) and (4.39) in Ewens (2004), we define

v _ [ ti(pipo) ifO<p<po,
tpipo) = { ta(pipo) ifpo<p<l. (107)

To make the assumption of quasi-linkage equilibrium explicit, we will add the subscript QLE to relevant quantities from
now on. The densities t; qr.e(p; po) are given by Eq. (7) in the main text, with ¢)(y) as in Eq. (105). The integral jom Y(y)dy
cannot be found explicitly. However, because Eq. (7a) takes the form t1 qre(p;po) = 2¢(y) ™ (1-p) 'p~ [ ¢ (y)dy and
! [ ¥(y)dy — 1 asp — 0 (File S7), we approximate ¢, qr.E (p; po) by

t1,que(p;po) = (108)

2p
V(p)¥(p)
whenever p is small. Recall from Eq. (107) that ¢1 (p; po) is needed only if 0 < p < py. We are in general interested in a

de-novo mutation, i.e. pp = 1/(2N), with population size N at least about 100. Hence, p < pg automatically implies that p
is small whenever t1 qr.e(p; po) is employed. The approximation in Eq. (108) is therefore valid for our purpose.

Similarly, we may multiply ¢2 qrLe(p; po) by po and 1/pg and write

ta.que(P;Po) = 2P0 (y) " (1-p) 'p ' pg’ fopo ¥(y)dy.

Again, py* [ ¥ (y)dy — 1 as po — 0 (File S7). We therefore approximate t2 qre(p; po) by

to,que(p;po) = % (109)
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whenever pg is small. In the following, we use a tilde (~) to denote the assumption of small pg.

The expected time to extinction of allele A; in our model is identical to the mean absorption time, because extinction is
the only absorbing state. For arbitrary initial frequency pg, the approximate mean absorption time under the QLE approxi-
mation is obtained from the sojourn-time densities as shown in Eq. (8) of the main text. Assuming small pg, this simplifies
to

= pPo . 1 _
lQLE = /(; t1,que(P; po)dp + f t2,qLE (P; po)dp. (110)
Po

In both cases, the integrals must be computed numerically. As a further approximation for very small pg, one may omit the
first integral on the right-hand side of Eq. (110), as its contribution becomes negligible when py — 0.

The predictions for the sojourn-time densities (STDs) and the mean absorption time derived above are accurate if the
QLE assumption holds (Figures 7, S11 and S12). However, the analytical expressions for the STDs in Egs. (108) and (109)
are not very informative once we plug in explicit formulae for V(p) and ¢(p) (see File S7). In the following, we will gain
more insight by making an additional assumption.

We assume that recombination is much stronger than selection and migration, and expand M (p) from Eq. (5) as a
function of p~! to first order into a Taylor series. This yields

M(p) » Mpso(p) =ap(l-p) —pp+ Mp

and hence Eq. (16) in the main text. The infinitesimal variance V' (p) from Eq. (103) remains unchanged, but the ratio of
M (p) to V(p) simplifies to

M _
o>0(P) K (1—6 “). (111)
V(p) 1-p P
Insertion into Eq. (105), integration and some algebra yields
_2a _2p(p=B+p)
Ypso(p) =2 P(1-p)" 7 . (112)
The sojourn-time density (STD) is then given by
t (pio) : " bpmo(y)d (113a)
1,QLE,p>»0\P; Po :7[ oly)ay, a
AR V)pso(p) Jo "~
t (pio) = " Ymay)d (113b)
,QLE, pip :7f y)ay.
2,Q p>0 0 V(p)L/Jp»o(p) 0 p>0

As before, 7! fow Yps0(p)dp — 1 as z — 0. Arguments analogous to those leading to Egs. (108) and (109) show that, for
a small initial frequency pg, the STD is approximated by

- 2p 2pu(p=B+p) _
t1,QLE,p>>o(p;po) = m = 262pa(1 —P) e 17
P>
- 2po _ 2pu(p=B+p) _
t2,QLE,p>0(P: Do) = m = QP()GQWP 1(1 -p) ’ !
P>

(cf. Eg. 17 of the main text). For details, we refer to File S7. The mean absorption time is again obtained as

_ Po 1
tQLE,p>>o=/(; tl,QLE,p>>O(p§p0)dp+/ t2.QLE, p0(P; Po)dp (114)
Po

using the STD in Eq. (113) for arbitrary initial frequency pg, or as

= Po _ 1 _
LQLE,p»0 = fo t1,QLE, p>0(D; Po )dp + / t2,QLE, p»0(P; Po)dp (115)
Po

using the STD in Eq. (17) for small pg. Figure 5 compares the various approximations to the STD derived under the QLE
assumption for a monomorphic continent (g.). It also includes a comparison to the STD for a one-locus model (OLM),
which is specified by

t1,0um(p;ipo) = 2P (1 - p)* if 0 < p < po,
ta,0rMm (D3 o) = 2poe®p~t (1 - p)2~! ifpo<p<l

48 S| S. Aeschbacher and R. Burger



for small pg (cf. Eq. 15 in the main text).

A comparison of the STD given in Eq. (17) for two loci with large p and small py to the corresponding one-locus STD in
Eq. (15) is interesting. The difference is that x in the one-locus model is replaced by u(p — 3+ p)/p to obtain the formulae
for the two-locus model. Hence, for strong recombination, we may define an effective scaled migration rate

+p-0 B ? B
=u%=u—i+&““(l_7)v
P PP

e

where the approximation holds for ;1 <« min(g, p). The interpretation is that . denotes the scaled migration rate in
a one-locus migration—selection model for which allele A; has the same sojourn-time properties as if it arose in a two-
locus model with scaled migration rate p and linkage to a previously established polymorphism that decays at a scaled
recombination rate p. Transforming back from the diffusion to the natural scale, we obtain the invasion-effective migration
rates m, and m, given in Egs. (19) and (20) of the main text, respectively (see also Figure S18A).

We now turn to the case of a polymorhpic continent (0 < g. < 1). Derivations are analogous to those shown above for
the monomorphic continent, but more cumbersome. We therefore give only a rough summary here and refer to File S7
for details.

The mean change in p per unit of time on the diffusion scale and under the assumption of quasi-linkage equilibrium
(QLE) is
dp (B -p-28q+/Rs)

M(p)=:ﬁ=ap(1—p)—up—2[a(1_2p)_p_\/R_5]p, (116)

where Rs = (3 - p)? + 48uq. > 0.

Equation (116) can be used to numerically compute the sojourn-time densities (STDs) and the mean absorption time
analogous to Egs. (7) and (8) (see File S7). To obtain informative analytical results for the STDs, however, it is necessary
to assume that recombination is strong compared to selection and migration, i.e. p > min(b, m). Then, the infinitesimal
mean is approximated by

M(p) » Myso(p) = ap(l —p) — pup + pf o ;iqe +VFs) p (117)

The infinitesimal variance is the same as for a monomorphic continent, V(p) = p(1-p). Inserting M .o (p) from Eq. (117)
and V (p) into the definition of ¢)(p) in Eqg. (105), we obtain

% ;L(ﬁ—u—Qa—Q[ch+\/ﬂ)
wp»o(p) =€ p(l _p) 4 . (118)

The STDs t1,QLE, p»0(P; Po) and t2.qLE, p»0(P; Po) are found by insertion of 1,0 (p) from Eq. (118) into Eq. (113). Exploit-
ing the fact that 2! ]Oz Yps0(p)dp converges to 1 as = approaches 0, the STDs can be approximated by

N N~ /L(;l,—[3+2[3qc+2p—m) 1
t1,QLE,p»0(P; P0) = 2P (1 - p) ? ) (119a)

~ B IL(H_ﬂ+2ﬁIZc+20—\/R75) B
t2,QLE,p>0(D; Do) = 2p0e*?*p~ (1 - p) 2 ! (119b)

This approximation is valid if the initial frequency pg is small and p is large. The mean absorption time for arbitrary pg is
found according to Eq. (114). For small py, it is given by Eq. (115), with ¢; qLE, p»0(P; po) from Eq. (119).

8 Effective migration rate at a neutral site linked to two migration—selection polymorphisms

We derive the effective migration rate experienced by a neutral locus (C) linked to two loci (A and B) that are maintained
polymorphic at migration—selection balance. Locus C has two alleles C; and Cs, which are assumed to segregate at con-
stant frequencies 1. and 1 — n. on the continent. The frequency of C; on the island at time ¢ is denoted by n(t). Loci A
and B are as above, with alleles A; and B segregating at frequencies p and ¢ on the island, respectively. Without loss of
generality, we assume that A is located to the left of B on the chromosome. We denote by rxy the recombination rate
between loci X and Y, where rxy = ry x. Because we consider a continuous-time model here, we may assume that the
recombination rate increases additively with distance on the chromosome. For simplicity, we restrict the analysis to the
case of a monomorphic continent, i.e. alleles A; and B are fixed on the continent.
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Following Blirger and Akerman (2011), we define the effective migration rate as the asymptotic rate of convergence of
n(t) to the fully-polymorphic three-locus equilibrium. This rate of convergence is defined by the leading eigenvalue Ay
of the Jacobian of the system that describes the evolution of the frequency of C and the linkage disequilibria associated
with locus C. Specifically, we define the effective migration rate as m,. = -y (cf. Kobayashi et al. 2008).

We start by assuming that the neutral locus is located between the two selected ones (configuration A—-C-B). We
denote by Dag = D, Dac and Dcg the linkage disequilibria between the indicated loci, and by Dacg = y1 —pgn — pDcp —
qDac — nDag the three-way linkage disequilibrium, where y; is the frequency of gamete A, B;. The changes due to
selection, migration and recombination in p, ¢, and Dag are given by Eq. (87) of this text, with r replaced by rag. The
frequency of C; evolves according to

n=m(ne.—n)+aDac +bDcg (120)

and the differential equations for the linkage disequilibria associated with locus C are

Dac = a(1 - 2p)Dac +bDacg — mDac — mp(ne — n) — rac Dac, (121a)

Dcg = aDacg + b(1 - 2¢) Dcg — mDcg — mq(n. —n) — rcgDeg, (121b)
Dacg = [a(1 - 2p) +b(1 -2q)] Dacs — 2(aDac +bDcg)Dag + m(pDcg + ¢Dac — Dacg)

+m(pq — Dag)(ne —n) —ragDacs (121c)

(we use z for the differential of = with respect to time, dz/dt). We refer to File S8 for the derivation. Recall that rag =
rac + rcg. This system has an asymptotically stable equilibrium such that the selected loci are at the equilibrium E, (Eq.
3.15 in Blirger and Akerman 2011), and n = n. and Dac = Dcg = Dacg = 0 hold. The Jacobian at this equilibrium has the

block structure P
_(Js O
1=(% 1)
where Jg is the Jacobian approximating convergence of (p,q, Dag) to E+, and J is the Jacobian approximating con-

vergence of (n, Dac, Dcg, Dacg) to (n.,0,0,0). In the limit of weak migration, i.e. m <« (a,b,r), the latter is given
by

-m a b 0
ACB —a-Tact mz(zi;i::f) 0 b
JN = m(b—a+rag) (122)
m O _b —7rce + W a
m(b—a+rag) m(a—b+rag) m(a+b+3rag)
-m a+b+rAB a+b+rAB —a- b - T.AB + a+b+rAB
As shown previously (Blirger and Akerman 2011), to first order in m, the leading eigenvalue of J?VCB is given by
TACT
XIAVCB _ ACTCB (123)

- (a+7‘Ac) (b"'rCB),

and hence the approximation of the effective migration rate in Eq. (22b) in the main text is obtained (see File S8 for details).
We note that Eqgs. (120), (121) and (122) correct errors in Eqgs. (4.25), (4.26) and (4.28) of Burger and Akerman (2011),
respectively. The main results by Burger and Akerman (2011) were not affected, though.

If the neutral locus is located to the right of the two selected ones (configuration A—-B-C), Egs. (120) and (121) remain
the same (recall that rxy = ry x and in this case rac = rag + rsc). In Eq. (87c), r must be replaced by rac. Then, the
Jacobian JJA\,BC approximating convergence of (n, Dac, Dsc = Dcg, Dasc = Dacg) to (n.,0,0,0) in the limit of weak

m(a+b+3rag)

migration is equal to J]A\,CB with the last entry of the last row replaced by —a — b — rac + Y v

. To first order in m,
the leading eigenvalue of JAEC is
b+
)\,IAVBC =m BC ( TAC) , (124)
(b+rsc) (a+b+rac)

and hence Eqg. (22c) in the main text. Details are given in File S8.

Last, the leading eigenvalue for configuration C—A—-B follows directly by symmetry,

+
AAB = rea(a+res) (125)

~(a+rca)(a+b+rcg)’

and hence Eq. (22a) in the main text.
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Recall that the Jacobian matrices JAE and JAEC hold under the assumption of weak migration. In File S8, we derive
analogous matrices under the assumption of weak recombination, i.e. r < (a,b,m). These are too complicated to be
shown here, but importantly, to first order in m, their leading eigenvalues are identical to Egs. (123) and (124), respectively.
By symmetry, this also applies to the configuration C—A-B. Therefore, the approximate effective migration rates in Eq. (22)
are valid also for tight linkage between the neutral locus and the selected loci.

To test the robustness of our results agaist violation of the assumption of weak migration, we numerically computed
exact effective migration rates. In most cases, the deviation is very small; compare dashed to solid curves in Figures 8 and
S19, and dots to curves in Figure S20.
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