Comparison of the Jacobian of the
marginal one-locus migration-
selection equilibrium (Eg) to the mean
matrix of the corresponding
branching process

Generic model

m General assumptions and rules
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assumeGeneric := {0 < x[1] <1, 0=<x[2] =<1, 0<x[3] <1,
X[4] =1-x[1] -%x[2] -%x[3],0=<m=<1,0<r=<1/2,0<q9qC=<1,0<gB<1}

assumeNoPositionEffect :=
{w21 » w21, w3l -» wl3, w32 -» wl4, w3l -» wl3, w43 -» w34, w42 -» w24, w4l -» wld, w23 -» wld}

wMat = {{wll, wl2, w13, wl4},
{w21, w22, w23, w24}, {w31l, w32, w33, w34}, {w4l, w42, w43, wiad}}

simplifyNotation 1= {X[1] » X1, X[2] » X2, X[3] -» X3, X[4] » x4}
Wli_, j_] -=wMat[i, j]

Jacobian J for the deterministic two-locus dynamics

Marginal and mean fitnesses.

Wli_] z=Sum[w[i, J]1x[J1, (J-1, 4}]
wBar = Sum[w[i] x[i], {i, 1, 4}]

Linkage disequilibrium.
DD :-= x[1] x[4] - x[2] X[3]

Generic recursion equations for the haplotype frequencies, where q. is the frequency of alele B; on the continent
and misthe migration rate.

x1RecGenr := (1 -m) (X[1] w[l] -rw[1l, 4] DD) / wBar
Xx2RecGenr := (1-m) (X[2] w[2] +rw[1l, 4] DD) / wBar
x3RecGenr = (1-m) (X[3] w[3] +rw[1l, 4] DD) /wBar +mqC
X4RecGenr = (1-m) (X[4] w[4] +rw[1l, 4] DD) /wBar +m (1 - gC)

recHap := {x1RecGenr, x2RecGenr, x3RecGenr, x4RecGenr}

recHap /. simplifyNotation // MatrixForm

(1-m) (x1 (WLl x1+wl2 x2+wWAl3 x3+wWl4 X4) -r wl4 (-X2 Xx3+x1 x4))

X1 (W11 X1+Wl2 X2+W13 X3+W14 X4) +Xx2 (W21 X1+W22 X2+W23 X3+W24 x4) +X3 (W31 Xx1+W32 x2+W33 x3+W34 x4) +x4 (WAl x1+wW42 x2+W43 x3
(1-m) (X2 (W21 x1+wW22 Xx2+W23 Xx3+W24 X4) +r Wl4 (-X2 Xx3+x1 x4))

X1 (W11 X1+W12 X2+W13 X3+W14 X4) +x2 (W21 X1+W22 X2+W23 X3+W24 x4) +X3 (W31 Xx1+W32 x2+W33 x3+W34 x4) +x4 (WAl x1+WA2 x2+W43 x3
(1-m) (x3 (W31 x1+wW32 x2+W33 x3+W34 x4) +r wl4 (-x2 x3+x1 x4))

X1 (WL1 X1+Wl2 X2+WL3 Xx3+WL4 x4) +X2 (W21 X1+W22 x2+W23 x3+W24 x4) +x3 (W31 Xx1+W32 x2+W33 Xx3+W34 x4) +X4 (WALl X1+W42 X2 +W4

m (1 B QC) . (1-m) (x4 (W41 x1+W42 x2+W43 x3+wWd4 x4) +r Wl4 (-x2 x3+x1 x4))

X1 (WL1 X1+wWl2 x2+WL3 X3+WLl4 x4) +x2 (W21 Xx1+W22 X2+W23 X3+W24 x4) +Xx3 (W31 x1+W32 Xx2+W33 x3+W34 x4) +x4 (WAl Xx1+W42 X2

mqC +

Generic Jacobian matrix.
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JHapGenr := Table[Table[Simplify[D[recHap[jl, 1], Assumptions -» assumeGeneric],
{1, {x[1], X[2], x[3], X[41}}1, {J, {1, 2, 3, 4}}]

JHapGenr /. simplifyNotation // MatrixForm

(1-m) ((2WL1 X1+WL2 X2+WL3 X3+ (WL4-r wid) x4) (x1 (WLl X1+wl2 X2+WL3 Xx3+WLl4 X4) +X2 (W21 Xx1+W22 x2+W23 x3+W24 x4) +X3 (W31 x1+W32 x2
(x1 (WAL x1+wW1l2 x2+WL3 X3+WLl4 X4) +X2 (W21 X1+W22 X2 +W2:

(1-m) (W21 Xx2+r wi4 x4) (x1 (W11l x1+wl2 x2+WLl3 x3+wWl4 x4) +Xx2 (W21 X1+W22 X2+W23 x3+W24 x4) +x3 (W31 x1+W32 x2+W33 x3+wW34

(X1 (W11 x1+wl2 x2+WLl3 Xx3+Wl4 x4) +X2 (W21 X1+W22 X2+W2:

(1-m) (W31 x3+r wi4d x4) (x1 (Wil x1+wl2 x2+Wl3 x3+Wl4 X4) +x2 (W21 X1+W22 Xx2+W23 X3+W24 x4) +x3 (W31 Xx1+W32 x2+W33 x3+W34

(X1 (WL1 X1+W12 X2+WL3 X3+W1l4 X4) +X2 (W21 X1+W22 X2+W2!

(1-m) ((r wi4+w4l) x4 (x1 (WLl Xx1+wLl2 X2+WL3 x3+Wl4 x4) +X2 (W21 X1+W22 x2+W23 Xx3+W24 x4) +x3 (W31 x1+W32 x2+W33 X3+W34 X«

(X1 (W11 X1+W12 X2+WL3 X3+W1l4 X4) +X2 (W21 X1+W22 X2+W2!

The margina one-locus migration-selection equilibrium is called Eg and defined as Eg = (p, q, D) = (O, Og» O),
where pand q are the frequencies of A; and B; on the island, respectively, and D is the linkage disequilibrium.

Moreover, (g denotes the equilibrium frequency of B;. It is defined as the non-trivial solution of the equation
obtained by equating the marginal one-locus recursion equation to g. With generic fitnesses, this solution cannot
be readily found.

Note that at Eg, the following holds: %; =% =0, %3 =qgandx; =1 - §.

The Jacobian matrix evaluated at the marginal one-locus migration-selection equilibrium Eg.
ruleEB := {x[1] » 0, x[2] » 0, xX[3] » gB, x[4] - 1-QgB}

Evaluating the Jacobian at the marginal equilibrium Eg:

JHapGenrEB = Simplify[JHapGenr /. ruleEB, Assumptions - assumeGeneric];
JHapGenrEB // MatrixForm

(-1+m) (WL4-r Wl4+gB (WL3+ (-1+r) wid))
B (WB4+W43-2 WA4) +WA4+qB% (WB3-WB4-WA3+n44)
(-1+m) (-1+9B) r w14
gB (W34+WA3-2 WA4) +WA4-qB? (W33-W34-wA3-w44)
(1-m) (-gB (qB (W83-wB4) +WB4) (Wl4+(B (WL3-wl4+WB1-wal)+wal)+(r (Wi4-qBwid)+qBwa1) (qB (W34+wA3-2 wad) +wa4+qB? (WB3-WB4-wA3+\
(4B (WB4+WA3-2 Wi4) +Wh4+qB? (WB3-wB4-wA3+wdd))?
(1-m) (1-0B) (- (WL4+0B (W13-Wl4+wB1-wAl) +wal) (qB (WA3-wdd) +wA4) + (1 Wid+wal) (qB (WB4+WA3-2 wA4) +Wa4+(B? (WB3-WB4-wa3+wa4)
(4B (WB4+WA3-2 Wi4) +W4+qB? (WB3-wB4-WA3+wdd))?

L . . . J1
As expected (see the case of additive fitnesses above), thisis alower triangular block matrix, J = ( Ja 3 ) where
3 Ja
J1 := JHapGenrEB[1 ;; 2, 1 ;; 2]
J4 = JHapGenrEB[3 ;; 4, 3 ;; 4]
J1 7/ FullSimplify // MatrixForm
(-1+m) (qBwl3+ (-1+qB) (-1+r) wl4) (-1+m) qBr wi4
T WA4:qB (WB4+WA3-2 WA4+qB (W33-W34-wA3+wdd))  wA4+qB (W34+WA3-2 wA4+qB (W33-W34-wA3+wad))
(-1+m) (-1+9B) r w14 (-1+m) (-W24+qgB (r wi4-w23+w24))
WA4+qB (W34+WA3-2 WA4+qB (WB3-W34-wA3+wid) ) WA4+gB (W34 +WA3-2 WA4+qB (W33-W34-wA3+wdd))
J4 // MatrixForm
(-1+m) (-1+QB) (2B (W33-WB4) WA4+W34 Wa4+qB? (W33 (W43-2 wad) +w34 wa4) ) (-1+m) gB (2 gB (WB3-WB4) WA4+W34 WA4+qB® (W33 (WA3-
(B (W34+WA3-2 WA4) +wd4+qB? (W33-wB4-wA3+wdd) )> (B (WB4+wA3-2 Wad) +wA4+qB? (WB3-W34-w43
(-1+m) (-1+qB) (2B (W33-W34) WA4+W34 Wi4+qB? (W33 (W43-2 wAd) +w34 wd4) ) (-1+m) gB (2 qB (W33-wB4) W44+W34 WA4+qB® (W33 (w43
(B (WB4+W43-2 wWA4) +Wi4+qB? (W33-uB4-wA3+wd4) )? (9B (WB4+WA3-2 WA4) +WA4 +qB® (WB3-WB4-wa:

Mean matrix L for the two-type branching process
Marginal fitnesses of types 1 and 2.

wBP1 :=w[1l, 31 gB+w[1, 4] (1-0gB)
wBP2 :=w[2, 4] (1-9gB) +w[1, 4] gB

Mean fitness of resident population.
wBPBar := B2 w[3, 3] +20B (1-qB) W[3, 4] + (L-qB)2 w[4, 4]
The mean matrix.
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=(1-m) (WwBP1-r (1-9gB) w[1l, 4]) / wBPBar
=(1-m) rgBw[l, 4] / wBPBar

=(1-m) r (1-9gB) w[l, 4] / wBPBar

= (1-m) (wBP2-rqgBw[1l, 4]) / wBPBar

Inf22]= A =

B

Cc
D

neel= L 2= {{#A, C}, {8, D}}

L 7/ FullSimplify // MatrixForm

(-1+m) (qBwL3+(-1+qB) (-1+r) wi4) (-1+m) (-1+gB) r w14
2 9B (W34-wW44) +wA4+qB? (W33-2 wW34+wWA4) 2 B (W34-whd) +wA4+qB? (W33-2 W34 +wa4)
(-1+m) gBr wi4 (-1+m) (9B (-1+r) wld+(-1+9B) w24)

- 2qgB (V\/3>4—W44)+W44+qB2 (W33-2 W34 +w44) 2qB (V\B4—W44)+W44+q82 (W33-2 w34+w44)
= Comparison of LT and J;
assumeNoPositionEffect
w21 - w21, w3l -> wl3, w32 » wl4, w3l > wl3, w43 > w34, w42 - w24, w4l - wld, w23 - wl4}

Transpose[L] // FullSimplify // MatrixForm

(-1+m) (qBwL3+ (-1+gB) (-1+r) wl4) (-1+m) gBr wi4
T 20B (W34-WA4) +WA4+QB? (WB3-2 WB4+wWA4) 2B (W34-WA4) +WA4+qB? (WB3-2 wB4+wad)
(-1+m) (-1+qB) r wi4 (-1+m) (gB (-1+r) wl4+(-1+gB) w24)
2 qB (W34-w44) +wA4+qB% (W33-2 W34 +w4d) 2 B (W34-w44) +wA4+qB? (W33-2 W34 +w44d)

J1 /. assumeNoPositionEffect // FullSimplify // MatrixForm

(-1+m) (qBwL3+ (-1+gqB) (-1+r) wi4) (-1+m) qBr wi4
T 20B (W34-WA4) +WA4+qB? (WB3-2 WB4+wAd) 2B (W34-WA4) +WA4+qB? (WB3-2 wB4+wad)
(-1+m) (-1+9B) r w14 (-1+m) (gB (-1+r) wld+ (-1+qB) w24)
2 qB (W34-wW44) +wh4+qB? (W33-2 W34+WA4) 2 qB (W34-W44) +WA4+qB? (W33-2 W34+W44)

Transpose[L] - J1 /. assumeNoPositionEffect // Simplify
{{0, 0}, {0, 0}}

We note that J; is equa to the transpose of the mean matrix L, as long as position and parental effects on relative
fitnesses can be ignored. This also holds irrespectively of whether the continent is monomorphic or polymorphic.

= Eigenvalues of Jand L'

FullSimplify[Eigenvalues[J1] /. assumeNoPositionEffect,
Assumptions -» Flatten[{assumeGeneric}]]

{-(C-1+m (W41 wi4+qB (W13 -W24) +W24) (2B (B4 - WA4) + WA4 + GB? (W33 - 2 B4 + wAd) ) +
\/((—1+m>2 (((-1+71)wld +w24)% + qB? (WI3 -2 Wl4 +w24) (WI3 -2wld +4r1 Wid +wW24) -
20B (Wl4 ((-1+1) WI3+2Wld - 41 Wld) + (WI3+3 (-1 +1) wld) w24 + w24?))
(20B (W34 - W44) + w44 + qB? <m3372m4+w44>)2)/
(2 (2B (W4 - w44) + A4 + qB? (W33 - 2 WB4 + wd4) )?),

(7(—1+m) (W14 -1 Wi4 + QB (W13 - w24) +w24) (2 gB (W34 - wA4) + a4 + qB* (W33 - 2 W34 + wa4) ) +

\/((—1+m>2 (((-1+r1)wld+w24)2 + qB? (WI3 -2Wl4 +W24) (WI3 -2wld +4r1 Wid +W24) -
20B (Wl4 ((-1+7) Wi3+2Wl4 - 41 Wld) + (WL3 +3 (-1 +1) Wld) w24 + w24?) )
(2 B (W34 - Wa4) + w44 + qB? (V\BS—ZV\B4+W44)>2))/
(2 (2B (W34 - wA4) + w44 + B? <m63-2v\34+w44>)2)}

In27]:= evalle::{—((—1+m) (Wld-r wld+qgB (wl3-w24)+w24) (2 gB (W34-w44) +wd4+qB% (W33-2 w34+w44)
nes;= evalsd4 -= FullSimplify[Eigenvalues[J4] /. assumeNoPositionEffect,
Assumptions -» Flatten[{assumeGeneric}]]
evalsJ4

o

(-1+m) (-gB>w33 w34 + (-1+QB) (2gBwW33 + w84 - qBw34) w44)

J

(2 GB (W34 - Wa4) + wA4 + B2 (W33 - 2 WB4 + wa4) ) 2
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neop= evalsL = FullSimplify[Eigenvalues[L] /. assumeNoPositionEffect,

Assumptions -» Flatten[ {assumeGeneric}]]
Check that the eigenvalues of J; are the same asthose of L:
evalsJl - evalsL // FullSimplify
{0, 0}
Conclusion
We again use e; and e, for the eigenvalues of J; and e; and e, for the eigenvalues of J,.

Conditiona on existence of Egas a valid marginal one-locus equilibrium, we would like to know if the condition
for invasion of A; can be determined exclusively based on the eigenvalues of J;. If thisis the case, we know that
what we have shown above for the case of additive fitnesses and a monomorphic continent holds more generaly:
If invasion of A; via Eg is possible in the two-type branching process, then it is also possible in the deterministic
two-locus dynamics, and vice versa.

To illustrate the dynamics, consider the 3-simplex A%, which has four verteces, each of which corresponds to the
fixation of one out of the four gametes A; By, A; By, A;B; and A, B,. Moreover, there are six edges, each of which
corresponds to the case where a particular pair of alleles segretages in the population; there are four faces, each of

which corresponds to the case where al but one particular allele segregate in the population. The interior of A3
corresponds to all four aleles segregating. Clearly, the margina one-locus equilibrium Eg sits on the edge that
connects the two verteces that correspohd to fixation of A, B; and A, By, respectively. Eg is a valid one-locus
polymorphism only if it does not sit on one of these verteces, but on the edge in between.

oty aty
0%z 0%y
My ot
0%z 0%y
foral i e {1, 2, 3, 4}. Therefore, we see that J, characterises the dynamics along the edge of A2 that connects the
verteces x4 = 1 and x3 = 1. From this, it follows that the eigenvalues of J, determine the so-called internal stability
oty of,
o it
Xy O
and therefore characterises the dynamics transversal to the boundary of A3 that connects the verteces x, = 1 and
X3 = 1, i.e. the dynamics leading into or out of the interior of the simplex. From this, it follows that the eigenvalues
of J; determine the so-called external stability of Eg. Obviously, the external stability is directly linked to the
guestion of wheter or not Eg can be invaded by a mutation at locus A.

Matrix J4 is given by , where f; = fi(xq, X2, X3, X4) iSthe recursion eguation of gamete frequency i and

of Eg, that is stability aong the edge of A% on which Eg sits. Matrix Ji, on the other hand, is given by

As shown above, with generic fithesses and an arbitrary frequency g, of B; on the continent, one out of the two
eigenvalues of J4 is dways 0. We arbitrarily assign 0 to eigenvalue e3. Then, the value of e, determinesi) exis-
tence of Eg in the one- and two-locus dynamics, and ii) about asymptotic stability of Eg in the one-locus dynam-
ics. Both are required for the initial condition of our biological scenario, and fulfilled if and only if 4 < 1. From
this, however, it automatically follows that whenever Egbecomes unstable in the two-locus dynamics (upon
occurrence of A,), this can only be due to either e; or e, being larger than 1. Because e; and e, are shared between
J1 and L, this argument proof what we wanted to show: If invasion of A; via Eg is possible in the two-type
branching process, then it is also possible in the deterministic two-locus dynamics, and vice versa.



