
File S1
AddiƟonal Methods

1 Details of the model

We denote the frequencies on the island of haplotypesA1B1,A1B2,A2B1, andA2B2 by x1, x2, x3, and x4, respecƟvely.
The haplotype frequencies are related to the allele frequencies (p, q) and the linkage disequilibrium (D) as follows (e.g.
Bürger 2000). The frequencies of A1 and B1 on the island can be expressed as p = x1 + x2 and q = x1 + x3. Accordingly,
the frequencies of A2 and B2 are 1 − p = x3 + x4 and 1 − q = x2 + x4. Moreover, x1 = pq + D, x2 = p(1 − q) − D,
x3 = (1− p)q −D, and x4 = (1− p)(1− q)+D, and the linkage disequilibrium can be expressed in terms of the haplotype
frequencies asD = x1x4 − x2x3. Thereby, we must recall the constraints xi ≥ 0 (i = 1, . . . ,4) and∑4

i=1 xi = 1, which are
equivalent to 0 ≤ p, q ≤ 1 and

−min{pq, (1 − p)(1 − q)} ≤D ≤min{p(1 − q), (1 − p)q} . (26)

The matrix of relaƟve fitnesses on the island is

W =
⎛
⎜
⎝

B1B1 B1B2 B2B2

A1A1 w11 w12 w22

A1A2 w13 w14 = w23 w24

A2A2 w33 w34 w44

⎞
⎟
⎠
, (27)

wherewij is the relaƟve fitness of the genotype composed of haplotypes i and j (i, j ∈ {1,2,3,4}). For addiƟve fitnesses,
we use Eq. (1) in the main text. The marginal fitness of haplotype i on the island is defined as wi q = ∑4

j=1wijxj and the
mean fitness of the island populaƟon as ¯̄w = ∑i,j wijxixj = ∑4

i=1wi qxi.

Straighƞorward extension of two-locus models without migraƟon (cf. LewonƟn and Kojima 1960 or Bürger 2000, chap.
2) yields the recursion equaƟons for the haplotype frequencies,

x′1 = (1 −m)(x1w1 q− rw14D)/ ¯̄w, (28a)

x′2 = (1 −m)(x2w2 q+ rw14D)/ ¯̄w, (28b)

x′3 = (1 −m)(x3w3 q+ rw14D)/ ¯̄w +mqc, (28c)

x′4 = (1 −m)(x4w4 q− rw14D)/ ¯̄w +m(1 − qc), (28d)

where r is the recombinaƟon rate,m the migraƟon rate, and qc the frequency ofB1 on the conƟnent. For a monomorphic
conƟnent, qc = 0. For this case, a conƟnuous-Ɵme version of Eq. (28) has been fully described (Bürger and Akerman 2011).

2 ApproximaƟng the dynamics for rare A1

Because A1 arises as a novel mutaƟon in our scenario (see main text), the haplotype frequencies x1 and x2 are iniƟally
small. We therefore ignore terms of order xixj (i, j ∈ {1,2}) and higher in Eq. (28). Moreover, we assume that, upon
invasion of A1, the frequency of B1 stays constant at the one-locus migraƟon–selecƟon equilibrium (q = q̂B). In principle,
q approaches an internal equilibrium q̂+, but the change is small compared to the change in p (Bürger and Akerman 2011).
We then have x3 = q − x1 ≈ q̂B and x4 = 1 − q − x2 ≈ 1 − q̂B for x1 and x2 small. As a consequence, the dynamics in Eq.
(28) reduces to a system with only two equaƟons in x1 and x2,

x′1 = (1 −m) [w1x1 + rw14x2q̂B − rw14x1(1 − q̂B)] /w̄, (29a)

x′2 = (1 −m) [w2x2 − rw14x2q̂B + rw14x1(1 − q̂B)] /w̄, (29b)

where w1 and w2 are the marginal fitnesses of the A1B1 and A1B2 haplotypes, respecƟvely. These are given by

w1 = w13q̂B +w14(1 − q̂B), (30a)

w2 = w24(1 − q̂B) +w14q̂B. (30b)
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Moreover, w̄ is the mean fitness of the resident populaƟon on the island, which is assumed to be monomorphic at locus A:

w̄ = q̂2Bw33 + 2q̂B(1 − q̂B)w34 + (1 − q̂B)2w44. (31)

This holds approximately ifA1 is rare on the island. EquaƟon (29) can bewriƩenmore compactly inmatrix form as x′ = xL,
where x = (x1, x2) is a row vector, and

L = (λ11 λ12

λ21 λ22
) , (32)

with

λ11 = (1 −m) [w1 − r(1 − q̂B)w14] /w̄, (33a)

λ12 = (1 −m)r(1 − q̂B)w14/w̄, (33b)

λ21 = (1 −m)rq̂Bw14/w̄, (33c)

λ22 = (1 −m) [w2 − rq̂Bw14] /w̄. (33d)

Seƫngm = 0, we recover the dynamics derived by Ewens (1967) for a panmicƟc populaƟon and a focal mutaƟon occurring
in linkage to a background locus at which overdominant selecƟon maintainsB1 at frequency q̂B. We note that Eqs. (29) to
(33) are valid for both a monomorphic and a polymorphic conƟnent. The difference comes in only via q̂B, which is derived
in the following secƟon. Matrix L will be encountered again as the mean matrix of the two-type branching process used
to study the invasion probability of A1 (see also the following secƟon).

Note the difference between wi and wi q: the former refers to the resident populaƟon under the assumpƟon of the
branching process (this secƟon), whereas the laƩer applies to the island populaƟon in the general two-locus model (previ-
ous secƟon). The same disƟncƟon holds for w̄ and ¯̄w.

3 Marginal one-locus migraƟon–selecƟon model
We denote the marginal one-locus migraƟon–selecƟon equilibrium by EB = (p = 0, q = q̂B,D = 0). This equilibrium is
assumed to be realised on the island before occurrence of theA1 mutaƟon. The equilibrium frequency q̂B of alleleB1 plays
an important role. It determines the division of the resident island populaƟon into two geneƟc backgrounds and provides
the weights for compuƟng the average invasion probability of A1 given the haplotype-specific invasion probabiliƟes (see
secƟons 2 and 4). Analysis of the one-locus dynamics (File S2) shows that q̂B is obtained by solving

q′B = (1 −m)
w̃1

˜̄w
qB +mqc = qB (34)

for qB, where w̃1 = w33qB +w34(1 − qB) is the marginal relaƟve fitness of theB1 allele and

˜̄w = q2Bw33 + 2qB(1 − qB)w34 + (1 − qB)2w44 (35)

the mean fitness in the island populaƟon. From Eq. (34), one obtains

q̂B =
w34(1 −m) − ˜̄w +

√
4(1 −m)mqc(w34 −w33) ˜̄w + [ ˜̄w − (1 −m)]

2

2(1 −m)(w34 −w33)
, (36)

which simplifies to q̂B = [w34(1 −m) − ˜̄w] / [(1 −m)(w34 −w33)] for a monomorphic conƟnent (qc = 0). The equilibrium
EB is asymptoƟcally stable if the migraƟon rate is smaller than a criƟcal value,

m < w34 − ˜̄w
w34

. (37)

We note that ˜̄w is a (non-linear) funcƟon of qB, and hence of m. Therefore, Eq. (36) is only an implicit soluƟon and
condiƟon (37) not immediately informaƟve. However, for addiƟve fitnesses (see Eq. 1 of themain text) and amonomorphic
conƟnent (qc = 0) wefind the explicit soluƟon given in Eq. (2). This is an admissible polymorphic equilibrium (i.e. 0 < q̂B < 1),
if the migraƟon rate is below a criƟcal value,

m < b

1 − a
=∶mB. (38)

34 SI S. Aeschbacher and R. Bürger



Because a < 1 was assumed, mB is always posiƟve. Straighƞorward calculaƟons show that Eq. (38) is also the condiƟon
for asymptoƟc stability of EB within its marginal one-locus system. That is, under the marginal one-locus dynamics, EB is
stable whenever it is admissible (see File S2, or Nagylaki 1992, chap. 6.1).

When the mutaƟonA1 occurs, there is a transiƟon from one- to two-locus dynamics. It is therefore crucial to study the
stability of EB also under the full two-locus dynamics. We find that EB is not hyperbolic ifm = m∗ or ifm = mB > m∗,
with m∗ given in Eq. (10). In the first case, EB changes stability from unstable to asymptoƟcally stable as m increases
abovem∗; in the second case, EB leaves the state space asm increases beyondmB. We do not have a complete stability
and bifurcaƟon analysis of EB. However, some numerical and analyƟcal results suggest that the qualitaƟve behaviour is
the same as in the conƟnuous-Ɵme model (Bürger and Akerman 2011). Then, the following holds. If EB exists and is
asymptoƟcally stable under the one-locus dynamics, (i.e. m < min(b,mB)), but unstable under the two-locus dynamics
(i.e. m < m∗), then a fully-polymorphic internal equilibrium E+ (0 < p̂+, q̂+ < 1 and D̂+ > 0) exists and is asymptoƟcally
stable. Therefore, ifm <m∗, a novel mutaƟon A1 can invade via EB. Presumably, the internal equilibrium E+ is reached.
Comprehensive numerical computaƟons under the discrete-Ɵme dynamics corroborate this conjecture (see File S2 and
Figure S1).

With a polymorphic conƟnent (0 < qc < 1) and addiƟve fitnesses, the frequency of B1 at the marginal one-locus
migraƟon–selecƟon polymorphism (EB) is

q̂B =
b − (1 − a)m + 2bmqc +

√
R

2b(1 +m)
, (39)

where
R = 4b(1 − a − b)m(1 +m)qc + [b − (1 − a)m + 2bmqc]2 ≥ 0. (40)

In contrast to the case of a monomorphic conƟnent, where EB exists only ifm <mB, with a polymorphic conƟnent, both
alleles B1 and B2 are introduced by migraƟon and hence EB always exists and is always asymptoƟcally stable under the
one-locus dynamics if 0 < qc < 1 and 0 <m < 1.

A comprehensive analysis of the stability of EB involves solving a complicated cubic equaƟon, which results in expres-
sions that are not informaƟve. We could not accomplish a complete analyƟcal treatment, but a combinaƟon of analyƟcal,
numerical and graphical approaches suggests the following. Upon occurrence ofA1 at locus A,EB may either become un-
stable, in which caseA1 can invade and a fully-polymorphic internal equilibriumE+ is reached, orEB may stay asymptoƟ-
cally stable, in which caseA1 cannot invade. The transiƟon between these two scenarios occurs at a criƟcal recombinaƟon
rate

r∗ = {
1
2

ifm ≤mr∗ ,
r̃∗(m) otherwise,

(41)

where r̃∗(m) is a complicated funcƟon ofm that we do not present here (but see Eq. 3 in File S2, and Eq. 92 in secƟon 6),
andmr∗ is the migraƟon rate at which r̃∗(m) has a pole. Then, for a given combinaƟon of values for a, b, m and qc, A1

can invade if and only if r < r∗ (Figure S2). A similar argument holds for a criƟcal conƟnental frequency q∗c ofB1, such that
for a given combinaƟon of values for a, b,m and r, A1 can invade if and only if qc < q∗c (see File S2 for details). We were
not able to find an explicit expression for a criƟcal migraƟon ratem∗ with an interpretaƟon analogous to that of r∗ or q∗c .
However,m∗ is implicitly defined by r∗ or q∗c and can be computed numerically.

As a final remark, we note that for weak evoluƟonary forces, Eqs. (2), (38) and (10) can be approximated by the corre-
sponding equaƟons derived by Bürger and Akerman (2011) for the conƟnuous-Ɵmemodel with a monomorphic conƟnent.
Specifically, scaling a, b,m and r by ϵ and expanding Eqs. (2), (38) and (10) into a Taylor series around ϵ = 0 yields

q̂B ≈ 1 − m
b
, (42)

mB ≈ b, (43)

and

m∗ ≈ a(1 + b − a
r
) (44)

to first order of ϵ and aŌer rescaling. EquaƟons (42) and (44) correspond to Eqs. (3.9) and (3.11) in Bürger and Akerman
(2011).
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4 Branching-process approximaƟon to the invasion probability

For a proper stochasƟc treatment, the evoluƟon of haplotype frequencies has to be modelled by a Markov process. In
the context of invasion of novel mutaƟons, parƟcularly useful approximaƟons can be obtained using branching processes
(Fisher 1922) and diffusion processes (Kimura 1962). Both approaches deal with the probabilisƟc effect due to the iniƟally
small absolute number of copies of the mutant allele. The effect of finite populaƟon size is only accounted for by the
diffusion approximaƟon, however. In the first part of the main paper, we are concerned only with iniƟal rareness of the
mutaƟon.

We employ a two-type branching process (Harris 1963; Ewens 1968, 1967) to study the dynamics of the two haplotypes
of interest, A1B1 (type 1) and A1B2 (type 2) aŌer occurrence of mutaƟon A1 (see secƟon 2 above). Let λij be the mean
number of j-type offspring produced by an i-type parent each generaƟon, and xi the proporƟon of type i in the island
populaƟon. Then the expected proporƟon of types A1B1 and A1B2 in the next generaƟon is

E [x′1] = λ11x1 + λ21x2, (45a)

E [x′2] = λ12x1 + λ22x2, (45b)

or, in matrix form
E [x′] = xL, (46)

where x = (x1, x2), and L = (λij), i, j ∈ {1,2}, is called the mean matrix (cf. Eq. 32 in secƟon 2). The leading eigenvalue
ν of L determines whether the branching process is supercriƟcal (ν > 1) andA1 has a strictly posiƟve invasion probability,
or subcriƟcal (ν < 1), in which case A1 goes exƟnct with probability 1. Expressions for the λij were given in Eq. (33).

The leading eigenvalue of L is

ν = 1 −m
2w̄

[w1 +w2 − rw14 +
√
(w1 −w2)2 + 2rw14(2q̂B − 1)(w1 −w2) + r2w2

14] , (47)

wherew1 andw2 are themarginal fitnesses of type 1 and type 2 defined in Eq. (30), and w̄ is themean fitness of the resident
populaƟon on the island as defined in Eq. (31) (secƟon 2). AŌer some algebra (see File S3), the condiƟon for invasion of
A1, ν > 1, is found to be equivalent to Eq. (9) in the main text. EquaƟons (47) and (9) hold for both a monomorphic and a
polymorphic conƟnent.

Let ζij be the random number of j-type offspring produced by a single i-type parent. We assume that ζi1 and ζi2 are
independent and Poisson-distributed with mean λi1 and λi2, respecƟvely (i ∈ {1,2}). Then, the probability-generaƟng
funcƟon (pgf) of ζij is

fij(sj) = E[sζij

j ] =
∞
∑
k=0

pks
k
j = e−λij(1−sj), i, j ∈ {1,2}, (48)

where pk = P[ζij = k] is the probability that an i-type parent has k offspring of type j. The first two equaliƟes follow
from the definiƟon of the pgf (e.g. Harris 1963), and the third from the properƟes of the Poisson distribuƟon. Because of
independent offspring distribuƟons for each type, the pgf for the number of offspring (of any type) produced by an i-type
parent is given by

fi(s1, s2) =
2

∏
j=1

fij(sj). (49)

InserƟng Eq. (48) into Eq. (49), we obtain

f1(s1, s2) = e−λ11(1−s1) ⋅ e−λ12(1−s2), (50a)

f2(s1, s2) = e−λ21(1−s1) ⋅ e−λ22(1−s2). (50b)

We useQi for the exƟncƟon probability of alleleA1 condiƟonal on iniƟal occurrence on backgroundBi, and πi = 1−Qi

for the respecƟve probability of invasion. The exƟncƟon probabiliƟesQi are found as the smallest posiƟve soluƟon to Eq.
(3) in the main text. The average invasion probability π̄ is found as the weighted average of π1 and π2 (see Eq. 4 in the
main text). As the problem stated in Eq. (3) amounts to solving a system of transcendental equaƟons, an explicit soluƟon
cannot be found in general. Numerical soluƟons can be obtained, however (see File S3).
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We proceed by assuming addiƟve fitnesses as defined in Eq. (1) of the main text. The entries λij of the mean matrix L
in Eq. (32) are then given by

λ11 = E + Fr, (51a)

λ12 = −Fr, (51b)

λ21 =Hr, (51c)

λ22 = J −Hr, (51d)

where

E = 1 + b + am
1 − a + b

, (52a)

F = −m
b
, (52b)

H = b − (1 − a)m
b(1 − a + b)

, (52c)

J = 1 +m(a − b)
1 − a + b

. (52d)

Assuming weak evoluƟonary forces, i.e. replacing a, b,m and r by αϵ, βϵ, µϵ and ρϵ, respecƟvely, and expanding into
a Taylor series around ϵ = 0, the terms in Eq. (51) are approximated to first order in ϵ by

λ11 ≈ 1 + a − m
b
r, λ12 ≈

m

b
r,

λ21 ≈ (1 −
m

b
) r, λ22 ≈ 1 + a − b − (1 − m

b
) r,

aŌer resubsƟtuƟng α→ a/ϵ, β → b/ϵ, µ→m/ϵ and ρ→ r/ϵ.
With addiƟve fitnesses and a monomorphic conƟnent, the dominant eigenvalue of L is

ν = 2 + b − r +m(2a − b − r) +
√
R1

2(1 − a + b)
, (53)

where
R1 = (1 +m) {b2(1 +m) + 2b(1 −m)r + r [r −m(4 − 4a − r)]} . (54)

The branching process is supercriƟcal (ν > 1) if m < m∗ or, alternaƟvely, if r < r∗, with m∗ and r∗ the criƟcal migraƟon
and recombinaƟon rates defined in Eqs. (10) and (11) of the main text, respecƟvely (see File S3 for details). Assuming weak
evoluƟonary forces, ν simplifies to

ν ≈ 1 + 1
2
(2a − b − r +

√
R2) ,

where
R2 = b2 + 2br − 4mr + r2. (55)

Then,m∗ is approximated by Eq. (44) and

r∗ ≈ r̃∗ = {
∞ ifm ≤ a,
a(b−a)
m−a otherwise

(56)

(see File S3). Note that the criƟcal migraƟon and recombinaƟon rates for invasion of A1 obtained under the determinisƟc
model (secƟon 3) and the corresponding two-type branching process are idenƟcal. In File S4 we show that this agreement
is generically expected.

To obtain the exƟncƟon probabiliƟes ofA1 given iniƟal occurrence on backgroundB1 orB2, we plug Eq. (51) into (50)
and solve

f1 (s1, s2) = e(E+Fr)s1−Frs2−E = s1 (57a)

f2 (s1, s2) = eHrs1+(J−Hr)s2−J = s2 (57b)
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for s1 and s2. The smallest soluƟons between 0 and 1 are the exƟncƟon probabiliƟesQ1 = 1 − π1 andQ2 = 1 − π2 (cf. Eq.
3 in the main text). An explicit soluƟon is not available and we need to use numerical methods to obtain exact results (File
S3).

We now turn to the case of a polymorphic conƟnent (0 < qc < 1), sƟll assuming addiƟve fitnesses. Then,

λ11 = Ẽ + F̃ r, (58a)

λ12 = G̃r, (58b)

λ21 = H̃r, (58c)

λ22 = J̃ + Ĩr, (58d)

with

Ẽ =
(1 −m) (2 + b +m + am + 2bmqc +

√
R)

2 [1 − a − bm(1 − 2qc) +
√
R]

,

F̃ = −
(1 −m) [b + (1 − a)m + 2bm(1 − qc) −

√
R]

2b [1 − a − bm(1 − 2qc) +
√
R]

,

G̃ = b +m [1 − a − 2b(1 − qc)] −
√
R

2b(1 − a − b)
,

H̃ = b − (1 − a)m − 2bmqc +
√
R

2b(1 − a + b)
,

Ĩ = −
(1 −m) [b − (1 − a)m + 2bmqc +

√
R]

2b [1 − a − bm(1 − 2qc) +
√
R]

,

J̃ =
(1 −m) [2 +m + am − b(1 + 2m(1 − qc)) +

√
R]

2 [1 − a − bm(1 − 2qc) +
√
R]

.

Here, R is as defined in Eq. (40). Assuming weak evoluƟonary forces, i.e. scaling a, b, m and r by ϵ and expanding into a
Taylor series around ϵ = 0, Eq. (58) is approximated to first order in ϵ by

λ11 ≈
1
2
(2 + 2a + b −m −

√
R3) −

b +m −
√
R3

2b
r, λ12 ≈

b +m −
√
R3

2b
r,

λ21 ≈
b −m +

√
R3

2b
r, λ22 ≈

1
2
(2 + 2a − b −m −

√
R3) −

b −m +
√
R3

2b
r,

where
R3 = (b −m)2 + 4bmqc > 0. (59)

Note that the conƟnental frequency qc of B1 enters these equaƟons only via 4bmqc in the radicand R3. For a poly-
morphic conƟnent, the eigenvalues of L are complicated expressions, which we do not show here (but see File S3). The
leading eigenvalue can be idenƟfied, though. For weak evoluƟonary forces, and to first order in ϵ, it is approximately

ν ≈ 1 + 1
2
[2a −m − r −

√
R3 +

√
b2 − r (2m − r − 2

√
R3)] (60)

(see File S5). Finally, the system of transcendental equaƟons to be solved in order to obtain the exƟncƟon probabiliƟes of
A1 becomes

f1 (s1, s2) = e−(Ẽ+F̃ r)(1−s1)−G̃r(1−s2) = s1 (61a)

f2 (s1, s2) = e−H̃r(1−s1)−(J̃+Ĩr)(1−s2) = s2 (61b)

(cf. Eq. 3 of main text).
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To obtain analyƟcal approximaƟons to the invasion probability ofA1, we followHaccou (2005, pp. 127–128) and assume
that the branching process is slightly supercriƟcal (see also Eshel 1984; Hoppe 1992; Athreya 1992, 1993). This means that
the leading eigenvalue of the mean matrix L is of the form

ν = ν(ξ) = 1 + ξ, (62)

where ξ is small and posiƟve. Tomake explicit the dependence on ξ, we writeQi = Qi(ξ) and πi = πi(ξ) for the exƟncƟon
and invasion probabiliƟes, respecƟvely (i ∈ 1,2). Using the Ansatz in Eq. (62), Haccou et al. state in their Theorem 5.6 that,
as ξ → 0, qi(ξ) converges to 1 and

πi(ξ) = 1 − qi(ξ) =
2 [ν(ξ) − 1]

B(ξ)
vi(ξ) + o(ξ). (63)

Here, vk = i is the ith entry of the right eigenvector v = (v1, v2)⊺ pertaining to the leading eigenvalue ν of themeanmatrix
L. The matrix B(ξ) is defined as

B(ξ) =
2

∑
i=1
ui

2

∑
j=1

vjλij + ν(ξ) [1 − ν(ξ)]
2

∑
j=1

ujv
2
j , (64)

where ui is the ith entry of the normalised leŌ eigenvector u = (u1, u2) associated with the leading eigenvalue ν of L. By
normalised we mean that∑2

k uk = 1. For Eq. (63) to hold, u and v must in addiƟon fulfill∑2
k=1 ukvk = 1.

For addiƟve fitnesses (Eq. 1) and a monomorphic conƟnent (qc = 0), we combine Eqs. (53) and (62) to idenƟfy ξ as

ξ = 2a(1 +m) − b − r −m(b + r) +
√
R1

2(1 − a + b)
, (65)

where R1 is defined in Eq. (54). Therefore, the assumpƟon of a slightly supercriƟcal branching process will hold for all
parameter combinaƟons that result in a small posiƟve ξ in Eq. (65). For weak evoluƟonary forces, Eq. (65) is approximated
by the simpler expression below Eq. (12) in the maint text. AŌer some algebra usingMathemaƟca (File S5), we obtain the
appropriately normalised leŌ and right eigenvectors of L as

u =
⎛
⎜
⎝

b(1+m)−(1+m)r+
√

R1
2b(1+m)

2(1−a+b)mr

b[b+r+m(b+r)+
√

R1]

⎞
⎟
⎠

⊺

(66)

and

v =
⎛
⎜
⎝

b2(1+m)−2(1−a)mr+b(r−mr+
√

R1)
(b+r)2+m[(b−r)2−4(1−a)r]+(b−r)

√
R1

2[b−(1−a)m]r
(b+r)2+m[(b−r)2−4(1−a)r]+(b−r)

√
R1

⎞
⎟
⎠
, (67)

respecƟvely. Combining Eqs. (51), (53), (66), (67), and (64), we find analyƟcal expressions for the condiƟonal invasion
probabiliƟes π1(ξ) and π2(ξ) under a slightly supercriƟcal branching process. The weighted average invasion probability
π̄(ξ) is obtained according to Eq. (4) with q̂B given in Eq. (2). The resulƟng expressions are long and not very informaƟve
(see File S5 for details and Figure 2 for a graphical comparison to numerical soluƟons). However, if we assume weak
evoluƟonary forces, we obtain the analyƟcal approximaƟons π̃1(ξ) and π̃2(ξ) given in Eq. (12) of the main text. The
corresponding average invasion probability ¯̃π(ξ) is obtained by inserƟon of Eqs. (12) and (2) into Eq. (4) (see main text).

For a polymorphic conƟnent (0 < qc < 1), the procedure is analogous to the one outlined above. Intermediate and final
expressions are more complicated as those obtained for the monomorphic conƟnent, though. We therefore refer to File
S5 for details and to Figures S5 and S6 for a graphical comparison to numerical soluƟons. The approximaƟons π̃1(ξ), π̃1(ξ)
and ¯̃π(ξ) given in Eqs. (7)–(9) in File S5 for weak evoluƟonary forces and 0 < qc < 1 are accurate if ξ is small, where

ξ ≈ 1
2
[m + r

√
R3 −

√
b2 − r (2m − r − 2

√
R3)]

andR3 is defined in Eq. (59). Then, the branching process is slightly supercriƟcal (cf. Eq. 62). In pracƟce, the approximaƟons
derived for a polymorphic conƟnent are useful for efficient ploƫng, but otherwise not very intuiƟve. Leƫng qc → 0 and
assumingm <mB (cf. Eq. 38 in secƟon 3), we recover the respecƟve analyƟcal expressions for the case of a monomorphic
conƟnent.
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5 CondiƟon for a non-zero opƟmal recombinaƟon rate
ObservaƟon of the mean invasion probability π̄ of allele A1 as a funcƟon of the recombinaƟon rate r suggests that π̄(r)
may have a maximum at a non-zero recombinaƟon rate (ropt > 0) in some cases, whereas it is maximised at ropt = 0 in
other cases (Figures 1A and 1B). To disƟnguish between these two regimes, we note that ropt > 0 holds whenever the
derivaƟve of π̄(r) with respect to r, evaluated at r = 0, is posiƟve. This is because π̄(r) will always decay for sufficiently
large r. We denote the derivaƟve of interest by

π̄′(0) ∶= d

dr
[q̂Bπ1(r) + (1 − q̂B)π2(r)] ∣

r=0
= q̂B

dπ1(r)
dr

∣
r=0
+ (1 − q̂B)

dπ2(r)
dr

∣
r=0
, (68)

where π1 and π2 are the invasion probabiliƟes of A1 condiƟonal on iniƟal occurrence on the B1 and B2 background,
respecƟvely, and q̂B is the equilibrium frequency ofB1 before invasion ofA1. In the following, we obtain π̄′(0) via implicit
differenƟaƟon. We will first derive a general, implicit condiƟon for π̄′(0) > 0, and then proceed by assuming addiƟve
fitnesses to obtain explicit condiƟons. Wewill do so first for amonomorphic (qc = 0) and then for a polymorphic (0 < qc < 1)
conƟnent.

We start from Eq. (3) of the main text with probability generaƟng funcƟons fi(s1, s2) (i ∈ 1,2) as defined in Eq. (50) in
secƟon 4. Recall that the exƟncƟon probabiliƟes Qi = 1 − πi are the smallest posiƟve soluƟons to Eq. (3). Assuming that
these soluƟons have been idenƟfied, we know that the invasion probabiliƟes πi saƟsfy

1 − π1 = e−λ11π1 ⋅ e−λ12π2

1 − π2 = e−λ21π1 ⋅ e−λ22π2 .

Taking the logarithm on both sides and making the dependence of both πi and λij on r explicit, we have

ln [1 − π1(r)] = −λ11(r)π1(r) − λ12(r)π2(r) (69a)

ln [1 − π2(r)] = −λ21(r)π1(r) − λ22(r)π2(r). (69b)

Applying the formulae for the λij(r) given in Eq. (33), Eq. (69) becomes

ln [1 − π1(r)] = −
1 −m
w̄
{[w1 − (1 − q̂B)rw14]π1(r) + (1 − q̂B)rw14π2(r)} (70a)

ln [1 − π2(r)] = −
1 −m
w̄
{q̂Brw14π1(r) + (w2 − q̂Brw14)π2(r)}. (70b)

DifferenƟaƟng both sides with respect to r, and seƫng r = 0 yields

π′1(0)
1 − π○1

= (1 −m)w1π
′
1(0) − (1 − q̂B)w14 (π○1 − π○2)

w̄
(71a)

π′2(0)
1 − π○2

= (1 −m)w2π
′
2(0) + q̂Bw14 (π○1 − π○2)

w̄
, (71b)

where π′i(0) =
dπi(r)

dr
∣
r=0

for i ∈ {1,2}. Moreover, π○1 = π1(0) and π○2 = π2(0) are the condiƟonal invasion probabiliƟes of
A1 if it iniƟally occurs on backgroundB1 andB2, respecƟvely, and if there is no recombinaƟon (r = 0). Solving the system
in Eq. (71) for π′1(0) and π′2(0), and plugging the soluƟons into Eq. (68), we find aŌer some algebra

π̄′(0) = (1 −m)q̂B(1 − q̂B)(π○2 − π○1)
w14

w̄
( 1 − π○1

1 − (1 −m)(1 − π○1)w1/w̄
− 1 − π○2

1 − (1 −m)(1 − π○2)w2/w̄
) . (72)

Seƫng r = 0 in Eq. (70) and rearranging, we obtain

(1 −m)wi

w̄
= − ln (1 − π○i )/π○i i ∈ {1,2}. (73)

InserƟon of Eq. (73) into Eq. (72) yields

π̄′(0) = (1 −m)q̂B(1 − q̂B)(π○2 − π○1)
w14

w̄
( 1 − π○1

1 + ln (1 − π○1)(1 − π○1)/π○1
− 1 − π○2

1 + ln (1 − π○2)(1 − π○2)/π○2
) . (74)
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At this point, a closer inspecƟon of Eq. (73) is worthwhile. Straighƞorward rearrangement leads to

1 − π○i = exp [−(1 −m)wi

w̄
π○i ] i ∈ {1,2}, (75)

which has a soluƟon π○i in (0,1] if and only if (1 −m)wi/w̄ > 0. Otherwise, the only soluƟon is π○i = 0. In our seƫng,
we always assumed that when A1 occurs on the deleterious background (B2), it will form a subopƟmal haplotype (A1B2

less fit on the island than A1B1) and go exƟnct in the absence recombinaƟon. This assumpƟon translates into w2 < w̄.
As 0 < m < 1, we immediately note that for i = 2, the only possible soluƟon of Eq. (75) is π○2 = 0. Therefore, whenever
w1 > w̄/(1 −m) holds, the derivaƟve of interest in Eq. (72) simplifies to

π̄′(0) = (1 −m)q̂B(1 − q̂B)π○1
w14

w̄
( w̄

w̄ − (1 −m)w2
− 1 − π○1

1 − (1 −m)(1 − π○1)w1/w̄
) . (76)

AŌer some algebra (File S6), we find that π̄′(0) > 0, and hence ropt > 0, is equivalent to Eq. (13) in the main text. Again,
if we setm = 0 in the derivaƟon above, we obtain expressions previously derived by Ewens for a panmicƟc populaƟon in
which the background locus is maintained polymorphic by heterozygote superiority (Ewens 1967).

To obtain more explicit condiƟons, we assume addiƟve fitnesses (Eq. 1). We start directly from Eq. (57), replacing si

by the smallest soluƟon Qi between 0 and 1. Taking the logarithm on both sides and making the dependence of Qi on r
explicit, we find

lnQ1(r) = (E + Fr)Q1(r) − FrQ2(r) −E (77a)

lnQ2(r) =HrQ1(r) + (J −Hr)Q2(r) − J, (77b)

where E, F , J andH are independent of r and as defined in Eq. (52). DifferenƟaƟng Eq. (77) on both sides, seƫng r = 0
and rearranging, we obtain

Q′1(0)
Q○1

= F (Q○1 −Q○2) +EQ′1(0)

Q′2(0)
Q○2

=H (Q○1 −Q○2) + JQ′2(0),

withQ′i(0) =
dQ1(r)

dr
∣
r=0. Here, we usedQ

○
i = Qi(0) for the exƟncƟon probability ofA1 condidƟonal on iniƟal occurrence

on backgroundBi (i ∈ {1,2}). Solving forQ′1(0) andQ′2(0) yields

Q′1(0) =
FQ○1(Q○1 −Q○2)

1 −EQ○1
(78a)

Q′2(0) =
HQ○2(Q○1 −Q○2)

1 − JQ○2
. (78b)

To obtain an explicit soluƟon, we aim at approximaƟng theQ○i in the following. Going back to Eq. (57) again, but seƫng
r = 0 directly, we find

Q○i = e−Zi(1−Q○i) i ∈ {1,2}, (79)

where

Z1 ∶= E =
1 + b + am
1 − a + b

, (80a)

Z2 ∶= J =
1 +m(a − b)

1 − a + b
. (80b)

Importantly, the equaƟons forQ○1 andQ
○
2 in (79) are now decoupled. Moreover, we note that Eq. (79) has a soluƟonQ○i in

[0,1) if and only if Zi > 1; if Zi ≤ 1, the soluƟon is Q○i = 1. In other words, in the case of complete linkage (r = 0), type i
has a non-zero invasion probability if and only if Zi > 1 (recall that π○i = 1 −Q○i ). Closer inspecƟon of Eq. (80) shows that,
given our assumpƟons of a < b and 0 < m < 1, Z1 > 1 and Z2 < 1 hold always. Hence, we have π○2 = 1 −Q○2 = 0, and we
are leŌ with finding an approximate soluƟon of Eq. (79) for i = 1. For this purpose, we focus on the case where invasion is
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just possible, i.e. π○1 is close to 0 and hence Q○1 close to 1. This is equivalent to Z1 being close to, but larger than, 1. We
therefore use the Ansatz

Z1 = 1 + ϵ (81)

with ϵ > 0 small. We then have Q○1 = e−(1+ϵ)(1−Q
○
1). NoƟng that Q○1(ϵ) must be close to 1 for ϵ small, we expand the

right-hand side into a Taylor series aroundQ○1 = 1, which results in

Q○1 = 1 − (1 −Q○1)(1 + ϵ) +
1
2
(1 −Q○1)2(1 + ϵ)2 +O(Q○1)3 (82)

NeglecƟng terms beyond O(Q○1)2 and solving for Q○1, we obtain Q○1 = (1 + ϵ2)/(1 + ϵ)2 (excluding the trivial soluƟon
Q○1 = 1). To first order in ϵ, this is approximated by

Q○1 = 1 − π○1 ≈ 1 − 2ϵ. (83)

We idenƟfy ϵ by inserƟng Eq. (80a) into Eq. (81) and solving for ϵ. To first order in a, this yields ϵ ≈ a(1 +m)/(1 + b)
and hence, from Eq. (83), we find

Q○1 = 1 − 2
a(1 +m)
(1 + b)

+O(a)2. (84)

Note that if we set m = 0 (no migraƟon) and b = 0 (no background selecƟon), we recover Haldane's (1927) well-known
approximaƟon π ≈ 2a.

Comparison of Eqs. (83) and (84) suggests that the invasion probability π○1 increases with the migraƟon rate m. This
may seem counterintuiƟve. However, with complete linkage (r = 0), the cases ofA1 occurring on backgroundB1 orB2 can
be considered separately. IfA1 occurs on backgroundB1, it forms haplotypeA1B1. From then on it competes against the
resident populaƟon consisƟng of haplotypesA2B1 andA2B2 at frequencies q̂B and 1− q̂B, respecƟvely. Because, iniƟally,
A1B1 types do not interfere nor contribute to the resident populaƟon, what maƩers is the raƟo of the marginal fitnessw1

of A1B1 to the mean fitness w̄ of the resident populaƟon. This follows directly from Eq. (73). EquaƟons (30a) and (31) in
secƟon 2 show that both w1 and w̄ depend on q̂B. For addiƟve fitnesses, q̂B is given by Eq. (2) in the main text; it depends
onm. Therefore, to understand the apparently paradoxical increase of π○1 onm, we must compare the dependence onm
ofw1 and w̄. We havew1 = (1+b+am)/(1+m) and w̄ = (1−m)(1−a+b)/(1+m). Both decrease withm, but w̄ does so
faster. The raƟow1/w̄ = (1+b+am)/ [(1 − a + b)(1 −m)] increases quickly withm (File S6). This explains why π○1 increaes
withm. It also explains why π1 increases with smallm in Figure S3D for very weak recombinaƟon. If recombinaƟon is too
strong, the effect vanishes (Figures S3E and S3F).

Finally, plugging Eq. (52) from secƟon 4 and Eq. (84) into Eq. (78), we obtain the explicit approximaƟons

Q′1(0) ≈
2m(1 − a + b) [1 + b − 2a(1 +m)]

b(1 + b)(1 + b + 2am)
, (85a)

Q′2(0) ≈
2a [b − (1 − a)m]
b(1 + b)(a − b)

, (85b)

valid for a small relaƟve to m and b. NoƟng that π̄′(0) = − [q̂BQ′1(0) + (1 − q̂B)Q′2(0)] and using q̂B from Eq. (2) of the
main text for addiƟve fitnesses and a monomorphic conƟnent, we find the approximate derivaƟve of the mean invasion
probability π̄ at r = 0 as

π̄′(0) ≈
2m(1 − a + b) [b − (1 − a)m] {2a2 + b + b2 − 2a [1 + b(2 +m)]}

b2(1 + b)(a − b)(1 +m)(1 + b + 2am)
. (86)

AŌer some algebra, one can show that π̄′(0) > 0, and hence ropt > 0, if a > 1 − b/m and a > a∗, with a∗ defined in Eq.
(14) of the main text. CombinaƟon of Eq. (14) with our assumpƟon a < b and the condiƟon for existence of the marginal
one-locus equilibrium EB (a > 1 − b/m, from Eq. 38 in secƟon 3) yields a sufficient condiƟon for ropt > 0 (Figure 3). For
further details, we refer to File S6.

For the case of a polymorphic conƟnent (qc > 0), we were not able to derive informaƟve analyƟcal condiƟons for
ropt > 0. AnalyƟcal and numerical computaƟons in File S6 suggest that if we start with a monomorphic conƟnent (qc = 0)
in a constellaƟon where ropt > 0 holds, and then increase qc, the maximum in π̄(r) shiŌs to 0 (ropt → 0). There must be a
criƟcal value of qc at which the shiŌ from ropt > 0 to ropt = 0 occurs, but we could not determine it analyƟcally.
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6 Analysis of the determinisƟc model in conƟnuous Ɵme

For the diffusion approximaƟon in the following secƟon we will need a conƟnuous-Ɵme version of our model as a starƟng
point. Here, we derive this model from the discrete-Ɵme version. We will analyse some properƟes of interest in the
context of invasion and survival of a weakly beneficial mutaƟon arising in linkage to a migraƟon–selecƟon polymorphism.
The conƟnuous-Ɵme version with amonomorphic conƟnent (qc = 0) has been completely analysed by Bürger and Akerman
(2011). Therefore, we only summarise some of their results and focus on the extension to a polymorphic conƟnent (0 <
qc < 1). We use a Ɵlde (∼) to disƟnguish conƟnuous-Ɵme expressions from their analogous terms in discrete Ɵme. For ease
of typing, though, this disƟncƟon is not made in allMathemaƟca Notebooks provided in the SupporƟng InformaƟon.

We start from the recursion equaƟons for the haplotype frequencies given in Eq. (28) of this text, with relaƟve fitnesses
wij according to Eq. (1). As wewill assume quasi-linkage equilibrium (QLE) in the following secƟon, it is more convenient to
express the dynamics in terms of allele frequencies (p, q) and linkage disequilibrium (D), rather than haplotype frequencies.
This is achieved by recalling the relaƟonships between D, p, q, and the xi (i = 1, . . . ,4) given in secƟon 1. The resulƟng
difference equaƟons are complicated and only shown in File S7. We obtain the differenƟal equaƟons by assuming that the
changes due to selecƟon, migraƟon and recombinaƟon are small during a short Ɵme interval ∆t. Scaling a, b,m and r by
∆t and taking the limit lim∆t→0

∆x
∆t

for x ∈ {p, q,D} results in

ṗ = dp
dt
= ap(1 − p) −mp + bD, (87a)

q̇ = dq
dt
= bq(1 − q) −m(q − qc) + aD, (87b)

Ḋ = dD
dt
= [a(1 − 2p) + b(1 − 2q)]D +m [p(q − qc) −D] − rD. (87c)

For a monomorphic conƟnent (qc = 0), one finds the marginal one-locus migraƟon–selecƟon equilibrium ẼB for locus
B by seƫng p =D = 0 and solving q̇ = 0 for q, which yields

ˆ̃qB = 1 − m
b

(88)

as the soluƟon of interest (cf. Eq. 42). Bürger and Akerman (2011) have shown that this equilibrium is asymptoƟcally stable
in its one-locus dynamics whenever it exists, i.e. whenm < b = m̃B. Moreover, it is asymptoƟcally stable under the two-
locus dynamics if andonly if m̃∗ <m < b, where m̃∗ = a (1 + b−a

r
) (cf. Eq. 44 in secƟon3, and Eq. 3.13 in Bürger andAkerman

2011). Note that Bürger and Akerman usedmB for what we call m̃∗. Invasion ofA1 via ẼB requiresm <min(b, m̃∗). AŌer
invasion, the system reaches an asymptoƟcally stable, fully-polymorphic equilibrium Ẽ+. There may exist a second fully-
polymorphic equilibrium Ẽ−, but this is never stable and does not exist when ẼB is unstable. It is therefore of limited
interest to us. Bürger and Akerman give the coordinates of these equilibria in their Eq. (3.15).

For a polymorphic conƟnent (0 < qc < 1), we find the frequency ˆ̃qB ofB1 at the marginal one-locus migraƟon–selecƟon
equilibrium ẼB as

ˆ̃qB =
b −m +

√
R3

2b
, (89)

with R3 = (b −m)2 + 4bmqc > 0 as previously encountered in Eq. (59) in secƟon 4. Equilibrium ẼB always exists and is
always asymptoƟcally stable under its one-locus dynamics (File S7). To know when a weakly beneficial mutaƟon at locus A
can invade, we invesƟgate the stability properƟes of ẼB under the two-locus dynamics. The Jacobian matrix evaluated at
ẼB = (p = 0, q = ˆ̃qB,D = 0) is

JẼB
=
⎛
⎜
⎝

a −m 0 b
0 −

√
R3 a

m (b −m − 2bqc +
√
R3) /(2b) 0 a − r −

√
R3

⎞
⎟
⎠

(90)

and its leading eigenvalue is

ν̃ = 1
2
[2a −m − r −

√
R3 +

√
b2 − r (2m − r − 2

√
R3)] (91)
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(cf. Eq. 60). Equilibrium ẼB is unstable if and only if ν̃ > 0. To obtain explicit condiƟons, we determine values of r and qc at
which ẼB is not hyperbolic (i.e. ν̃ = 0) and may therefore enter or leave the state space, or change its stability. Equilibrium
ẼB is not hyberbolic if the recombinaƟon rate is equal to

r̃∗∗ =
2a2 − 2a (m +

√
R3) +m [m − b(1 − 2qc) +

√
R3]

2(a −m)
(92)

(File S7). As a funcƟon ofm, r̃∗∗ has a pole atm = a, and r̃∗∗ = 0 ifm = a(a + b)/(a + bqc). This holds for a < b, which is
one of our general assumpƟons. We conclude that ẼB is unstable and A1 can invade whenever r < r̃B, where

r̃B = {
∞ if 0 ≤m ≤ a,
r̃∗∗ ifm > a. (93)

Figure S7 shows the division of the (m,r)-parameter space into areaswhere ẼB is asymptoƟcally stable (blue) and unstable
(orange), respecƟvely.

By solving ν̃ = 0 for qc, we obtain two criƟcal conƟnental frequencies of B1 at which ẼB is not hyperbolic. These are
given by

q̃∗∗c± =
1
2
+ (a −m)(a + r)

bm
± (2a −m)

√
R4

2bm
, (94)

whereR4 = 4r(a−m)+ b2. We first invesƟgate the properƟes of q̃∗∗± as a funcƟon of the migraƟon ratem. A combinaƟon
of algebra and graphical exploraƟon given in File S7 suggests that the following cases must be disƟnguished:

Case 1 2a ≤ b and (r ≤ a or b − a ≤ r). Then ẼB is unstable if qc < q̃c,B, with q̃c,B defined as

q̃c,B =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

∞ ifm < a,
q̃∗∗c+ if a ≤m < a + b − r,
0 if a + b − r ≤m.

(95)

Case 2 (2a < b and a < r < b − a) or (2a > b and b − a < r < a). Then ẼB is unstable if qc < q̃c,B, with q̃c,B defined as

q̃c,B =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

∞ ifm < a,
q̃∗∗c+ if a ≤m < a(b − a + r)/r,
0 if a(b − a + r)/r ≤m.

(96)

Case 3 2a > b and 2r > b and a ≤ r⇔ 2a > b and a ≤ r. We disƟnguish four subcases:

3a m < a. Then ẼB is always unstable.

3b a ≤m ≤ a(b − a + r)/r. Then ẼB is unstable if qc < q̃∗∗c+ .

3c a(b − a + r)/r <m < a + b2/(4r). Then ẼB is unstable if q̃∗∗c− < qc < q̃∗∗c+ .

3d a + b2/(4r) ≤m. Then ẼB is asymptoƟcally stable.

Case 4 2a > b and 2r > b and a > r⇔ 2r > b and a > r. We disƟnguish four subcases:

4a m < a. Then ẼB is always unstable.

4b a ≤m ≤ a + b − r. Then ẼB is unstable if qc < q̃∗∗c+ .

4c a + b − r <m < a + b2/(4r). Then ẼB is unstable if q̃∗∗c− < qc < q̃∗∗c+ .

4d a + b2/(4r) ≤m. Then ẼB is asymptoƟcally stable.

Figure S8 shows the parƟƟon of the (m,qc)-parameter space into areas where ẼB is asymptoƟcally stable (blue) and
unstable (orange), respecƟvely. There are parameter combinaƟons such that ẼB is asymptoƟcally stable for very low and
for high values of qc, but unstable for intermediate qc (Figures S8B and S8C). This effect is weak and constrained to a small
proporƟon of the parameter space (qc small).

AlternaƟvely, we assess the properƟes of q̃∗∗± as a funcƟon of the recombinaƟon rate r. Graphical exploraƟon (File S7)
suggests the following, provided that a < min(m,b) holds. If recombinaƟon is weak, i.e. r < a(b − a)/(m − a) = r̃∗,
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then ẼB is unstable if qc < q̃∗∗c+ . If recombinaƟon is intermediate, i.e. r̃∗ < r < b2/ [4(m − a)], then ẼB is unstable if
q̃∗∗c− < qc < q̃∗∗c+ . Last, if recombinaƟon is strong, i.e. r ≥ b2/ [4(m − a)], then ẼB is asymptoƟcally stable. Note that r̃∗

was previously encountered in Eq. (56) in the context of the branching process. Figure S9 shows the division of the (r, qc)-
parameter space into areas where ẼB is asymptoƟcally stable (blue) and unstable (orange), respecƟvely. As just shown,
there are parameter combinaƟons such that ẼB is asymptoƟcally stable for very low and for high values of qc, but unstable
for intermediate qc (Figures S9A–S9C).

In principle, analogous condiƟons for asymptoƟc stability of ẼB under the two-locus dynamics could be obtained in
terms of a criƟcal migraƟonr ratem∗∗ at which ẼB is not hyperbolic (ν̃ = 0). However, we were not able to derive infor-
maƟve explicit condiƟons (see File S7 for a graphical exploraƟon).

So far, we have described the condiƟons for instability of the marginal one-locus migraƟon–selecƟon equilibrium ẼB

under the two-locus dynamics, both for a monomorphic (qc = 0) and a polymorphic (0 < qc < 1) conƟnent. In both cases,
there is no other stable equilibrium on the boundary for 0 < m < 1. As menƟoned above, for the case of a monomorphic
conƟnent, the coordinates of the fully-polymorphic equilibria can be found (Bürger and Akerman 2011) and asymptoƟc
stability proved (Bank et al. 2012). For a polymorphic conƟnent, simple explicit expressions are not available, but we could
show analyƟcally that at most three candidates for a fully-polymorphic equilibrium exist. Numerical and graphical explo-
raƟons suggest that if ẼB is unstable, at most one of these candidates is an admissible equilibrium, and it is asymptoƟcally
stable (see File S7 for details). Figures S7–S9 therefore directly tell us when A1 can be established if introduced near ẼB

(orange areas).

In the following secƟon, we will derive a diffusion approximaƟon of sojourn and absorpƟon Ɵmes under the assump-
Ɵon of quasi-linkage equilibrium (QLE), i.e. for r ≫ max(m,b). Therefore, we briefly discuss the properƟes under the
QLE assumpƟon of the fully-polymorphic, asymptoƟcally stable, equilibria menƟoned in the previous paragraphs. For a
monomorphic conƟnent, Ẽ+ is approximated to first order in 1/r by

ˆ̃p+ =
bm + ar −m(m + r)

ar
= 1 − m

a
+ m
r

(b −m)
a

, (97a)

ˆ̃q+ =
am + br −m(m + r)

br
= 1 − m

b
+ m
r

(a −m)
b

, (97b)

ˆ̃D+ =
(a −m)(b −m)m

abr
= m
r
(1 − m

a
)(1 − m

b
) , (97c)

(cf. Eq. 4.3 in Bürger and Akerman 2011). As r → ∞, Eq. (97) converges to the case of no linkage, where ˆ̃p+ = 1 −m/a,
ˆ̃q+ = 1 −m/b, and ˆ̃D+ = 0. Turning to the case of a polymorphic conƟnent, we recall from above that there is at most one
admissible fully-polymorphic equilibrium. To first order in 1/r, its coordinates are

ˆ̃p+ =
2ar +m(b − 2bqc −m − 2r +

√
R3)

2ar
= 1 − bmqc

ar
+ m(b −m)

2ar
+ m
√
R3

2ar
− m
a
, (98a)

ˆ̃q+ =
1
2
− am(2bqc − b +m −

√
R3)

2br
√
R3

+ m(m + r)(m −
√
R3)

2br
√
R3

+ b

2
√
R3

+ m(2qc − 1)(m + 2r)
2r
√
R3

, (98b)

ˆ̃D+ =
m(a −m) [b(1 − 2qc) −m +

√
R3]

2abr
. (98c)

Seƫng qc = 0 and recalling that m < m̃∗ = a (1 + b−a
r
) must hold for invasion in this case (secƟon 3), it is easy to verify

that Eq. (98) coincides with Eq. (97). This is why we call the equilibrium in Eq. (98) Ẽ+QLE. Graphical exploraƟon in File S7
confirms that Ẽ+QLE is asymptoƟcally stable whenever it exists under the QLE regime.

Finally, we ask when Ẽ+QLE exists in the admissible state space. We note that ˆ̃p+QLE is a strictly decreasing funcƟon
of the recombinaƟon rate r, independently of the migraƟon ratem. In contrast, ˆ̃q+QLE is a strictly decreasing funcƟon of
r if and only ifm ≤ a, which is of limited interest, because A1 can then be established in any case. We denote by r ˆ̃p0

+QLE

and r ˆ̃p1
+QLE

the recombinaƟon rates at which ˆ̃p+QLE equals 0 and 1, respecƟvely. Analogously, we use r ˆ̃q0
+QLE

and r ˆ̃q1
+QLE

for the recombinaƟon rates at which ˆ̃q+QLE equals 0 and 1, respecƟvely. These criƟcal recombinaƟon rates are found to
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be

r ˆ̃p0
+QLE

=m m − b(1 − 2qc) −
√
R3

2(a −m)
, (99a)

r ˆ̃p1
+QLE

= 1
2
(b −m − 2bqc +

√
R3) , (99b)

and

r ˆ̃q0
+QLE

= (m − a) b +m −
√
R3

2
√
R3

, (100a)

r ˆ̃q1
+QLE

= (a −m) b −m +
√
R3

2
√
R3

. (100b)

As shown in File S7, ifm < a, Ẽ+QLE exists in the admissible state space if and only if r > max(r ˆ̃p1
+QLE

, r ˆ̃q1
+QLE
). Ifm ≥ a,

Ẽ+QLE exists in the admissible state space if and only if max(r ˆ̃p1
+QLE

, r ˆ̃q1
+QLE
) < r < r ˆ̃p0

+QLE
. At a first glance, it may seem

surprising to obtain an upper limit on r. However, as is easily verified, r ˆ̃p0
+QLE

is also the criƟcal value at which Ẽ+QLE

coincides with the QLE approximaƟon of ẼB, which becomes asymptoƟcally stable. Thus, with looser linkage, allele A1 is
lost.

7 Diffusion approximaƟon to sojourn and absorpƟon Ɵmes assuming quasi-linkage equilibrium
Although some two-locus diffusion theory has been developped (Ewens 2004; Ethier and Nagylaki 1989, 1988, 1980),
explicit calculaƟon of quanƟƟes of interest, such as absorpƟon probabiliƟes or Ɵmes, seems difficult. SubstanƟal progress
can be made, though, by assuming that recombinaƟon is much stronger compared to selecƟon (and migraƟon). Then,
linkage disequilibrium decays on a fast Ɵme scale, whereas allele frequencies evolve on a slow Ɵme scale under quasi-
linkage equilibrium (QLE) (Kimura 1965; Nagylaki et al. 1999; Kirkpatrick et al. 2002). Here, we employ the QLE assumpƟon
to approximate the expected amount of Ɵme the focal alleleA1 spends in a certain range of allele frequencies (the sojourn
Ɵmes), as well as the expected Ɵme to exƟncƟon (the mean absorpƟon Ɵme). We do so in detail for a monomorphic
conƟnent (qc = 0) first. For a polymorphic conƟnent (0 < qc < 1), we will only give a brief outline and refer to File S7 for
details. Throughout, we closely follow Ewens (2004) in our applicaƟon of diffusion theory.

We start from the conƟnuous-Ɵme dynamics of the allele frequencies (p, q) and the linkage disequilibrium (D) in Eq.
(87), seƫng qc = 0 for a monomorphic conƟnent. Given that recombinaƟon is strong compared to selecƟon andmigraƟon,
D will be close to an equilibrium, so that Ḋ = dD/dt ≈ 0may be assumed. Moreover, we assume that the frequency of the
beneficial background alleleB1 is not affected by establishment ofA1. Specifically, q = ˆ̃qB constant, where ˆ̃qB = 1−m/b is
the frequency ofB1 at the one-locusmigraƟon–selecƟon equilibrium in conƟnuous Ɵme (Eq. 88). EquaƟon (87) is therefore
approximated by

ṗ = dp
dt
= ap(1 − p) −mp + bD, (101a)

q̇ = dq
dt
= 0, (101b)

Ḋ = dD
dt
= [a(1 − 2p) + b(1 − 2q)]D +m (pq −D) − rD = 0. (101c)

Solving Eq. (101c) forD, plugging the soluƟon into Eq. (101a) and seƫng q = ˆ̃qB, we obtain a single differenƟal equaƟon in
p:

ṗ = ap(1 − p) −mp + m(b −m)
b −m − a(1 − 2p) + r

p. (102)

In the limit of r → ∞, we recover the one-locus migraƟon-selecion dynamics for the conƟnent–island model, ṗ = ap(1 −
p) −mp.

We now consider the diffusion process obtained from the Wright–Fisher model (Fisher 1930; Wright 1931). More
precisely, wemeasure Ɵme in units of 2Ne generaƟons, whereNe is the effecƟve populaƟon size, and use T for Ɵme on the
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diffusion scale. Further, we introduce the scaled selecƟon coefficients α = 2Nea and β = 2Neb, the scaled recombinaƟon
rate ρ = 2Ner, and the scaled migraƟon rate µ = 2Nem. EquaƟon (102) yields the infinitesimal mean

M(p) = αp(1 − p) − µp + µ(β − µ)
β − µ − α(1 − 2p) + ρ

p

(cf. Eq. 5 in the main text). It expresses the mean change in p per unit of Ɵme on the diffusion scale. The infinitesimal
variance is

V (p) = p(1 − p) (103)

(Karlin and Taylor 1981, p. 159).

Later, we will need the raƟo ofM(p) to V (p), which is

M(p)
V (p)

= α − µ

1 − ρ
(1 − β − µ

β − α(1 − 2p) − µ + ρ
) . (104)

We define the funcƟon ψ(p) according to Eq. (4.16) in Ewens (2004) as

ψ(p) ∶= exp [−2∫
p

0

M(z)
V (z)

dz] . (105)

InserƟng Eq. (104), we find,

ψ(p) = e−2αp(1 − p)−
2µ(α+ρ)
α+β−µ+ρ (β − α − µ + ρ)

2µ(β−µ)
α+β−µ+ρ [β − (1 − 2p)α − µ + ρ]

2µ(µ−β)
α+β−µ+ρ . (106)

The derivaƟon assumes that (α − β + µ − ρ)/(αp) < 0 holds. Recalling from secƟon 3 that, for instability of the marginal
one-locus equilibrium ẼB, it is required that m < m̃∗ = a (1 + b−a

r
) and that then a < min(b, r), one can show that

(α − β + µ − ρ)/(αp) < 0 holds indeed (see File S7).

We now turn to the sojourn Ɵmes as defined in Ewens (2004, pp. 141–144). We denote the iniƟal frequency of the
focal mutaƟonA1 by p0 and introduce the funcƟon t(p;p0) to describe the sojourn-Ɵme density (STD). The interpretaƟon
of t(p;p0) is the following. The integral

∫
p2

p1

t(p;p0)dp

approximates themean Ɵme in units of 2Ne generaƟons alleleA1 spends at a frequency in the interval (p1, p2), condiƟonal
on the iniƟal frequency p0. According to Eqs. (4.38) and (4.39) in Ewens (2004), we define

t(p;p0) = {
t1(p;p0) if 0 ≤ p ≤ p0,
t2(p;p0) if p0 ≤ p ≤ 1. (107)

To make the assumpƟon of quasi-linkage equilibrium explicit, we will add the subscript QLE to relevant quanƟƟes from
now on. The densiƟes ti,QLE(p;p0) are given by Eq. (7) in the main text, with ψ(y) as in Eq. (105). The integral ∫

x
0 ψ(y)dy

cannot be found explicitly. However, because Eq. (7a) takes the form t1,QLE(p;p0) = 2ψ(y)−1(1−p)−1p−1 ∫
p
0 ψ(y)dy and

p−1 ∫
p
0 ψ(y)dy → 1 as p→ 0 (File S7), we approximate t1,QLE(p;p0) by

t̃1,QLE(p;p0) =
2p

V (p)ψ(p)
(108)

whenever p is small. Recall from Eq. (107) that t1(p;p0) is needed only if 0 ≤ p ≤ p0. We are in general interested in a
de-novo mutaƟon, i.e. p0 = 1/(2N), with populaƟon sizeN at least about 100. Hence, p ≤ p0 automaƟcally implies that p
is small whenever t1,QLE(p;p0) is employed. The approximaƟon in Eq. (108) is therefore valid for our purpose.

Similarly, we may mulƟply t2,QLE(p;p0) by p0 and 1/p0 and write

t2,QLE(p;p0) = 2p0ψ(y)−1(1 − p)−1p−1p−10 ∫
p0

0
ψ(y)dy.

Again, p−10 ∫
p0

0 ψ(y)dy → 1 as p0 → 0 (File S7). We therefore approximate t2,QLE(p;p0) by

t̃2,QLE(p;p0) =
2p0

V (p)ψ(p)
(109)
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whenever p0 is small. In the following, we use a Ɵlde (∼) to denote the assumpƟon of small p0.

The expected Ɵme to exƟncƟon of alleleA1 in our model is idenƟcal to themean absorpƟon Ɵme, because exƟncƟon is
the only absorbing state. For arbitrary iniƟal frequency p0, the approximate mean absorpƟon Ɵme under the QLE approxi-
maƟon is obtained from the sojourn-Ɵme densiƟes as shown in Eq. (8) of the main text. Assuming small p0, this simplifies
to

˜̄tQLE = ∫
p0

0
t̃1,QLE(p;p0)dp +∫

1

p0

t̃2,QLE(p;p0)dp. (110)

In both cases, the integrals must be computed numerically. As a further approximaƟon for very small p0, one may omit the
first integral on the right-hand side of Eq. (110), as its contribuƟon becomes negligible when p0 → 0.

The predicƟons for the sojourn-Ɵme densiƟes (STDs) and the mean absorpƟon Ɵme derived above are accurate if the
QLE assumpƟon holds (Figures 7, S11 and S12). However, the analyƟcal expressions for the STDs in Eqs. (108) and (109)
are not very informaƟve once we plug in explicit formulae for V (p) and ψ(p) (see File S7). In the following, we will gain
more insight by making an addiƟonal assumpƟon.

We assume that recombinaƟon is much stronger than selecƟon and migraƟon, and expand M(p) from Eq. (5) as a
funcƟon of ρ−1 to first order into a Taylor series. This yields

M(p) ≈Mρ≫0(p) = αp(1 − p) − µp +
µ(β − µ)

ρ
p

and hence Eq. (16) in the main text. The infinitesimal variance V (p) from Eq. (103) remains unchanged, but the raƟo of
M(p) to V (p) simplifies to

Mρ≫0(p)
V (p)

= α − µ

1 − ρ
(1 − β − µ

ρ
) . (111)

InserƟon into Eq. (105), integraƟon and some algebra yields

ψρ≫0(p) = e−2αp(1 − p)−
2µ(µ−β+ρ)

ρ . (112)

The sojourn-Ɵme density (STD) is then given by

t1,QLE,ρ≫0(p;p0) =
2

V (p)ψρ≫0(p) ∫
p

0
ψρ≫0(y)dy, (113a)

t2,QLE,ρ≫0(p;p0) =
2

V (p)ψρ≫0(p) ∫
p0

0
ψρ≫0(y)dy. (113b)

As before, x−1 ∫
x
0 ψρ≫0(p)dp → 1 as x → 0. Arguments analogous to those leading to Eqs. (108) and (109) show that, for

a small iniƟal frequency p0, the STD is approximated by

t̃1,QLE,ρ≫0(p;p0) =
2p

V (p)ψρ≫0(p)
= 2e2pα(1 − p)

2µ(µ−β+ρ)
ρ −1,

t̃2,QLE,ρ≫0(p;p0) =
2p0

V (p)ψρ≫0(p)
= 2p0e

2pαp−1(1 − p)
2µ(µ−β+ρ)

ρ −1

(cf. Eq. 17 of the main text). For details, we refer to File S7. The mean absorpƟon Ɵme is again obtained as

t̄QLE,ρ≫0 = ∫
p0

0
t1,QLE,ρ≫0(p;p0)dp +∫

1

p0

t2,QLE,ρ≫0(p;p0)dp (114)

using the STD in Eq. (113) for arbitrary iniƟal frequency p0, or as

˜̄tQLE,ρ≫0 = ∫
p0

0
t̃1,QLE,ρ≫0(p;p0)dp +∫

1

p0

t̃2,QLE,ρ≫0(p;p0)dp (115)

using the STD in Eq. (17) for small p0. Figure 5 compares the various approximaƟons to the STD derived under the QLE
assumpƟon for a monomorphic conƟnent (qc). It also includes a comparison to the STD for a one-locus model (OLM),
which is specified by

t̃1,OLM(p;p0) = 2e2pα(1 − p)2µ−1 if 0 ≤ p ≤ p0,

t̃2,OLM(p;p0) = 2p0e
2pαp−1(1 − p)2µ−1 if p0 ≤ p ≤ 1
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for small p0 (cf. Eq. 15 in the main text).

A comparison of the STD given in Eq. (17) for two loci with large ρ and small p0 to the corresponding one-locus STD in
Eq. (15) is interesƟng. The difference is that µ in the one-locus model is replaced by µ(µ−β + ρ)/ρ to obtain the formulae
for the two-locus model. Hence, for strong recombinaƟon, we may define an effecƟve scaled migraƟon rate

µe = µ
µ + ρ − β

ρ
= µ − βµ

ρ
+ µ

2

ρ
≈ µ(1 − β

ρ
) ,

where the approximaƟon holds for µ ≪ min(β, ρ). The interpretaƟon is that µe denotes the scaled migraƟon rate in
a one-locus migraƟon–selecƟon model for which allele A1 has the same sojourn-Ɵme properƟes as if it arose in a two-
locus model with scaled migraƟon rate µ and linkage to a previously established polymorphism that decays at a scaled
recombinaƟon rate ρ. Transforming back from the diffusion to the natural scale, we obtain the invasion-effecƟve migraƟon
ratesme and m̃e given in Eqs. (19) and (20) of the main text, respecƟvely (see also Figure S18A).

We now turn to the case of a polymorhpic conƟnent (0 < qc < 1). DerivaƟons are analogous to those shown above for
the monomorphic conƟnent, but more cumbersome. We therefore give only a rough summary here and refer to File S7
for details.

The mean change in p per unit of Ɵme on the diffusion scale and under the assumpƟon of quasi-linkage equilibrium
(QLE) is

M(p) ∶= dp
dT
= αp(1 − p) − µp −

µ (β − µ − 2βqc +
√
R5)

2 [α (1 − 2p) − ρ −
√
R5]

p, (116)

whereR5 = (β − µ)2 + 4βµqc > 0.

EquaƟon (116) can be used to numerically compute the sojourn-Ɵme densiƟes (STDs) and the mean absorpƟon Ɵme
analogous to Eqs. (7) and (8) (see File S7). To obtain informaƟve analyƟcal results for the STDs, however, it is necessary
to assume that recombinaƟon is strong compared to selecƟon and migraƟon, i.e. ρ ≫ min(b,m). Then, the infinitesimal
mean is approximated by

M(p) ≈Mρ≫0(p) = αp(1 − p) − µp +
µ (β − µ − 2βqc +

√
R5)

2ρ
p (117)

The infinitesimal variance is the same as for a monomorphic conƟnent, V (p) = p(1−p). InserƟngMρ≫0(p) from Eq. (117)
and V (p) into the definiƟon of ψ(p) in Eq. (105), we obtain

ψρ≫0(p) = e−2αp(1 − p)
µ(β−µ−2ρ−2βqc+

√
R5)

ρ . (118)

The STDs t1,QLE,ρ≫0(p;p0) and t2,QLE,ρ≫0(p;p0) are found by inserƟon of ψρ≫0(p) from Eq. (118) into Eq. (113). Exploit-
ing the fact that x−1 ∫

x
0 ψρ≫0(p)dp converges to 1 as x approaches 0, the STDs can be approximated by

t̃1,QLE,ρ≫0(p;p0) = 2e2pα(1 − p)
µ(µ−β+2βqc+2ρ−

√
R5)

ρ −1, (119a)

t̃2,QLE,ρ≫0(p;p0) = 2p0e
2pαp−1(1 − p)

µ(µ−β+2βqc+2ρ−
√

R5)
ρ −1 (119b)

This approximaƟon is valid if the iniƟal frequency p0 is small and ρ is large. The mean absorpƟon Ɵme for arbitrary p0 is
found according to Eq. (114). For small p0, it is given by Eq. (115), with t̃i,QLE,ρ≫0(p;p0) from Eq. (119).

8 EffecƟve migraƟon rate at a neutral site linked to two migraƟon–selecƟon polymorphisms
We derive the effecƟve migraƟon rate experienced by a neutral locus (C) linked to two loci (A and B) that are maintained
polymorphic at migraƟon–selecƟon balance. Locus C has two alleles C1 and C2, which are assumed to segregate at con-
stant frequencies nc and 1 − nc on the conƟnent. The frequency of C1 on the island at Ɵme t is denoted by n(t). Loci A
and B are as above, with alleles A1 and B1 segregaƟng at frequencies p and q on the island, respecƟvely. Without loss of
generality, we assume that A is located to the leŌ of B on the chromosome. We denote by rXY the recombinaƟon rate
between lociX and Y , where rXY = rY X . Because we consider a conƟnuous-Ɵme model here, we may assume that the
recombinaƟon rate increases addiƟvely with distance on the chromosome. For simplicity, we restrict the analysis to the
case of a monomorphic conƟnent, i.e. alleles A2 andB2 are fixed on the conƟnent.
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Following Bürger and Akerman (2011), we define the effecƟve migraƟon rate as the asymptoƟc rate of convergence of
n(t) to the fully-polymorphic three-locus equilibrium. This rate of convergence is defined by the leading eigenvalue λN

of the Jacobian of the system that describes the evoluƟon of the frequency of C1 and the linkage disequilibria associated
with locus C. Specifically, we define the effecƟve migraƟon rate asme = −λN (cf. Kobayashi et al. 2008).

We start by assuming that the neutral locus is located between the two selected ones (configuraƟon A−C−B). We
denote byDAB =D,DAC andDCB the linkage disequilibria between the indicated loci, and byDACB = y1 − pqn− pDCB −
qDAC − nDAB the three-way linkage disequilibrium, where y1 is the frequency of gamete A1C1B1. The changes due to
selecƟon, migraƟon and recombinaƟon in p, q, and DAB are given by Eq. (87) of this text, with r replaced by rAB. The
frequency of C1 evolves according to

ṅ =m(nc − n) + aDAC + bDCB (120)

and the differenƟal equaƟons for the linkage disequilibria associated with locus C are

ḊAC = a(1 − 2p)DAC + bDACB −mDAC −mp(nc − n) − rACDAC, (121a)

ḊCB = aDACB + b(1 − 2q)DCB −mDCB −mq(nc − n) − rCBDCB, (121b)

ḊACB = [a(1 − 2p) + b(1 − 2q)]DACB − 2(aDAC + bDCB)DAB +m(pDCB + qDAC −DACB)
+m(pq −DAB)(nc − n) − rABDACB (121c)

(we use ẋ for the differenƟal of x with respect to Ɵme, dx/dt). We refer to File S8 for the derivaƟon. Recall that rAB =
rAC + rCB. This system has an asymptoƟcally stable equilibrium such that the selected loci are at the equilibrium Ẽ+ (Eq.
3.15 in Bürger and Akerman 2011), and n = nc andDAC = DCB = DACB = 0 hold. The Jacobian at this equilibrium has the
block structure

J = (JS 0
0 JN

) ,

where JS is the Jacobian approximaƟng convergence of (p, q,DAB) to Ẽ+, and JN is the Jacobian approximaƟng con-
vergence of (n,DAC,DCB,DACB) to (nc,0,0,0). In the limit of weak migraƟon, i.e. m ≪ (a, b, r), the laƩer is given
by

JACB
N =

⎛
⎜⎜⎜⎜⎜
⎝

−m a b 0
m −a − rAC + m(a−b+rAB)

a+b+rAB
0 b

m 0 −b − rCB + m(b−a+rAB)
a+b+rAB

a

−m m(b−a+rAB)
a+b+rAB

m(a−b+rAB)
a+b+rAB

−a − b − rAB + m(a+b+3rAB)
a+b+rAB

⎞
⎟⎟⎟⎟⎟
⎠

. (122)

As shown previously (Bürger and Akerman 2011), to first order inm, the leading eigenvalue of JACB
N is given by

λACB
N =m rACrCB

(a + rAC) (b + rCB)
, (123)

and hence the approximaƟon of the effecƟvemigraƟon rate in Eq. (22b) in themain text is obtained (see File S8 for details).
We note that Eqs. (120), (121) and (122) correct errors in Eqs. (4.25), (4.26) and (4.28) of Bürger and Akerman (2011),
respecƟvely. The main results by Bürger and Akerman (2011) were not affected, though.

If the neutral locus is located to the right of the two selected ones (configuraƟon A−B−C), Eqs. (120) and (121) remain
the same (recall that rXY = rY X and in this case rAC = rAB + rBC). In Eq. (87c), r must be replaced by rAC. Then, the
Jacobian JABC

N approximaƟng convergence of (n,DAC,DBC = DCB,DABC = DACB) to (nc,0,0,0) in the limit of weak
migraƟon is equal to JACB

N with the last entry of the last row replaced by −a − b − rAC + m(a+b+3rAB)
a+b+rAB

. To first order inm,

the leading eigenvalue of JABC
N is

λABC
N =m rBC (b + rAC)

(b + rBC) (a + b + rAC)
, (124)

and hence Eq. (22c) in the main text. Details are given in File S8.

Last, the leading eigenvalue for configuraƟon C−A−B follows directly by symmetry,

λCAB
N =m rCA (a + rCB)

(a + rCA) (a + b + rCB)
, (125)

and hence Eq. (22a) in the main text.
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Recall that the Jacobian matrices JACB
N and JABC

N hold under the assumpƟon of weak migraƟon. In File S8, we derive
analogous matrices under the assumpƟon of weak recombinaƟon, i.e. r ≪ (a, b,m). These are too complicated to be
shown here, but importantly, to first order inm, their leading eigenvalues are idenƟcal to Eqs. (123) and (124), respecƟvely.
By symmetry, this also applies to the configuraƟonC−A−B. Therefore, the approximate effecƟvemigraƟon rates in Eq. (22)
are valid also for Ɵght linkage between the neutral locus and the selected loci.

To test the robustness of our results agaist violaƟon of the assumpƟon of weak migraƟon, we numerically computed
exact effecƟve migraƟon rates. In most cases, the deviaƟon is very small; compare dashed to solid curves in Figures 8 and
S19, and dots to curves in Figure S20.
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