SUPPLEMENTAL MATERIAL

New Generation of Artificial MicroRNA and Synthetic *Trans*-Acting Small Interfering RNA Vectors for Efficient Gene Silencing in Arabidopsis

Alberto Carbonell, Atsushi Takeda, Noah Fahlgren, Simon C. Johnson, Josh T. Cuperus and James C. Carrington

Supplemental Figure S1. AtMIR390a-B/c vectors for direct cloning of amiRNAs.

Supplemental Figure S2., Diagrams of *AtMIR319a*, *AtMIR319a-21* and *AtMIR390a* foldbacks used to express several amiRNAs in *N. benthamiana*.

Supplemental Figure S3. Base-pairing of amiRNAs and target mRNAs.

Supplemental Figure S4. *AtTAS1c-B/c* vectors for direct cloning of syn-tasiRNAs.

Supplemental Figure S5. Organization of syn-tasiRNA constructs.

Supplemental Figure S6. Flowering time analysis of Arabidopsis Col-0 T1 transgenic plants expressing amiRNAs or syn-tasiRNAs.

Supplemental Figure S7. Processing analyses of syn-tasiRNAs expressed in Arabidopsis Col-0 T1 transgenic lines (35S:AtTAS1c-D3Trich-D4Ft and 35S:AtTAS1c-D3Ft-D4Trich).

Supplemental Figure S8. Processing and phasing analyses of endogenous *AtTAS1c*-tasiRNA in Arabidopsis Col-0 T1 transgenic lines expressing syn-tasiRNAs (35S:AtTAS1c-D3Trich-D4Ft, 35S:AtTAS1c-D3Ft-D4Trich and 35S:GUS control).

Supplemental Figure S9. Processing analyses of endogenous *AtTAS1c*-derived siRNAs in Arabidopsis Col-0 T1 transgenic plants expressing syn-tasiRNAs (*35S:AtTAS1c-D3Trich-D4Ft*, *35S:AtTAS1c-D3Ft-D4Trich* and *35S:GUS* control).

Supplemental Table SI. Phenotypic penetrance of amiRNAs expressed in *A. thaliana* Col-0 T1 transgenic plants.

Supplemental Table SII. Phenotypic penetrance of amiRNAs or syn-tasiRNAs expressed in *A. thaliana* Col-0 T1 transgenic plants.

Supplemental Table SIII. Phenotypic penetrance of amiRNAs or syn-tasiRNAs expressed in *A. thaliana* Col-0 T2 transgenic plants.

Supplemental Table SIV. DNA oligonucleotides used in this study.

Supplemental Table SV. Sequences and predicted targets for all the amiRNAs and syntasiRNAs used in this study.

Supplemental Table SVI. Summary of high-throughput small RNA libraries from *A*. *thaliana* transgenic lines.

Supplemental Table SVII. miRBase Locus Identifiers of the Arabidopsis conserved *MIRNA* precursors used in this study.

Supplemental Table SVIII. miRBase Locus Identifiers of those plant *MIRNA* precursors previously used for expressing amiRNAs.

Supplemental Protocol S1. Protocol to design and clone amiRNAs or syn-tasiRNAs in *BsaI/ccd*B-based ('B/c') vectors containing the *AtMIR390a* or *AtTAS1c* precursors, respectively.

Supplemental Text S1. DNA sequence in FASTA format of all *MIRNA* foldbacks used in this study to express and analyze amiRNAs.

Supplemental Text S2. DNA sequence in FASTA format of all *AtTAS1c*-based constructs used to express and analyze syn-tasiRNAs.

Supplemental Text S3. DNA sequence of *BsaI-ccd*B-based (B/c) vectors used for direct cloning of amiRNAs or syn-tasiRNAs.

Supplemental References.

AtMIR390a-Bsal/ccdB-based (B/c) vectors for direct cloning of artificial miRNAs

pENTR-AtMIR390a-B/c

pMDC32B-AtMIR390a-B/c

pMDC123SB-AtMIR390a-B/c

pFK210B-AtMIR390a-B/c

Supplemental Figure S1. *AtMIR390a-B/c* vectors for direct cloning of amiRNAs. A, Diagram of an *AtMIR390a-B/c* Gateway-compatible entry vector (*pENTR-AtMIR390a-B/c*). B, Diagrams of *AtMIR390a-B/c*-based binary vectors for expression of amiRNAs in plants (*pMDC32B-AtMIR390a-B/c*, *pMDC123SB-AtMIR390a-B/c* and *pFK210B-AtMIR390a-B/c*). RB: right border; 35S: *Cauliflower mosaic virus* promoter; *BsaI*: *BsaI* recognition site, *ccd*B: gene encoding the *ccd*B toxin; LB: left border; attL1 and attL2: gateway recombination sites. *Kan^R*: kanamycin resistance gene; *Hyg^R*: hygromycin resistance gene; *Basta^R*: glufosinate resistance gene; *Spec^R*: spectinomycin resistance gene. Undesired *BsaI* sites removed from the plasmid are crossed out.

AtMIR319a-based amiRNAs

AtMIR319a-21-based amiRNAs

AtMIR319a-21-4

AtMIR390a-based amiRNAs

AtMIR390a-1

✓ GU^AUUGAAAUACU^CAACAAUGCCGA ✓ U^AC^{AACUUUAUGA}U^{UUGUUACGGCU}

AtMIR390a-2

✓ GU^AUGUCAUGUCA^ACUUCGAGCCUA ✓ U^AC^ACAGUACAGU_GGAAGCUCGGAU

AtMIR390a-3

✓ GU^AUAUGUCUCCA^AAAUGUAGCCCA ✓ U^AC^AUACAGAGGU_GUUACAUCGGGU

AtMIR390a-4

∧ G U ^A U U C U G A G G G A^A A A U A A C G C C C A √ U ^U A _C ^A A G A C U C C C U _G U U A U U G C G G G U √ √ V ^A C

AtMIR390a-5

✓ GU^AUGAAGCUAUA^UUGACGUCCUUA ✓ UA_CACUUCGAUAU_CACUGCAGG<mark>AA</mark>U

AtMIR390a-6

✓ GU^AUCCUAAAAUA^AUCUAAGGCCGA ✓ UA_CAGGAUUUUAU_GAGAUUCCGGCU

Supplemental Figure S2., Diagrams of *AtMIR319a*, *AtMIR319a-21* and *AtMIR390a* foldbacks used to express several amiRNAs in *N. benthamiana*. Nucleotides corresponding to the miRNA guide and miRNA* are in blue and green, respectively. Other nucleotides from the *AtMIR319a*, *AtMIR319a-21* and *AtMIR390a* foldbacks are in light grey, dark grey, and black, respectively. Nucleotides that were added or modified that are in light brown and red, respectively. Shapes of the *AtMIR319a*, *AtMIR319a-21* and *AtMIR319a*, *State at MiR319a*, *AtMIR319a*, *AtMIR390a* foldbacks are in light grey, and black, respectively.

amiR-F	t 5'	TTGGTTATAAAGGAAGAGGCC	3′
target mRNA	3′	AACCAATATTTCCTTCTTCGG FT	5′
amiR-Lfy	<i>5'</i>	TAACAGTGAACGTACTGTCGC	3′
target mRNA	3′	ATTGTCACTTGCATCACAGCG LFY	5′
amiR-Ch42	5′	TTAAGTGTCACGGAAATCCCT	3′
target mRNA	3′	CATTCACAGTGCCTTTAGGAA ! CH42	5′
amiR-Trich	5′	TCCCATTCGATACTGCTCGCC	3′
target mRNA	3′	AGGGTAAGCTATGACGAGTGA	5′
	5′	TCCCATTCGATACTGCTCGCC	3′
	3′	AGGGTAAGCTATGATGAGTGG	5′
	5′	TCCCATTCGATACTGCTCGCC	3′
	3′	AGGGTAAGCTACGATGAGTGA ! ETC2	5′

Supplemental Figure S3. Base-pairing of amiRNAs and target mRNAs. amiRNA and mRNA target nucleotides are in blue and brown, respectively.

AtTAS1c-Bsal/ccdB-based (B/c) vectors for direct cloning of synthetic tasiRNAs

pMDC123SB-AtTAS1c-B/c

Supplemental Figure S4. *AtTAS1c-B/c* vectors for direct cloning of syn-tasiRNAs. A, Diagram of an *AtTAS1c-B/c* Gateway-compatible entry vector (*pENTR-AtTAS1c-B/c*). B, Diagrams of *AtTAS1c-B/c* binary vectors for expression of syn-tasiRNAs in plants (*pMDC32B-AtTAS1c-B/c*, *pMDC123SB-AtTAS1c-B/c* and *pFK210B-AtTAS1c-B/c*). RB: right border; 35S: *Cauliflower mosaic virus* promoter; *Bsa1*: *Bsa1* recognition site, *ccd*B: gene encoding the *ccd*B toxin; LB: left border; attL1 and attL2: GATEWAY recombination sites. *Kan^R*: kanamycin resistance gene; *Hyg^R*: hygromycin resistance gene; *Basta^R*: glufosinate resistance gene; *Spec^R*: spectinomycin resistance gene. Undesired *Bsa*I sites removed from the plasmid are crossed out.

Supplemental Figure S5. A, Organization of syn-tasiRNA constructs. Arrow indicates miR173-guided cleavage site. tasiRNA positions 3'D1[+] to 3'D10[+] are indicated by brackets, with positions 3'D3[+] and 3'D4[+] highlighted in black. The expected syn-tasiRNA-mRNA target interactions are represented. miR173, syn-tasiR-Trich and syn-tasiR-Ft sequences are in orange, dark blue and light blue, respectively. miR173 target site and syn-tasiRNA-mRNA target sequences are in light and dark brown, respectively.

Supplemental Figure S6. Flowering time analysis of Arabidopsis Col-0 T1 transgenic plants expressing amiRNAs or syn-tasiRNAs. Mean (+ s.d.) days to flowering.

Supplemental Figure S7. Processing analyses of syn-tasiRNAs expressed in Arabidopsis Col-0 T1 transgenic lines (35S:AtTAS1c-D3Trich-D4Ft and 35S:AtTAS1c-D3Ft-D4Trich). A, Small RNA size distribution of 19-24 nt siRNAs in both 3'D3[+] (up) and 3'D4[+] (bottom) positions in 35S:AtTAS1c-D3Trich-D4Ft (left) and 35S:AtTAS1c-D3Ft-D4Trich (right) transgenic plants. Correct syn-tasiR-Trich and syn-tasiR-Ft sequences are in dark and light blue, respectively. Other small RNA sequences are in grey. B, Distribution of small RNA reads (19-24 nt) having a 5' nucleotide within a -4/+4 region relative to the correct 5' nucleotide position of the syn-tasiRNA ('0' position). Other details as in panel A.

Endogenous *AtTAS1c*-tasiRNA processing and phasing analyses in Arabidopsis

Supplemental Figure S8. Processing and phasing analyses of endogenous *AtTAS1c*-tasiRNA in Arabidopsis Col-0 T1 transgenic lines expressing syn-tasiRNAs (*35S:AtTAS1c-D3Trich-D4Ft*, *35S:AtTAS1c-D3Ft-D4Trich* and *35S:GUS* control). Analyses of tasiR-3'D3[+] and tasiR-3'D4[+] (*AtTAS1c*-derived) siRNA sequences by high-throughput sequencing. Pie charts, percentage of 19-24 nt reads; radar plots, percentages of 21-nt reads corresponding to each register from *AtTAS1c* transcripts, with position 1 designated as immediately after the miR173-guided cleavage site.

Supplemental Figure S9. Processing analyses of endogenous *AtTAS1c*-derived siRNAs in Arabidopsis Col-0 T1 transgenic plants expressing syn-tasiRNAs (*35S:AtTAS1c-D3Trich-D4Ft*, *35S:AtTAS1c-D3Ft-D4Trich* and *35S:GUS* control). A, Small RNA size distribution of 19-24 nt siRNAs in both 3'D3[+] (up) and 3'D4[+] (bottom) positions in *35S:AtTAS1c-D3Trich-D4Ft* (left) and *35S:AtTAS1c-D3Ft-D4Trich* (right) transgenic plants. Correct tasiR-3'D3[+] and tasiR-3'D4[+] sequences are in dark and light pink, respectively. Other small RNA sequences are in grey. B, Distribution of small RNA reads (19-24 nt) having a 5' nucleotide within a -4/+4 region relative to the correct 5' nucleotide position of the endogenous tasiRNA ('0' position). Other details are as in panel A.

Supplemental Table SI: Phenotypic penetrance of amiRNAs

expressed in A. thaliana Col-0 T1 transgenic plants				
Construct	T1 analyzed	Phenotypic penetrance ^a		
35S:AtMIR390a-Ft	34	100%		
35S:AtMIR390a-Lfy	67	34%		
35S:AtMIR390a-Ch42	101	97%		
		10% weak		
		25% intermediate		
		62% severe		
35S:AtMIR390a-Trich	53	98%		
		29% try cpc type		

^aThe Ft phenotype was defined as a higher 'days to flowering' value when compared to the average 'days to flowering' value of the *35S:GUS* control set.

The Lfy phenotype was defined as a higher 'number of secondary shoots' when compared to the average 'number of secondary shoots' value of the *35S:GUS* control set.

The Ch42 phenotype was scored in 10 days-old seedling and was considered 'weak', 'intermediate' or 'severe' if seedlings have >2 leaves, exactly 2 leaves or no leaves (only 2 cotyledons), respectively.

The Trich phenotype was defined as a higher number of trichomes when compared to transformants of the 35S:GUS control set. Plants with a Trich phenotype were considered 'try cpc type' if they resembled the Arabidopsis try cpc double mutant.

syn-tasiRNAs expressed in	A. thaliana Col	I-0 T1 transgenic plants
Construct	T1 analyzed	Phenotypic penetrance ^a
35S:AtMIR390-Trich	92	95%
		20% try cpc type
35S:AtMIR390-Ft	95	95%
35S:TAS1c-D3&D4Trich	73	82%
		0% <i>try cpc</i> type
35S:TAS1c-D3&D4Ft	47	100%
35S:TAS1c-D3Trich-D4Ft	43	74% Trich
		0% <i>try cpc</i> type
		98% Ft
		73% Trich and Ft
35S:TAS1c-D3Ft-D4Trich	68	62% Trich
		0% <i>try cpc</i> type
		100% Ft
		62% Trich and Ft

^a The Ft phenotype was defined as a higher 'days to flowering' value when compared to the average 'days to flowering' value of the *35S:GUS* control set.

The Trich phenotype was defined as a higher number of trichomes when compared to transformants of the 35S:GUS control set. Plants with a Trich phenotype were considered '*try cpc* type' if they resembled the Arabidopsis *try cpc* double mutant.

Supplemental Table SIII: syn-tasiRNAs expressed in	Phenotypic p A. thaliana C	Denetrance of amiRNAs or Col-0 T2 transgenic plants	
Construct	T2	Phenotypic penetrance ^b	
	analyzed ^a		
35S:AtMIR390-Trich	10	90%	
		100% <i>try cpc</i> type	
35S:TAS1c-D3&D4Trich	10	80%	
		0% <i>try cpc</i> type	
35S:TAS1c-D3Trich-D4Ft	10	90%	
		0% <i>try cpc</i> type	
35S:TAS1c-D3Ft-D4Trich	10	90%	
		0% <i>try cpc</i> type	

^a 80-100 individuals for each T2 independent line were analyzed. ^b The Trich phenotype was defined as a higher number of trichomes when compared to transformants of the 35*S*:*GUS* control set. Plants with a Trich phenotype were considered '*try cpc* type' if they resembled the Arabidopsis *try cpc* double mutant.

Supplemental Table SIV. DNA oligonucleotides used.				
Oligonucleotide Name	Sequence			
3'PCR primer i1	CAAGCAGAAGACGGCATACGAACATCGATTGATGGTGCCTACAG			
3'PCR primer i3	CAAGCAGAAGACGGCATACGACATCTGATTGATGGTGCCTACAG			
3'PCR primer i4	CAAGCAGAAGACGGCATACGAAACGTAATTGATGGTGCCTACAG			
3'PCR primer i5	CAAGCAGAAGACGGCATACGATGGTAAATTGATGGTGCCTACAG			
3'PCR primer i9	CAAGCAGAAGACGGCATACGAATTGGCATTGATGGTGCCTACAG			
5'PCR primer P5	AATGATACGGCGACCACCGACAGGTTCAGAGTTCTACAGTCCGA			
AtMIR319a-1-I	GATTGAAATACTCAACAATGCCGTCTCTCTTTTGTATTCC			
AtMIR319a-1-II	GACGGCATTGTTGAGTATTTCAATCAAAGAGAATCAATGA			
AtMIR319a-1-III	GACGACATTGTTGAGAATTTCATTCACAGGTCGTGATATG			
AtMIR319a-1-IV	GAATGAAATTCTCAACAATGTCGTCTACATATATATTCCT			
AtMIR319a-2-I	GATGTCATGTCAACTTCGAGCCTTCTCTCTTTTGTATTCC			
AtMIR319a-2-II	GAAGGCTCGAAGTTGACATGACATCAAAGAGAATCAATGA			
AtMIR319a-2-III	GAAGACTCGAAGTTGTCATGACTTCACAGGTCGTGATATG			
AtMIR319a-2-IV	GAAGTCATGACAACTTCGAGTCTTCTACATATATATTCCT			
AtMIR319a-3-I	GATATGTCTCCAAAATGTAGCCCTCTCTTTTGTATTCC			
AtMIR319a-3-II	GAGGGCTACATTTTGGAGACATATCAAAGAGAATCAATGA			
AtMIR319a-3-III	GAGGACTACATTTTGCAGACATTTCACAGGTCGTGATATG			
AtMIR319a-3-IV	GAAATGTCTGCAAAATGTAGTCCTCTACATATATATTCCT			
AtMIR319a-4-I	GATTCTGAGGGAAAATAACGCGGCTCTCTTTTGTATTCCAATT			
AtMIR319a-4-II	GCCGCGTTATTTTCCCTCAGAATCAAAGAGAATCAATGATCC			
AtMIR319a-4-III	GCCACGTTATTTTCGCTCAGATTCACAGGTCGTGATATGAT			
AtMIR319a-4-IV	GAATCTGAGCGAAAATAACGTGGCTACATATATATTCCTAAAACG			
AtMIR319a-5-I	GATGAAGCTATATTGACGTCCTTCTCTCTTTTGTATTCCAATT			
AtMIR319a-5-II	GAAGGACGTCAATATAGCTTCATCAAAGAGAATCAATGATCC			
AtMIR319a-5-III	GAAAGACGTCAATAAAGCTTCTTCACAGGTCGTGATATGAT			
AtMIR319a-5-IV	GAAGAAGCTTTATTGACGTCTTTCTACATATATATTCCTAAAACG			
AtMIR319a-6-I	GATCCTAAAATAATCTAAGGCCGCTCTCTTTTGTATTCCAATT			
AtMIR319a-6-II	GCGGCCTTAGATTATTTTAGGATCAAAGAGAATCAATGATCC			
AtMIR319a-6-III	GCGACCTTAGATTAATTTAGGTTCACAGGTCGTGATATGAT			
AtMIR319a-6-IV	GAACCTAAATTAATCTAAGGTCGCTACATATATATTCCTAAAACG			
AtMIR319a-F	CTGCAAGGCGATTAAGTTGGGTAAC			
AtMIR319a-R	GCGGATAACAATTTCACACAGGAAACAG			
AtMIR390a-F	CACCTATAGGGGGGAAAAAAGGTAG			
AtMIR390a-R	GAGACTAAAGATGAGATCTAATC			
AtMIR390a-1-F	TGTATTGAAATACTCAACAATGCCGATGATGATCACATTCGTTATCTATTTTTTCGGCATTGTTTAGTATTTCAA			
AtMIR390a-1-R	AATGTTGAAATACTAAACAATGCCGAAAAAATAGATAACGAATGTGATCATCATCGGCATTGTTGAGTATTTCAA			
AtMIR390a-2-F	TGTATGTCATGTCAACTTCGAGCCTATGATGATCACATTCGTTATCTATTTTTTAGGCTCGAAGGTGACATGACA			
AtMIR390a-2-R	AATGTGTCATGTCACCTTCGAGCCTAAAAAATAGATAACGAATGTGATCATCATAGGCTCGAAGTTGACATGACA			
AtMIR390a-3-F	TGTATATGTCTCCAAAATGTAGCCCATGATGATCACATTCGTTATCTATTTTTTGGGCTACATTGTGGGAGACATA			
AtMIR390a-3-R	AATGTATGTCTCCACAATGTAGCCCAAAAAAATAGATAACGAATGTGATCATCATGGGCTACATTTTGGAGACATA			
AtMIR390a-4-F	TGTATTCTGAGGGAAAATAACGCGGATGATGATCACATTCGTTATCTATTTTTTCCGCGTTATTGTCCCTCAGAA			
AtMIR390a-4-R	AATGTTCTGAGGGACAATAACGCGGAAAAAATAGATAACGAATGTGATCATCATCCGCGTTATTTTCCCTCAGAA			
AtMIR390a-5-F	IGTATGAAGCTATATTGACGTCCTTATGATGATCACATTCGTTATCTATTTTTTAAGGACGTCACTATAGCTTCA			
AtMIR390a-5-R	AATGTGAAGCTATAGTGACGTCCTTAAAAAAATAGATAACGAATGTGATCATCATAAGGACGTCAATATAGCTTCA			
AtMIR390a-6-F	IGTATCCTAAAATAATCTAAGGCCGATGATGATGATCACATTCGTTATCTATTTTTCGGCCTTAGAGTATTTTAGGA			
AtMIR390a-6-R	AATGTCCTAAAATACICTAAAGGCCGAAAAAATAGATAACGAATGTGATCATCATCGGCCTTAGATTATTTTAGGA			
AtMIR390a-B/c-F	GTIGTTIGTAAGAGACCATTAGGCACCCCAGGCTTTACAC			
AtMIR390a-B/c-R	GTIGTTAATGIGAGACCGICGAGGIGCAGACIGGCIGIG			
AtMIR390a-Ch42-F	IGTATTAAGIGICACGGAAAICCCTAIGAIGAICACAITCGITAICIAITTITTAGGGAITTICCTIGACACITAA			
AtMIR390a-Ch42-R	AATGTTAAGTGTCAAGGAAATCCCTAAAAAATAGATAACGAATGTGATCATCATAGGGATTTCCGTGACACTTAA			
AtMIR390a-Ft-F	IGTATIGGTTATAAAGGAAGAGGCCAIGAIGAICACATICGTTATCTATTITTIGGCCICTICCGTTATAACCAA			
AUMIR 390a-Ft-K	AATGTTGGTTATAACGGCAAGAGGGCATGATGATGATGATGTGATCATGGCCTCTTCCTTTATAACCAA			
AtMIR390a-Lty-F	IGTATAACAGIGAACGIACIGICGCAIGAIGAICACATICGITATCIATTITTIGCGACAGIACITICACIGITA			
AtMIR390a-Lfy-R	AATGTAACAGTGCGAAAGTACTGTCGCAAAAAATAGATAACGAATGTGATCATCATGCGACAGTACGTTCACTGTTA			
AtMIR390a-Trich-F				
AtMIR390a-Trich-R	AATGTUUUATTUGAGACTGUTUGUUAAAAAATAGATAACGAATGTGATUATUGUGAGUAGTATCGAATGGGA			
ALLASIC-F				
ATTASIC-K				
ATTASIC-D3&D4Ft-F				
ATTASIC-D3&D4Ft-K				
ATTASIC-D3&D4Trich-F				
ALLASIC-D3&D4111cn-K	UTICUCUAUCAUTATCUAATUUUAUUUAUCAUCAUTATCUAATUUUA			

Oligonucleotide Name	Sequence
AtTAS1c-D3Ft-D4Trich-F	ATTATTGGTTATAAAGGAAGAGGCCTCCCATTCGATACTGCTCGCC
AtTAS1c-D3Ft-d4Trich-R	GTTCGGCGAGCAGTATCGAATGGGAGGCCTCTTCCTTTATAACCAA
AtTAS1c-D3Trich-D4Ft-F	ATTATCCCATTCGATACTGCTCGCCTTGGTTATAAAGGAAGAGGCC
AtTAS1c-D3Trich-D4Ft-F	GTTCGGCCTCTTCCTTTATAACCAAGGCGAGCAGTATCGAATGGGA
BsaI-AtMIR390a-3'-F	ATCTGTAAGAGACCGTTGTTGGTCTCACATTGGCTCTTCTTACTACAATG
BsaI-AtMIR390a-5'-R	GAGCCAATGTGAGACCAACAACGGTCTCTTACAGATTCTTCTCTACTTTG
BsaI-AtTAS1c-3'-F	AAAATTAAGAGACCGTTGTTGGTCTCAGAACTAGAAAAGACATTGGACAT
BsaI-AtTAS1c-5'-R	TTCTAGTTCTGAGACCAACAACGGTCTCTTAATTTTCTAAGATCCACCGA
Probe-amiR-1	CGGCATTGTTGAGTATTTCAA
Probe-amiR-2	AGGCTCGAAGTTGACATGACA
Probe-amiR-3	GGGCTACATTTTGGAGACATA
Probe-amiR-4	CCGCGTTATTTTCCCTCAGAA
Probe-amiR-5	AAGGACGTCAATATAGCTTCA
Probe-amiR-6	CGGCCTTAGATTATTTTAGGA
Probe-amiR-Ch42	AGGGATTTCCGTGACACTTAA
Probe-amiR-Lfy	GCGACAGTACGTTCACTGTTA
Probe-amiR/syn-tasiR-Ft	GGCCTCTTCCTTTATAACCAA
Probe-amiR/syn-tasiR-Trich	GGCGAGCAGTATCGAATGGGA
Probe-U6	AGGGGCCATGCTAATCTTCTC
qAtACT2-F	AAAAATGGCTGAGGCTGATGA
qAtACT2-R	GAAAAACAGCCCTGGGAGC
qAtCBP20-F	AGCTGCGCCAACGAATTATG
qAtCBP20-R	TCCATGGCGATTTTGTCCTC
qAtCH42-CS-F	CATGCACAAGTAGGGACGGTT
qAtCH42-CS-R	GTCACGGAAATCCTTTGGGTT
qAtCPC-CS-F	TCGAATGGGAAGCTGTGAAGA
qAtCPC-CS-R	GCGATCAACTCCCACCTGTC
qAtETC2-CS-F	GCGGTCCCAGTCTTAGGCA
qAtETC2-CS-R	TTCGATGCTACTCACTTCTTCAGAGT
qAtFT-F	TGGAACAACCTTTGGCAATG
qAtFT-R	CGACACGATGAATTCCTGCA
qAtLFY-F	CCAAGGTGACGAACCAAGTATTC
qAtLFY-R	AGGCAGTGGAGAGCGTAACAG
qAtSAND-F	CTCAAAGATTGCAGGGTACGC
qAtSAND-R	TCTTCAACACGCATTCCACCT
qAtTRY-CS-F	ACACAAAATCGCCCTCCATG
qAtTRY-CS-R	TCAAATCCCACCTATCACCGA
qAtUBQ10-F	CGCCTGCAAAGTGACTCGA
qAtUBQ10-R	CCAACAGCTCAACACTTTCGC

Supplemental Table SV. Sequences and predicted targets for all the amiRNA and syn-tasiRNA sequences used in this study.						
Cassette Name	small RNA	small RNA	Foldback/	small RNA sequence (5'->3')	Reference	Predicted target(s)
	name	class	Transcript			
AtMIR319-1	amiR-1	amiRNA	AtMIR319a	UUGAAAUACUCAACAAUGCCG	This work	AGO2, AGO3
AtMIR319-2	amiR-2	amiRNA	AtMIR319a	UGUCAUGUCAACUUCGAGCCU	This work	RDR3, RDR4, RDR5
AtMIR319-3	amiR-3	amiRNA	AtMIR319a	UAUGUCUCCAAAAUGUAGCCC	This work	RDR3, RDR4, RDR5
AtMIR319-4	amiR-4	amiRNA	AtMIR319a-21	UUCUGAGGGAAAAUAACGCGG	This work	RDR6
AtMIR319-5	amiR-5	amiRNA	AtMIR319a-21	UGAAGCUAUAUUGACGUCCUU	This work	RDR6
AtMIR319-6	amiR-6	amiRNA	AtMIR319a-21	UCCUAAAAUAAUCUAAGGCCG	This work	RDR6
AtMIR390a-1	amiR-1	amiRNA	AtMIR390a	UUGAAAUACUCAACAAUGCCG	This work	AGO2, AGO3,
AtMIR390a-2	amiR-2	amiRNA	AtMIR390a	UGUCAUGUCAACUUCGAGCCU	This work	RDR3, RDR4, RDR5
AtMIR390a-3	amiR-3	amiRNA	AtMIR390a	UAUGUCUCCAAAAUGUAGCCC	This work	RDR3, RDR4, RDR5
AtMIR390a-4	amiR-4	amiRNA	AtMIR390a	UUCUGAGGGAAAAUAACGCGG	This work	RDR6
AtMIR390a-5	amiR-5	amiRNA	AtMIR390a	UGAAGCUAUAUUGACGUCCUU	This work	RDR6
AtMIR390a-6	amiR-6	amiRNA	AtMIR390a	UCCUAAAAUAAUCUAAGGCCG	This work	RDR6
AtMIR390a-Ft	amiR-Ft	amiRNA	AtMIR390a	UUGGUUAUAAAGGAAGAGGCC	Schwabb et al., 2006	FT
AtMIR390a-Lfy	amiR-Lfy	amiRNA	AtMIR390a	UAACAGUGAACGUACUGUCGC	Schwabb et al., 2006	LFY
AtMIR390a-Ch42	amiR-Ch42	amiRNA	AtMIR390a	UUAAGUGUCACGGAAAUCCCU	Felippes and Weigel, 2009	CH42
AtMIR390a-Trich	amiR-Trich	amiRNA	AtMIR390a	UCCCAUUCGAUACUGCUCGCC	Schwabb et al., 2006	TRY, CPC, ETC2
AtTAS1c-d3&d4Trich	syn-tasiR-Trich	syn-tasiRNA	AtTAS1c	UCCCAUUCGAUACUGCUCGCC	Schwabb et al., 2006	TRY, CPC, ETC2
AtTAS1c-d3&d4Ft	syn-tasiR-Ft	syn-tasiRNA	AtTAS1c	UUGGUUAUAAAGGAAGAGGCC	Schwabb et al., 2006	FT
AtTAS1c-d3Trich-d4Ft	syn-tasiR-Trich	syn-tasiRNA	AtTAS1c	UCCCAUUCGAUACUGCUCGCC	Schwabb et al., 2006	TRY, CPC, ETC2
	syn-tasiR-Ft	syn-tasiRNA	AtTAS1c	UUGGUUAUAAAGGAAGAGGCC	Schwabb et al., 2006	FT
AtTAS1c-d3Ft-d4Trich	syn-tasiR-Ft	syn-tasiRNA	AtTAS1c	UUGGUUAUAAAGGAAGAGGCC	Schwabb et al., 2006	FT
	syn-tasiR-Trich	syn-tasiRNA	AtTAS1c	UCCCAUUCGAUACUGCUCGCC	Schwabb et al., 2006	TRY, CPC, ETC2

Supplemental Table SVI. Summary of high-throughput small RNA libraries from *A. thaliana* transgenic lines

Sample ID	Construct	3'PCR primer	Barcode Sequence	Adaptor-parsed reads
1	35S:AtMIR390a-Ft	i3	CAGATG	31,046,134
2	35S:AtMIR390a-Lfy	i5	TTACCA	33,795,367
3	35S:AtMIR390a-Ch42	i9	GCCAAT	19,417,667
4	35S:AtMIR390a-Trich	i1	CGATGT	30,544,221
5	35S:GUS	i1	CGATGT	17,503,977
6	35S:AtTAS1c-D3Trich-D4Ft	i4	TACGTT	25,061,705
7	35S:AtTAS1c-D3Ft-D4Trich	i5	TTACCA	25,777,455

Supplemental Table SVII.			
Arabidopsis cons	erved MIRNA		
precursors used in	n this study.		
MIRNA	Locus		
precursor	Identifier		
Ath-MIR156a	MI0000178		
Ath-MIR156b	MI0000179		
Ath-MIR156c	MI0000180		
Ath-MIR156d	MI0000181		
Ath-MIR156e	MI0000182		
Ath-MIR156f	MI0000183		
Ath-MIR156g	MI0001082		
Ath-MIR156h	MI0001083		
Ath-MIR157a	MI0000184		
Ath-MIR157b	MI0000185		
Ath-MIR157c	MI0000186		
Ath-MIR157d	MI0000187		
Ath-MIR159a	MI0000189		
Ath-MIR159b	MI0000218		
Ath-MIR159c	MI0001085		
Ath-MIR160a	MI0000190		
Ath-MIR160b	MI0000191		
Ath-MIR160c	<u>MI0000192</u>		
Ath-MIR162a	MI0000194		
Ath-MIR162b	MI0000195		
Ath-MIR164a	<u>MI0000197</u>		
Ath-MIR164b	MI0000198		
Ath-MIR164c	MI0001087		
Ath-MIR165a	<u>MI0000199</u>		
Ath-MIR165b	MI0000200		
Ath-MIR166a	MI0000201		
Ath-MIR166b	MI0000202		
Ath-MIR166c	MI0000203		
Ath-MIR166d	MI0000204		
Ath-MIR166e	MI0000205		
Ath-MIR166f	MI0000206		
Ath-MIR166g	<u>MI0000207</u>		
Ath-MIR167a	<u>MI0000208</u>		
Ath-MIR167b	MI0000209		
Ath-MIR167c	MI0001088		
Ath-MIR167d	<u>MI0000975</u>		
Ath-MIR168a	<u>MI0000210</u>		
Ath-MIR168b	<u>MI0000211</u>		
Ath-MIR169a	<u>MI0000212</u>		
Ath-MIR169b	MI0000976		
Ath-MIR169c	MI0000977		
Ath-MIR169d	MI0000978		
Ath-MIR169e	MI0000979		
Ath-MIR169f	<u>MI0000980</u>		
Ath-MIR169g	MI0000981		
Ath-MIR169h	MI0000982		
Ath-MIR169i	MI0000983		
Ath-MIR169j	MI0000984		
Ath-MIR169k	MI0000985		
Ath-MIR1691	<u>MI0000986</u>		
Ath-MIR169m	<u>MI0000987</u>		
Ath-MIR169n	<u>MI0000988</u>		
Ath-MIR170	MI0000213		

MIRNA	Locus
precursor	Identifier
Ath-MIR171a	MI0000214
Ath-MIR171b	MI0000989
Ath-MIR171c	MI0000990
Ath-MIR172a	MI0000215
Ath-MIR172b	MI0000216
Ath-MIR172c	MI0000991
Ath-MIR172d	MI0000992
Ath-MIR172e	MI0001089
Ath-MIR173	MI0000217
Ath-MIR319a	MI0000544
Ath-MIR319b	MI0000545
Ath-MIR319c	MI0001086
Ath-MIR390a	<u>MI0001000</u>
Ath-MIR390b	MI0001001
Ath-MIR391	<u>MI0001002</u>
Ath-MIR393a	MI0001003
Ath-MIR393b	MI0001004
Ath-MIR394a	MI0001005
Ath-MIR394b	MI0001006
Ath-MIR395a	MI0001007
Ath-MIR395b	MI0001008
Ath-MIR395c	MI0001009
Ath-MIR395d	MI0001010
Ath-MIR395e	MI0001011
Ath-MIR395f	MI0001012
Ath-MIR396a	MI0001013
Ath-MIR396b	MI0001014
Ath-MIR397a	MI0001015
Ath-MIR397b	<u>MI0001016</u>
Ath-MIR398a	<u>MI0001017</u>
Ath-MIR398b	<u>MI0001018</u>
Ath-MIR398c	<u>MI0001019</u>
Ath-MIR399a	<u>MI0001020</u>
Ath-MIR399b	<u>MI0001021</u>
Ath-MIR399c	<u>MI0001022</u>
Ath-MIR399d	<u>MI0001023</u>
Ath-MIR399e	MI0001024
Ath-MIR399f	MI0001025
Ath-MIR408	<u>MI0001080</u>
Ath-MIR827	MI0005383

Supplemental Table SVIII. miRBase Locus Identifiers of those plant MIRNA precursors					
previously used for	expressing amiRNAs.				
MIRNA precursor	Plant Species	Locus Identifier	Original Reference		
Ath-MIR159a	Arabidopsis thaliana	MI0000189	Niu et al. 2006		
Ath-MIR159b	Arabidopsis thaliana	MI0000218	Eamens et al. 2011		
Ath-MIR164a	Arabidopsis thaliana	MI0000197	Alvarez et al. 2006		
Ath-MIR164b	Arabidopsis thaliana	MI0000198	Alvarez et al. 2006		
Ath-MIR169d	Arabidopsis thaliana	MI0000978	Liu et al. 2010		
Ath-MIR171a	Arabidopsis thaliana	MI0000214	Qu et al. 2007		
Ath-MIR172a	Arabidopsis thaliana	MI0000215	Schwab et al. 2006		
Ath-MIR319a	Arabidopsis thaliana	MI0000544	Schwab et al. 2006		
Ath-MIR390a	Arabidopsis thaliana	MI0001000	Montgomery et al. 2008		
Ath-MIR395a	Arabidopsis thaliana	MI0001007	Liang et al. 2012		
Cre-MIR1157	Chlamydomonas reinhardtii	MI0006219	Zhao et al. 2009		
Cre-MIR1162	Chlamydomonas reinhardtii	MI0006223	Molnar et al. 2009		
Ghb-MIR169a	Gossypium herbaceum	MI0005646	Ali et al. 2013		
Osa-MIR528	Oryza sativa	MI0003201	Warthmann et al. 2008		
Ptc-MIR408	Populus trichocarpa	MI0002352	Shi et al. 2010		
Sly-MIR159	Solanum lycopersicum	MI0009974	Vu et al. 2013		
Sly-MIR168a	Solanum lycopersicum	MI0024352	Vu et al. 2013		

Supplemental Protocol S1

Protocol to design and clone amiRNAs or syn-tasiRNAs in *BsaI/ccd*B-based ('B/c') vectors containing *AtMIR390a* or *AtTAS1c* precursors, respectively.

INDEX

1. Selection of the amiRNA or syn-tasiRNA(s) sequence(s)

2. Design of amiRNA or syn-tasiRNA oligonucleotides

2.1 Design of amiRNA oligonucleotides

- 2.1.1 Sequence of the AtMIR390a cassette containing the amiRNA
- 2.1.2. Sequence of the amiRNA oligonucleotides

2.2 Design of syn-tasiRNA oligonucleotides

- 2.2.1 Sequence of the AtTAS1c cassette containing the syn-tasiRNA(s)
- 2.2.2. Sequence of the syn-tasiRNA oligonucleotides

3. Cloning of the amiRNA/syn-tasiRNA sequences in *BsaI/ccd*B (B/c) vectors

- 3.1 Oligonucleotide annealing
- 3.2. Digestion-ligation reaction
- 3.3. E.coli transformation and analysis of transformants

Carrington Lab Protocols Donald Danforth Plant Science Center St Louis, MO (USA) Updated 04/03/2014 Alberto Carbonell

1. Selection of the amiRNA or syn-tasiRNA(s) sequence(s)

A link to a web tool for automated design of the amiRNA or syn-tasiRNA sequence(s) will be available at <u>http://p-sams.carringtonlab.org/</u>

2. Design of amiRNA or syn-tasiRNA oligonucleotides

A link to a web tool for automated design of the amiRNA or syn-tasiRNA oligonucleotide sequences will be available at <u>http://p-sams.carringtonlab.org/</u>

2.1 Design of amiRNA oligonucleotides

2.1.1 Sequence of the AtMIR390a cassette containing the amiRNA

The following FASTA sequence includes the amiRNA sequence inserted in the *AtMIR390a* precursor sequence:

>amiRNA in AtMIR390a precursor

Where:

-X is a DNA base of the amiRNA sequence, and the subscript number is the base position in the amiRNA 21-mer

-X is a DNA base of the amiRNA* sequence, and the subscript number is the base position in the amiRNA* 21-mer

-X is a DNA base of the AtMIR390a foldback

- $\underline{\mathbf{X}}$ is a DNA base of the *AtMIR390a* foldback included in the oligonucleotides required to clone the amiRNA insert in B/c vectors

-X is a DNA base of the *AtMIR390a* foldback that may be modified to preserve the authentic *AtMIR390a* duplex structure

-X is a DNA base of the *AtMIR390a* precursor

In the sequence above:

-Insert the amiRNA sequence where you see

 $x_1 x_2 x_3 x_4 x_5 x_6 x_7 x_8 x_9 x_{10} x_{11} x_{12} x_{13} x_{14} x_{15} x_{16} x_{17} x_{18} x_{19} x_{20} x_{21}$

Note that:

-In general, $X_1=T$ for amiRNA association with AGO1. In this case, $X_{19}=A$ -Bases X_{11} and X_9 DO NOT base-pair to preserve the central bulge of the authentic *AtMIR390a* duplex. The following base-pair rule applies:

-If $X_{11}=G$, then $X_9=A$ -If $X_{11}=C$, then $X_9=T$ -If $X_{11}=A$, then $X_9=G$ -If $X_{11}=U$, then $X_9=C$

2.1.2. Sequence of the amiRNA oligonucleotides

The sequences of the two amiRNA oligonucleotides are:

-Forward oligonucleotide (75 b),

TGTAX₁**X**₂**X**₃**X**₄**X**₅**X**₆**X**₇**X**₈**X**₉**X**₁₀**X**₁₁**X**₁₂**X**₁₃**X**₁₄**X**₁₅**X**₁₆**X**₁₇**X**₁₈**X**₁₉**X**₂₀**X**₂₁**ATGATGATCACA TTCGTTATCTATTTTTX**₁**X**₂**X**₁**X**₂**X**₃**X**₄**X**₅**X**₆**X**₇**X**₈**X**₉**X**₁₀**X**₁₁**X**₁₂**X**₁₃**X**₁₄**X**₁₅**X**₁₆**X**₁₇**X**₁₈**X**₁₉ -Reverse oligonucleotide (75 b),

AATGY₁₉**Y**₁₈**Y**₁₇**Y**₁₆**Y**₁₅**Y**₁₄**Y**₁₃**Y**₁₂**Y**₁₁**Y**₁₀**Y**₉**Y**₈**Y**₇**Y**₆**Y**₅**Y**₄**Y**₃**Y**₂**Y**₁**XAAAAATGATAACG AATGTGATCATCATY**₂₁**Y**₂₀**Y**₁₉**Y**₁₈**Y**₁₇**Y**₁₆**Y**₁₅**Y**₁₄**Y**₁₃**Y**₁₂**Y**₁₁**Y**₁₀**Y**₉**Y**₈**Y**₇**Y**₆**Y**₅**Y**₄**Y**₃**Y**₂**Y**₁ Where:

 $-\mathbf{x}_{1}\mathbf{x}_{2}\mathbf{x}_{3}\mathbf{x}_{4}\mathbf{x}_{5}\mathbf{x}_{6}\mathbf{x}_{7}\mathbf{x}_{8}\mathbf{x}_{9}\mathbf{x}_{10}\mathbf{x}_{11}\mathbf{x}_{12}\mathbf{x}_{13}\mathbf{x}_{14}\mathbf{x}_{15}\mathbf{x}_{16}\mathbf{x}_{17}\mathbf{x}_{18}\mathbf{x}_{19}\mathbf{x}_{20}\mathbf{x}_{21} = \text{amiRNA}$ sequence

 $-\mathbf{x}_{1}\mathbf{x}_{2}\mathbf{x}_{3}\mathbf{x}_{4}\mathbf{x}_{5}\mathbf{x}_{6}\mathbf{x}_{7}\mathbf{x}_{8}\mathbf{x}_{9}\mathbf{x}_{10}\mathbf{x}_{11}\mathbf{x}_{12}\mathbf{x}_{13}\mathbf{x}_{14}\mathbf{x}_{15}\mathbf{x}_{16}\mathbf{x}_{17}\mathbf{x}_{18}\mathbf{x}_{19} = \text{partial amiRNA*}$ sequence

 $-\mathbf{y}_{21}\mathbf{y}_{20}\mathbf{y}_{19}\mathbf{y}_{18}\mathbf{y}_{17}\mathbf{y}_{16}\mathbf{x}_{15}\mathbf{y}_{14}\mathbf{y}_{13}\mathbf{y}_{12}\mathbf{y}_{11}\mathbf{y}_{10}\mathbf{y}_{9}\mathbf{y}_{8}\mathbf{y}_{7}\mathbf{y}_{6}\mathbf{y}_{5}\mathbf{y}_{4}\mathbf{y}_{3}\mathbf{y}_{2}\mathbf{y}_{1}=amiRNA$

reverse-complement sequence

-**TGY**₁₉**Y**₁₈**Y**₁₇**Y**₁₆**Y**₁₅**Y**₁₄**Y**₁₃**Y**₁₂**Y**₁₁**Y**₁₀**Y**₉**Y**₈**Y**₇**Y**₆**Y**₅**Y**₄**Y**₃**Y**₂**Y**₁=amiRNA* reversecomplement sequence -**X**₁**X**₂ = AtMIR390a sequence that may be modified to preserve authentic AtMIR390a duplex structure. -**Y**₂**Y**₁= reverse-complement of **X**₁**X**₂

Example:

The sequences of the two oligonucleotides to clone the amiRNA 'amiR-Trich'

(TCCCATTCGATACTGCTCGCC) are:

-Sense oligonucleotide (75 b),

TGTATCCCATTCGATACTGCTCGCCATGATGATCACATTCGTTATCTATTTTTGGCG AGCAGTCTCGAATGGGA

-Antisense oligonucleotide (75 b),

AATGTCCCATTCGAGACTGCTCGCCAAAAAATAGATAACGAATGTGATCATCATGGCG AGCAGTATCGAATGGGA

Note: the 75 b long oligonucleotides can be ordered PAGE-purified, although oligonucleotides of 'Standard Desalting' quality work well.

2.2 Design of syn-tasiRNA oligonucleotides

2.2.1 Sequence of the AtTAS1c cassette containing the syntasiRNA(s)

The following FASTA sequence includes two syn-tasiRNA sequences inserted in the *AtTAS1c* precursor sequence:

>syn-tasiRNA-1 and syn-tasiRNA-2 in AtTAS1c

Where:

-X is a DNA base of the syn-tasiRNA-1 sequence, and the subscript number is the base position in the syn-tasiRNA-1 21-mer

-X is a DNA base of the syn-tasiRNA-2 sequence, and the subscript number is the base position in the syn-tasiRNA-2 21-mer

-X is a DNA base of the *AtTAS1c* precursor included in the oligonucleotides required to clone the syn-tasiRNA insert in B/c vectors

-X is a DNA base of the *AtTAS1c* precursor

Note that in general, $X_1=T$ and $X_1=T$ for syn-tasiRNA association with AGO1.

In the sequence above, replace the sequences

 $x_1x_2x_3x_4x_5x_6x_7x_8x_9x_{10}x_{11}x_{12}x_{13}x_{14}x_{15}x_{16}x_{17}x_{18}x_{19}x_{20}x_{21}$ and $x_1x_2x_3x_4x_5x_6x_7x_8x_9x_{10}x_{11}x_{12}x_{13}x_{14}x_{15}x_{16}x_{17}x_{18}x_{19}x_{20}x_{21}$ by the sequences of syntasiRNA_1 and syntasiRNA_2, respectively.

2.2.2. Sequence of the syn-tasiRNA oligonucleotides

The sequences of the two syn-tasiRNA oligonucleotides are:

-Sense oligonucleotide (46 b):

 $\mathbf{ATTAX_1X_2X_3X_4X_5X_6X_7X_8X_9X_{10}X_{11}X_{12}X_{13}X_{14}X_{15}X_{16}X_{17}X_{18}X_{19}X_{20}X_{21}X_1X_2X_3X_4X_5X_6X_7}$ $\mathbf{X_8X_9X_{10}X_{11}X_{12}X_{13}X_{14}X_{15}X_{16}X_{17}X_{18}X_{19}X_{20}X_{21}}$

-Antisense oligonucleotide (46 b):

 $\begin{aligned} & \textbf{GTTCY}_{21}\textbf{Y}_{20}\textbf{Y}_{19}\textbf{Y}_{18}\textbf{Y}_{17}\textbf{Y}_{16}\textbf{Y}_{15}\textbf{Y}_{14}\textbf{Y}_{13}\textbf{Y}_{12}\textbf{Y}_{11}\textbf{Y}_{10}\textbf{Y}_{9}\textbf{Y}_{8}\textbf{Y}_{7}\textbf{Y}_{6}\textbf{Y}_{5}\textbf{Y}_{4}\textbf{Y}_{3}\textbf{Y}_{2}\textbf{Y}_{1}\textbf{Y}_{21}\textbf{Y}_{20}\textbf{Y}_{19}\textbf{Y}_{18}\textbf{Y}_{17} \\ & \textbf{Y}_{16}\textbf{Y}_{15}\textbf{Y}_{14}\textbf{Y}_{13}\textbf{Y}_{12}\textbf{Y}_{11}\textbf{Y}_{10}\textbf{Y}_{9}\textbf{Y}_{8}\textbf{Y}_{7}\textbf{Y}_{6}\textbf{Y}_{5}\textbf{Y}_{4}\textbf{Y}_{3}\textbf{Y}_{2}\textbf{Y}_{1} \end{aligned}$

Where:

 $-x_{1}x_{2}x_{3}x_{4}x_{5}x_{6}x_{7}x_{8}x_{9}x_{10}x_{11}x_{12}x_{13}x_{14}x_{15}x_{16}x_{17}x_{18}x_{19}x_{20}x_{21} = syn-tasiRNA-1$ sequence $-x_{1}x_{2}x_{3}x_{4}x_{5}x_{6}x_{7}x_{8}x_{9}x_{10}x_{11}x_{12}x_{13}x_{14}x_{15}x_{16}x_{17}x_{18}x_{19}x_{20}x_{21} = syn-tasiRNA-2$ sequence $-y_{21}y_{20}y_{19}y_{18}y_{17}y_{16}y_{15}y_{14}y_{13}y_{12}y_{11}y_{10}y_{9}y_{8}y_{7}y_{6}y_{5}y_{4}y_{3}y_{2}y_{1} = syn-tasiRNA-1$ reverse-complement sequence $-y_{21}y_{20}y_{19}y_{18}y_{17}y_{16}y_{15}y_{14}y_{13}y_{12}y_{11}y_{10}y_{9}y_{8}y_{7}y_{6}y_{5}y_{4}y_{3}y_{2}y_{1} = syn-tasiRNA-2$ reverse-complement sequence

Example

The sequences of the two oligonucleotides to clone syn-tasiRNAs 'syn-tasiR-Trich' (TCCCATTCGATACTGCTCGCC) and 'syn-tasiR-Ft' (TTGGTTATAAAGGAAGAGGCC) in positions 3'D3[+] and 3'D4[+] of *AtTAS1c*, respectively, are: -Sense oligonucleotide (46 b): ATTATCCCATTCGATACTGCTCGCCTTGGTTATAAAGGAAGAGGCC -Antisense oligonucleotide (46 b): GTTCGGCCTCTTCCTTTATAACCAAGGCGAGCAGTATCGAATGGGA

3. Cloning of the amiRNA/syn-tasiRNA sequences in *BsaI/ccd*B (B/c) vectors

Notes:

-Available B/c vectors are listed in Table I at the end of the section.
-AtMIR390-B/c- and AtTAS1c-B/c-based vectors must be propagated in a ccdB resistant E. coli strain such as DB3.1.
-Alternatively, BsaI digestion of the B/c vector and subsequent ligation of the amiRNA oligonucleotide insert can be done in separate reactions

3.1. Oligonucleotide annealing

-Dilute sense oligonucleotide and antisense oligonucleotide in sterile H2O to a final concentration of 100 μ M.

Carrington Lab Protocols Donald Danforth Plant Science Center St Louis, MO (USA) Updated 04/03/2014 Alberto Carbonell

-Prepare Oligo Annealing Buffer:

60 mM Tris-HCl (pH 7.5) 500 mM NaCl 60 mM MgCl₂ 10 mM DTT

Note: Prepare 1 ml aliquots of Oligo Annealing Buffer and store at $-20^{\circ}C$.

-Assemble the annealing reaction in a PCR tube as described below:

Forward oligonucleotide (100 μ M)	2 μL
Reverse oligonucleotide (100 μ M)	2 µL
Oligo Annealing Buffer	46 µL
Total volume	50 µL

The final concentration of each oligonucleotide is 4 μ M.

-Use a thermocycler to heat the annealing reaction 5 min at 94°C and then cool down $(0.05^{\circ}C/sec)$ to 20°C.

-Dilute the annealed oligonucleotides just prior to assembling the digestion-ligation reaction as described below:

Annealed oligonucleotid	es 3 µL
<u>dH₂O</u>	<u>37 µL</u>
Total volume	40 µL

The final concentration of each oligonucleotide is $0.15 \ \mu M$.

Note: Do not store the diluted oligonucleotides.

3.2. Digestion-ligation reaction

- Assemble the digestion-ligation reaction as described below:

B/c vector (x ug/uL)	Y µL (50 ng)
Diluted annealed oligonucleotides	ε 1 μL
10x T4 DNA ligase buffer	1 μL
T4 DNA ligase (400 U/µL)	1 μL
BsaI (10U/ μL, NEB)	1 μL
<u>dH₂O</u>	to 10 μL
Total volume	10 µL

Prepare a negative control reaction lacking BsaI.

-Mix the reactions by pipetting. Incubate the reactions at room temperature for 5 minutes at 37°C.

3.3. E.coli transformation and analysis of transformants

-Transform 1-5 ul of the digestion-ligation reaction into an *E. coli* strain that doesn't have *ccd*B resistance (e.g. DH10B, TOP10, ...) to do counter-selection.

-Pick two colonies/construct, grow LB-Kan (100 mg/ml) cultures and purify plasmids.

-Sequence	with	appropriate		primers:	I	M13-F
(CCCAGTCAC	GACGTTGTAA	AACGACGG)		and	Ν	M13-R
(CAGAGCTGC	CAGGAAACAC	GCTATGACC)	for	pENTR-based	vectors;	attB1
(ACAAGTTTG	ТАСАААААА	GCAGGCT)		and		attB2
(ACCACTTTG	TACAAGAAAG	CTGGGT) prim	ers f	for <i>pMDC32B</i> -,	pMDC123	SB- or
pFK210B-based	vectors).					

Carrington Lab Protocols Donald Danforth Plant Science Center St Louis, MO (USA) Updated 04/03/2014 Alberto Carbonell

 Table I: BsaI/ccdB-based ('B/c') vectors for direct cloning of amiRNAs and syn-tasiRNAs.

Vector	Small RN	A Bacterial	Plant	GATEWAY	Backbone	Promoter	Terminator	Plant species
	Class	resistance	resistance	use				lesieu
pENTR-AtMIR390a-B/c	amiRNA	Kanamycin	-	Donor	pENTR	-	-	-
pFK210B-AtMIR390a-B/c	amiRNA	Spectomycin	BASTA	-	pGreen III	CaMV 35S	rbcS	A. thaliana
pMDC123SB-AtMIR390a-B/c	amiRNA	Kanamycin	BASTA	-	pMDC123	CaMV 2x35S	-	A. thaliana
								N. benthamiana
pMDC32B-AtMIR390a-B/c	amiRNA	Kanamycin	Hygromycin	-	pMDC32	CaMV 2x35S	nos	A. thaliana
		Hygromycin						N. benthamiana
pENTR-AtTAS1c-B/c	syn-tasiRNA	Kanamycin	-	Donor	pENTR	-	-	-
pMDC123SB-AtTAS1c-B/c	syn-tasiRNA	Kanamycin	BASTA	-	pMDC123	CaMV 2x35S	nos	N. benthamiana
		Hygromycin						
pMDC32B-AtTAS1c-B/c	syn-tasiRNA	Kanamycin	Hygromycin	-	pMDC32	CaMV 2x35S	nos	A. thaliana
		Hygromycin	-					N. benthamiana

Supplemental Text S1

(A)

>AtMIR319a

>AtMIR319a-1

>AtMIR319a-2

>AtMIR319a-3

>AtMIR319a-21-5

>AtMIR319a-21-5

>AtMIR319a-21-6

>AtMIR390a-5

AGATTAGATCTCATCTTTAGTCTC

AGATTAGATCTCATCTTTAGTCTC

AGATTAGATCTCATCTTTAGTCTC

>AtMIR390a-2

GATTAGATCTCATCTTTAGTCTC

AGATTAGATCTCATCTTTAGT<u>CTC</u>

>Atmir390a TATAGGGGGGAAAAAAAGGTAGTCATCAGATATATATTTTGGTAAGAAATATAGAAATGAATAATTTCAC GTTTAACGAAGAGGAGATGACGTGTGTTCCTTCGAACCCGAGTTTTGTTCGTCTATAAATAGCACCTTCTC TTCTCCTTCCTCCACTTCCATCTTTTAGCTTCACTATCTCTCTATAATCGGTTTTATCTTTCTCTAAG TCACAACCCAAAAAAACAA<mark>AGTAGAGAAGAATCTGTA</mark>AAGCTCAGGAGGGATAGCGCCATGATGAAAAAGGCCGA TCGTTATCTATTTTTTGGCGCTATCCATCCTGAGTTTCA<mark>TTGGCTCTTCTTACT</mark>ACAATGAAAAAGGCCGA GGCAAAACGCCTAAAATCACTTGAGAATCAATTCTTTTTACTGTCCATTTAAGCTATCTTTTATAAACGTG TCTTATTTTCTATCTCTTTTTGTTTAAACTAAGAAACTATAGTATTTTGTCTAAAACAAAACAATGAAAAGAAC

(B)

ТАТАGGGGGAAAAAAAGGTAGTCATCAGATATATATTTTGGTAAGAAAATATAGAAATGAATAATTTCAC <u>GTTTAACGAAGAGGAGAT</u>GACGTGTGTTCCTTCGAACCCGAGTTTTGTTCGTCTATAAATAGCACCTTCTC TTCTCCTTCTTCCTCACTTCCATCTTTTTAGCTTCACTATCTCTCTATAATCGGTTTTATCTTTCTCTAAG TCACAACCCAAAAAAACAA<mark>AGTAGAGAAGAATCTGTATGAAGCTATATTGACGTCCTT</mark>ATGATGATCACAT TCGTTATCTATTTTTT<mark>AA</mark>GGACGTCACTATAGCTTCACA<mark>TTGGCTCTTCTTACT</mark>ACAATGAAAAAGGCCGA GGCAAAACGCCTAAAATCACTTGAGAATCAATTCTTTTTACTGTCCATTTAAGCTATCTTTTATAAACGTG **TCTTATTTTCTATCTCTTTTGTTTAAACTAAGAAACTATAGTATTTTGTCTAAAACAAAACATGAAAGAAC**

>AtMIR390a-6

AGATTAGATCTCATCTTTAGTCTC

<u>TATAGGGGGGAAAAAAAGGTAGTCATCAGATATATATTTTGGTAAGAAAATATAGAAATGAATAATTTCAC</u> GTTTAACGAAGAGGAGATGACGTGTGTTCCTTCGAACCCGAGTTTTGTTCGTCTATAAATAGCACCTTCTC TTCTCCTTCTTCCACTTCCATCTTTTTAGCTTCACTATCTCTCTATAATCGGTTTTATCTTTCTCTAAG TCACAACCCAAAAAAACAA<mark>AGTAGAGAAGAATCTGTA</mark>TCCTAAAATAATCTAAGGCCG<mark>ATGATGATCACA</mark>T **TCGTTATCTATTTTTTCGGCCTTAGAGTATTTTAGGACATTGGCTCTTCTTACT**ACAATGAAAAAGGCCCGA GGCAAAACGCCTAAAATCACTTGAGAATCAATTCTTTTTACTGTCCATTTAAGCTATCTTTTATAAACGTG **TCTTATTTTCTATCTCTTTTGTTTTAAACTAAGAAACTATGTATTTTGTCTAAAACAAAACATGAAAGAAC** AGATTAGATCTCATCTTTAGTCTC

>AtMIR390a-Ft

TATAGGGGGGAAAAAAAGGTAGTCATCAGATATATATTTTGGTAAGAAAATATAGAAATGAATAATTTCAC GTTTAACGAAGAGGAGATGACGTGTGTTCCTTCGAACCCGAGTTTTGTTCGTCTATAAATAGCACCTTCTC TTCTCCTTCTTCCTCACTTCCATCTTTTTAGCTTCACTATCTCTCTATAATCGGTTTTATCTTTCTCTAAG TCACAACCCAAAAAAACAA<mark>AGTAGAGAAGAATCTGTA</mark>TTGGTTATAAAGGAAGAGGCC<mark>ATGATGATCACA</mark>T **TCGTTATCTATTTTTTGG**CCTCTTCCGTTATAACCAACA<mark>TTGGCTCTTCTTACT</mark>ACAATGAAAAAGGCCGA GGCAAAACGCCTAAAAATCACTTGAGAATCAATTCTTTTTACTGTCCATTTAAGCTATCTTTTATAAACGTG **TCTTATTTTCTATCTCTTTTTTTTTAAACTAAGAAACTATAGTATTTTGTCTAAAACAAAACATGAAAGAAC**

AGATTAGATCTCATCTTTAGTCTC

>AtMIR390a-Lfy

TATAGGGGGGAAAAAAAGGTAGTCATCAGATATATATTTTGGTAAGAAAATATAGAAATGAATAATTTCAC GTTTAACGAAGAGGAGATGACGTGTGTTCCTTCGAACCCGAGTTTTGTTCGTCTATAAATAGCACCTTCTC TTCTCCTTCTTCCTCACTTCCATCTTTTTAGCTTCACTATCTCTCTATAATCGGTTTTATCTTTCTCTAAG ТСАСААСССАААААААСАА<mark>А</mark>GTAGAGAAGAATCTGTA<mark>TAACAGTGAACGTACTGTCGC</mark>ATGATGATCACAT TCGTTATCTATTTTTTGCGACAGTACTTTCACTGTTACATTGGCTCTTCTTACT

GGCAAAACGCCTAAAATCACTTGAGAATCAATTCTTTTTACTGTCCATTTAAGCTATCTTTTATAAACGTG **TCTTATTTCTATCTCTTTTGTTTAAACTAAGAAACTATAGTATTTTGTCTAAAACAAAACATGAAAGAAC** AGATTAGATCTCATCTTTAGTCTC

>AtMIR390a-Ch42

GTTTAACGAAGAGGAGATGACGTGTGTTCCTTCGAACCCGAGTTTTGTTCGTCTATAAATAGCACCTTCTC TTCTCCTTCTTCCTCACTTCCATCTTTTTAGCTTCACTATCTCTCTATAATCGGTTTTATCTTTCTCTAAG TCACAACCCAAAAAAACAAAGTAGAGAAGAATCTGTA<mark>TTAAGTGTCACGGAAATCCCTATGATGATCACAT</mark> **TCGTTATCTATTTTTT<mark>A</mark>G**GATTTCCTTGACACTTAACA<mark>TTGGCTCTTCTTACTA</mark>CAATGAAAAAGGCCGA GGCAAAACGCCTAAAATCACTTGAGAATCAATTCTTTTTACTGTCCATTTAAGCTATCTTTTATAAACGTG <u>TCTTATTTTCTATCTCTTTTGTTTAAACTAAGAAACTATAGTATTTTGTCTAAAACAAAACATGAAAGAAC</u> AGATTAGATCTCATCTTTAGTCTC

>AtMIR390a-Trich

ТАТАGGGGGGAAAAAAAGGTAGTCATCAGATATATATTTTGGTAAGAAAATATAGAAATGAATAATTTCAC GTTTAACGAAGAGGAGATGACGTGTGTTCCTTCGAACCCGAGTTTTGTTCGTCTATAAATAGCACCTTCTC TTCTCCTTCTTCCTCACTTCCATCTTTTTAGCTTCACTATCTCTCTATAATCGGTTTTATCTTTCTCTAAG **TCACAACCCAAAAAAACAA**AGTAGAGAAGAATCTGTATCCCATTCGATACTGCTCGCCATGATGATCACAT **TCGTTATCTATTTTTTGG**CGAGCAGTCTCGAATGGGACA<mark>TTGGCTCTTCTTACT</mark>ACAATGAAAAAGGCCGA GGCAAAACGCCTAAAATCACTTGAGAATCAATTCTTTTTACTGTCCATTTAAGCTATCTTTTATAAACGTG **TCTTATTTCTATCTCTTTTTTTTAAACTAAGAAACTATAGTATTTTGTCTAAAACAAAACATGAAAGAAC** AGATTAGATCTCATCTTTAGTCTC

Supplemental Text S1. DNA sequence in FASTA format of all *MIRNA* foldbacks used in this study to express and analyze amiRNAs. (A) *AtMIR319a* foldbacks. Sequences unique to the pri-miRNA, pre-miRNA, miRNA/amiRNA guide strand and miRNA*/amiRNA* strand sequences are highlighted in grey, white, blue and green, respectively. Bases of the pre-*AtMIR319a* that had to be modified to preserve the authentic *AtMIR319a* foldback structure are highlighted in red. Extra bases do to WMD2 design are highlighted in light brown. (B) *AtMIR390a* foldbacks. Sequence unique to the pri-*AtMIR390a* sequence is highlighted in black. Bases of the pre-*AtMIR390a* that had to be modified to preserve the authentic *AtMIR390a* that had to be modified to preserve the authentic *AtMIR390a* foldbacks.

>AtTAS1c

Supplemental Text S2. DNA sequence in FASTA format of all *AtTAS1c*-based constructs used to express and analyze syn-tasiRNAs. Sequence corresponding to syn-tasiRNA-1 (position 3'D3[+]) and syn-tasiRNA-2 (position 3'D4[+]) is highlighted in blue and green, respectively. Sequence corresponding to Arabidopsis tasiR-3'D[(+], tasiR-3'D4[+] is highlighted in dark and light pink, respectively. All the other sequences from Arabidopsis *TAS1c* gene are highlighted in black.
Supplemental Text S3

DNA sequence of *BsaI-ccd*B-based (B/c) vectors used for direct cloning of amiRNAs or syn-tasiRNAs.

INDEX

1. amiRNA vectors >pENTR-AtMIR390a-B/c >pMDC32B-AtMIR390a-B/c >pMDC123SB-AtMIR390a-B/c >pFK210B-AtMIR390a-B/c

2. syn-tasiRNA vectors >pENTR-AtTAS1c-B/c >pMDC32B-AtTAS1c-B/c >pMDC123SB-AtTAS1c-B/c

1. amiRNA vectors

>*pENTR-AtMIR390a-B/c* (4491 bp)

CGCAGCCGAACGACCGAGCGAGCGAGCGAGTCAGTGAGCGAGGAAGCGGAAGAGCGCCCAATACGCAAACCGC CTCTCCCCGCGCGTTGGCCGATTCATTAATGCAGCTGGCACGACAGGTTTCCCGACTGGAAAGCGGGCAG TGAGCGCAACGCAATTAATACGCGTACCGCTAGCCAGGAAGAGTTTGTAGAAACGCCAAAAAGGCCATCCG CCGTTGCTTCACAACGTTCAAATCCGCTCCCGGCGGATTTGTCCTACTCAGGAGAGCGTTCACCGACAAA CAACAGATAAAACGAAAGGCCCAGTCTTCCGACTGAGCCTTTCGTTTTATTTGATGCCTGGCAGTTCCCT ACTCTCGCGTTAACGCTAGCATGGATGTTTTCCCCAGTCACGACGTTGTAAAACGACGGCCAGTCTTAAGC **TCGGGCCC**CAAATAATGATTTTATTTTGACTGATAGTGACCTGTTCGTTGCAACAAATTGATGAGCAATG AAAAAGGTAGTCATCAGATATATATTTTGGTAAGAAAATATAGAAATGAATAATTTCACGTTTAACGAAG AGGAGATGACGTGTGTTCCTTCGAACCCGAGTTTTGTTCGTCTATAAATAGCACCTTCTCTTCTCCTTCT TCCTCACTTCCATCTTTTAGCTTCACTATCTCTCTATAATCGGTTTTATCTTTTCTCTAAGTCACAACCC AAAAAAACAAAGTAGAGAAGAATCTGTAAGAGACCATTAGGCACCCCAGGCTTTACACTTTATGCTTCCG ${\tt GCTCGTATAATGTGTGGATTTTGAGTTAGGAGCCGTCGAGATTTTCAGGAGCTAAGGAAGCTAAAatqqa}$ gaaaaaaatcactggatataccaccgttgatatatcccaatggcatcgtaaagaacattttgaggcatttcagtcagttgctcaatgtacctataaccagaccgttcagctggatattacggcctttttaaagaccgtaa agaaaaataagcacaagttttatccggcctttattcacattcttgcccgcctgatgaatgctcatccgga gttccgtatggcaatgaaagacggtgagctggtgatatgggatagtgttcacccttgttacaccgttttc catgagcaaactgaaacgttttcatcgctctggagtgaataccacgacgatttcccggcagtttctacacatatattcgcaagatgtggcgtgttacggtgaaaacctggcctatttccctaaagggtttattgagaatat gttttttcgtctcagccaatccctgggtgagtttcaccagttttgatttaaacgtggccaatatggacaac ${\tt ttcttcgcccccgttttcaccatgggcaaatattatacgcaaggcgacaaggtgctgatgccgctggcga}$ ${\tt ttcaggttcatcatgccgtttgtgatggcttccatgtcggcagaatgcttaatgaattacaacagtactg}$ cgatgagtggcagggcgggcgtaaACGCGTGGAGCCGGCTTACTAAAAGCCAGATAACAGTATGCGTAT TTGCGCGCTGATTTTTGCGGTATAAGAATATATACTGATATGTATACCCGAAGTATGTCAAAAAGAGGTA TGCTATGAAGCAGCGTATTACAGTGACAGTTGACAGCGACAGCTATCAGTTGCTCAAGGCATATATGATG TCAATATCTCCGGTCTGGTAAGCACAACCATGCAGAATGAAGCCCGTCGTCTGCGTGCCGAACGCTGGAA AGCGGAAAATCAGGAAGGGATGGCTGAGGTCGCCCGGTTTATTGAAATGAACGGCTCTTTTGCTGACGAG

GATGTACAGAGTGATATTATTGACACGCCCGGCCGACGGATGGTGATCCCCCTGGCCAGTGCACGTCTGC TGTCAGATAAAGTCTCCCGTGAACTTTACCCGGTGGTGCATATCGGGGGATGAAAGCTGGCGCATGATGAC ${\tt CACCGATATGGCCAGTGTGCCGGTTTCCGTTATCGGGGAAGAAGTGGCTGATCTCAGCCACCGCGAAAAT$ ${\tt GACATCAAAAACGCCATTAACCTGATGTTCTGGGGAATATAAATGTCAGGCTCCCTTATACACAGCCAGT}$ cacttgagaatcaattctttttactgtccatttaagctatcttttataaacgtgtcttattttctatctcttttgtttaaactaagaaactatagtattttgtctaaaacaaaacatgaaagaacagattagatctcatc tttagtctcAAGGGTGGGCGCCGACCCAGCTTTCTTGTACAAAGTTGGCATTATAAGAAAGCATTGCT **TATCAATTTGTTGCAACGAACAGGTCACTATCAGTCAAAATAAAATCATTATTTGCCATCCAGCTGATAT C**CCCTATAGTGAGTCGTATTACATGGTCATAGCTGTTTCCTG**GCAGCTCTGGCCCGTGTCTCAAAATCTC** TGATGTTACATTGCACAAGATAAAAATATATCATCATGAACAATAAAACTGTCTGCTTACATAAACAGTA **ATACAAGGGGTGTT**atgagccatattcaacgggaaacgtcgaggccgcgattaaattccaacatggatgc tgatttatatgggtataaatgggctcgcgataatgtcgggcaatcaggtgcgacaatctatcgcttgtat gggaagcccgatgcgccagagttgtttctgaaacatggcaaaggtagcgttgccaatgatgttacagatg agatggtcagactaaactggctgacggaatttatgcctcttccgaccatcaagcattttatccgtactcc tgatgatgcatggttactcaccactgcgatccccggaaaaacagcattccaggtattagaagaatatcct gattcaggtgaaaatattgttgatgcgctggcagtgttcctgcgccggttgcattcgattcctgtttgta $\verb"cttttgccattctcaccggattcagtcgtcactcatggtgatttctcacttgataaccttatttttgacg"$ aggggaaattaataggttgtattgatgttggacgagtcggaatcgcagaccgataccaggatcttgccat $\verb|cctatggaactgcctcggtgagttttctccttcattacagaaacggctttttcaaaaatatggtattgat||$ aatcctgatatgaataaattgcagtttcatttgatgctcgatgagtttttcTAATCAGAATTGGTTAATT GGTTGTAACACTGGCAGAGCATTACGCTGACTTGACGGGACGGCGCAAGCTCATGACCAAAATCCCTTAA CGTGAGTTACGCGTCGTTCCACTGAGCGTCAGACCCCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCCT ATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATACCAAATACTGTCCT TCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAACTCTGTAGCACCGCCTACATACCTCGCTCTGCTA ATCCTGTTACCAGTGGCTGCCCAGTGGCGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGT TACCGGATAAGGCGCAGCGGTCGGGCTGAACGGGGGGGTTCGTGCACAGCCCAGCTTGGAGCGAACGAC CTACACCGAACTGAGATACCTACAGCGTGAGCATTGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCG GACAGGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCT GGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTGATGCTCGTCAGG

GGGGCGGAGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCCTGGCCTTTTGCTGGCCTTTT GCTCACATGTT

PURPLE/UPPERCASE: M13-F binding site orange/lowercase: attL1 BLUE/UPPERCASE: AtMIR390a 5' region RED/UPPERCASE: BsaI site magenta/lowercase: chloramphenicol resistance gene MAGENTA/UPPERCASE: ccdB gene red/lowercase: inverted BsaI site blue/lowercase: atMIR390a 3' region orange/lowercase/underlined: attL2 PURPLE/UPPERCASE/UNDERLINED: M13-Reverse binding site brown/lowercase: Kanamycin resistance gene

>*pMDC32B-AtMIR390-B/c* (12044 bp)

CCAGCCAGCCAACAGCTCCCCGACCGGCAGCTCGGCACAAAATCACCACTCGATACAGGCAGCCCATCAG TCCGGGACGGCGTCAGCGGGAGAGCCGTTGTAAGGCGGCAGACTTTGCTCATGTTACCGATGCTATTCGG AAGAACGGCAACTAAGCTGCCGGGTTTGAAACACGGATGATCTCGCGGAGGGTAGCATGTTGATTGTAAC GATGACAGAGCGTTGCTGCCTGTGATCACCGCGGTTTCAAAATCGGCTCCGTCGATACTATGTTATACGC CAACTTTGAAAACAACTTTGAAAAAGCTGTTTTCTGGTATTTAAGGTTTTTAGAATGCAAGGAACAGTGAA **ATAA**atggctaaaatgagaatatcaccggaattgaaaaaactgatcgaaaaataccgctgcgtaaaagat acggaaggaatgtctcctgctaaggtatataagctggtgggagaaaatgaaaacctatatttaaaaaatgacggacagccggtataaagggaccacctatgatgtggaacgggaaaaggacatgatgctatggctggaagggccgatggcgtcctttgctcggaagagtatgaagatgaacaaagccctgaaaagattatcgagctgtatg ${\tt cggagtgcatcaggctctttcactccatcgacatatcggattgtccctatacgaatagcttagacagccg}$ ${\tt cttagccgaattggattacttactgaataacgatctggccgatgtggattgcgaaaaactgggaagaagac}$ actccatttaaagatccgcgcgagctgtatgattttttaaagacggaaaagcccgaagaggaacttgtcttgggagaagcggcagggcggacaagtggtatgacattgccttctgcgtccggtcgatcagggaggatatcggggaagaacagtatgtcgagctattttttgacttactggggatcaagcctgattgggagaaaaataaaaatattatattttactggatgaattgttttagTACCTAGAATGCATGACCAAAATCCCTTAACGTGAGTTTTC CTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTA **GTTAGGCCACCACTTCAAGAACTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTG** GCTGCTGCCAGTGGCGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGC AGCGGTCGGGCTGAACGGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAG ATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTA AGCGGCAGGGTCGGAACAGGAGGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTATAGTC GAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTCACATGTTCTTT GCCGAACGACCGAGCGCGAGCGAGTCAGTGAGCGAGGAAGCGGAAGAGCGCCTGATGCGGTATTTTCTCCT TACGCATCTGTGCGGTATTTCACACCGCATATGGTGCACTCTCAGTACAATCTGCTCTGATGCCGCATAG TTAAGCCAGTATACACTCCGCTATCGCTACGTGACTGGGTCATGGCTGCGCCCCGACACCCCGCCAACACC

CGCTGACGCGCCCTGACGGGCTTGTCTGCTCCCGGCATCCGCTTACAGACAAGCTGTGACCGTCTCCGGG AGCTGCATGTGTCAGAGGTTTTTCACCGTCATCACCGAAAACGCGCGAGGCAGGGTGCCTTGATGTGGGCGC TTGAGCGGCCAGCGGCGCGATAGGCCGACGCGAAGCGGCGGGGGGCGTAGGGAGCGCAGCGAAGGGT AGGCGCTTTTTGCAGCTCTTCGGCTGTGCGCTGGCCAGACAGTTATGCACAGGCCAGGCGGGTTTTAAGA **GTTTTAATAAGTTTTAAAGAGTTTTTAGGCGGAAAAATCGCCTTTTTTTCTCTTTTAATATCAGTCACTTACA** TGTGTGACCGGTTCCCAATGTACGGCTTTGGGTTCCCAATGTACGGGTTCCCGGTTCCCAATGTACGGCTT **TGGGTTCCCAATGTACGTGCTATCCACAGGAAAGAGA**CTTTTCGACCTTTTTCCCCCTGCTAGGGCAATT TGCCCTAGCATCTGCTCCGTACATTAGGAACCGGCGGATGCTTCGCCCTCGATCAGGTTGCGGTAGCGCA TGACTAGGATCGGGCCAGCCTGCCCGCCTCCTCCTCCAAATCGTACTCCGGCAGGTCATTTGACCCGAT CAGCTTGCGCACGGTGAAACAGAACTTCTTGAACTCTCCGGCGCTGCCACTGCGTTCGTAGATCGTCTTG AACAACCATCTGGCTTCTGCCTTGCCTGCGGCGCGCGCGTGCCAGGCGGTAGAGAAAACGGCCGATGCCGG GATCGATCAAAAAGTAATCGGGGGTGAACCGTCAGCACGTCCGGGGTTCTTGCCCTTCTGTGATCTCGCGGGTA CATCCAATCAGCTAGCTCGATCTCGATGTACTCCGGCCGCCCGGTTTCGCTCTTTACGATCTTGTAGCGG CTAATCAAGGCTTCACCCTCGGATACCGTCACCAGGCGGCCGTTCTTGGCCTTCTTCGTACGCTGCATGG CAACGTGCGTGGTGTTTAACCGAATGCAGGTTTCTACCAGGTCGTCTTTCTGCTTTCCGCCATCGGCTCG CCGGCAGAACTTGAGTACGTCCGCAACGTGTGGACGGAACACGCGGCCGGGCTTGTCTCCCCTTCC CGGTATCGGTTCATGGATTCGGTTAGATGGGAAACCGCCATCAGTACCAGGTCGTAATCCCACACACTGG CCATGCCGGCCGGCCCTGCGGAAACCTCTACGTGCCCGTCTGGAAGCTCGTAGCGGATCACCTCGCCAGC **TCGTCGGTCACGCTTCGACAGACGGGAAAACGGCCACGTCCATGATGCTGCGACTATCGCGGGTGCCCACG** TCATAGAGCATCGGAACGAAAAAATCTGGTTGCTCGTCGCCCTTGGGCGGCGTTCCTAATCGACGGCGCAC CGGCTGCCGGCGGTTGCCGGGATTCTTTGCGGATTCGATCAGCGGCCGCTTGCCACGATTCACCGGGGCG TGCTTCTGCCTCGATGCGTTGCCGCTGGGCGGCCTGCGCGGCCTTCAACTTCTCCACCAGGTCATCACCC AGCGCCGCCGATTTGTACCGGGCCGGATGGTTTGCGACCGTCACGCCGATTCCTCGGGGCTTGGGGGGTT CCAGTGCCATTGCAGGGCCGGCAGACAACCCAGCCGCTTACGCCTGGCCAACCGCCCGTTCCTCCACACA TGGGGCATTCCACGGCGTCGGTGCCTGGTTGTTCTTGATTTTCCATGCCGCCTCCTTTAGCCGCCTAAAAT TCATCTACTCATTTATTCATTTGCTCATTTACTCTGGTAGCTGCGCGATGTATTCAGATAGCAGCTCGGT AATGGTCTTGCCTTGGCGTACCGCGGCAACTGCATCTTCAGCTTGGTGTGATCCTCCGCCGGCAACTGAAAGTTG GGCCGGCACTTAGCGTGTTTGTGCTTTTGCTCATTTTCTCTTTTACCTCATTAACTCAAATGAGTTTTGAT TTAATTTCAGCGGCCAGCGCCTGGACCTCGCGGGCAGCGTCGCCCTCGGGTTCTGATTCAAGAACGGTTG TGCCGGCGGCGGCAGTGCCTGGGTAGCTCACGCGCTGCGTGATACGGGACTCAAGAATGGGCAGCTCGTA CCCGGCCAGCGCCTCGGCAACCTCACCGCCGATGCGCGTGCCTTTGATCGCCCGCGACACGACAAAGGCC

GCTTGTAGCCTTCCATCCGTGACCTCAATGCGCTGCTTAACCAGCTCCACCAGGTCGGCGGTGGCCCATA TGTCGTAAGGGCTTGGCTGCACCGGAATCAGCACGAAGTCGGCTGCCTTGATCGCGGACACAGCCAAGTC GTCGGGCGGTCGATGCCGACAACGGTTAGCGGTTGATCTTCCCGCACGGCCGCCCAATCGCGGGCACTGC CCTGGGGATCGGAATCGACTAACAGAACATCGGCCCCGGCGAGTTGCAGGGCGCGGGCTAGATGGGTTGC GATGGTCGTCTTGCCTGACCCGCCTTTCTGGTTAAGTACAGCGATAACCTTCATGCGTTCCCCCTTGCGTA TTTGTTTATTTACTCATCGCATCATATACGCAGCGACCGCATGACGCAAGCTGTTTTACTCAAATACACA CGGCCGCGATCATCTCCGCCTCGATCTCTCGGTAATGAAAAACGGTTCGTCCTGGCCGTCCTGGTGCGG TTTCATGCTTGTTCCTCTTGGCGTTCATTCTCGGCGGCCGCCAGGGCGTCGGCCTCGGTCAATGCGTCCT CACGGAAGGCACCGCGCCGCCTGGCCTCGGTGGGCGTCACTTCCTCGCTGCGCTCAAGTGCGCGGTACAG GGTCGAGCGATGCACGCCAAGCAGTGCAGCCGCCTCTTTCACGGTGCGGCCTTCCTGGTCGATCAGCTCG CGGGCGTGCGCGATCTGTGCCGGGGTGAGGGTAGGGCGGGGGCCAAACTTCACGCCTCGGGCCTTGGCGG CCTCGCGCCCCGCTCCGGGTGCGGTCGATGATTAGGGAACGCTCGAACTCGGCCAATGCCGGCGAACACGGT GCCTCCTGGATGCGCTCGGCAATGTCCAGTAGGTCGCGGGTGCTGCGGGCCAGGCGGTCTAGCCTGGTCA CTGTCACAACGTCGCCAGGGCGTAGGTGGTCAAGCATCCTGGCCAGCTCCGGGCGGCCGCCTGGTGCC TCCGGTTCTAGTCGCAAGTATTCTACTTTATGCGACTAAAACACGCGACAAGAAAACGCCAGGAAAAGGG CAGGGCGGCAGCCTGTCGCGTAACTTAGGACTTGTGCGACATGTCGTTTTCAGAAGACGGCTGCACTGAA CGTCAGAAGCCGACTGCACTATAGCAGCGGAGGGGGTTGGATCAAAGTACTTTGATCCCGAGGGGAACCCT **GTGGTTGGCATGCACATACAAATGGACGAACGGATAAACCTTTTCACGCCCTTTTAAATATCCGTTATTC** TAATAAACGCTCTTTTCTCTTAGGtttacccgccaatatatcctgtcaAACACTGATAGTTTAAACTGAA GGCGGGAAACGACAATCTGATCCAAGCTCAAGCTGCTCTAGCATTCGCCATTCAGGCTGCGCAACTGTTG GGAAGGGCGATCGGTGCGGGCCTCTTCGCTATTACGCCAGCTGGCGAAAGGGGGGATGTGCTGCAAGGCGA TTAAGTTGGGTAACGCCAGGGTTTTTCCCAGTCACGACGTTGTAAAACGACGGCCAGTGCCAAGCTTGGCG TGCCTGCAGGTCAACATGGTGGAGCACGACACACTTGTCTACTCCAAAAATATCAAAGATACAGTCTCAG AAGACCAAAGGGCAATTGAGACTTTTCAACAAAGGGTAATATCCGGAAACCTCCTCGGATTCCATTGCCC GCATCGTGGAAAAAGAAGACGTTCCAACCACGTCTTCAAAGCAAGTGGATTGATGTGATAACATGGTGGA

GCACGACACTTGTCTACTCCAAAAATATCAAAGATACAGTCTCAGAAGACCAAAGGGCAATTGAGACT TTTCAACAAAGGGTAATATCCGGAAACCTCCTCGGATTCCATTGCCCAGCTATCTGTCACTTTATTGTGA AGATAGTGGAAAAGGAAGGTGGCTCCTACAAATGCCATCATTGCGATAAAGGAAAGGCCATCGTTGAAGA TGCCTCTGCCGACAGTGGTCCCAAAGATGGACCCCCACCACGAGGAGCATCGTGGAAAAAGAAGACGTT CCAACCACGTCTTCAAAGCAAGTGGATTGATGTGATATCTCCACTGACGTAAGGGATGACGCACAATCCC **ACTATCCTTCGCAAGACCCTTCCTCTATATAAGGAAGTTCATTTCATTTGGAGAGGACCTCGACTCTAGA** GGATCCCCGGGTACCGGGCCCCCCCCCCGAGGCGCCCAAGCTATCAAACAAGTTTGTACAAAAAAGCAGG AATATAGAAATGAATAATTTCACGTTTAACGAAGAGGAGATGACGTGTTCCTTCGAACCCCGAGTTTTG **TTCGTCTATAAATAGCACCTTCTTCTTCTTCTTCTTCCTCACTTCCTTTTTAGCTTCACTATCTCTCT** TTAGGCACCCCAGGCTTTACACTTTATGCTTCCGGCTCGTATAATGTGTGGATTTTGAGTTAGGAGCCGT ${\tt CGAGATTTTCAGGAGCTAAGGAAGCTAAAatggagaaaaaatcactggatataccaccgttgatatatc}$ cagctggatattacggcctttttaaagaccgtaaagaaaaataagcacaagttttatccggcctttattc a cattettg cccgcctg atgaatgetcatccgg agttccgt atgg caatgaa agacgg tg agetgg tg atgatga acgg tg agetgg tg atgatgg agetgg tg a tgg agetgg tg a tgg agetgg agetgg tg a tgg agetgg agetgg tgg agetgg ageatgggatagtgttcacccttgttacaccgttttccatgagcaaactgaaacgttttcatcgctctggagtgaataccacgacgatttccggcagtttctacacatatattcgcaagatgtggcgtgttacggtgaaaaacc $\verb+tggcctatttccctaaagggtttattgagaatatgtttttcgtctcagccaatccctgggtgagtttcac+$ cagttttgatttaaacgtggccaatatggacaacttcttcgcccccgttttcaccatgggcaaatattat acgcaaggcgacaaggtgctgatgccgctggcgattcaggttcatcatgccgtttgtgatggcttccatg $\verb+tcggcagaatgcttaatgaattacaacagtactgcgatgagtggcagggcggtaaACGCGTGGAGC$ CGGCTTACTAAAAGCCAGATAACAGTATGCGTATTTGCGCGCTGATTTTTGCGGTATAAGAATATATACT GATATGTATACCCGAAGTATGTCAAAAAGAGGTATGCTATGAAGCAGCGTATTACAGTGACAGTTGACAG CGACAGCTATCAGTTGCTCAAGGCATATATGATGTCAATATCTCCGGTCTGGTAAGCACAACCATGCAGA ATGAAGCCCGTCGTCTGCGTGCCGAACGCTGGAAAGCGGAAAATCAGGAAGGGATGGCTGAGGTCGCCCG **GTTTATTGAAATGAACGGCTCTTTTGCTGACGAGAACAGGGGCTGGTGAAATGCAGTTTAAGGTTTACAC** CTATAAAAGAGAGAGCCGTTATCGTCTGTTTGTGGATGTACAGAGTGATATTATTGACACGCCCGGCCGA ${\tt CGGATGGTGATCCCCCTGGCCAGTGCACGTCTGCTGTCAGATAAAGTCTCCCGTGAACTTTACCCGGTGG$ TGCATATCGGGGGATGAAAGCTGGCGCATGATGACCACCGATATGGCCAGTGTGCCGGTTTCCGTTATCGG **GGAAGAAGTGGCTGATCTCAGCCACCGCGAAAATGACATCAAAAACGCCATTAACCTGATGTTCTGGGGA** ATATAAATGTCAGGCTCCCTTATACACAGCCAGTCTGCACCTCGACqqtctcAcattqqctcttcttact acaatgaaaaaggccgaggcaaaacgcctaaaatcacttgagaatcaattctttttactgtccatttaag $\verb+ctatcttttataaacgtgtcttattttctatctcttttgtttaaactaagaaactatagtattttgtcta$ aaacaaaacatgaaagaacagattagatctcatctttagtctcAAGGGTGGGCGCGCCGACCCAGCTTTC **TTGTACAAAGTGGTTCGATAATTCCTTAATTAACTAGTTCTAGAGCGGCCGCCCACCGCGGTGGAGCTCG** AATTTCCCCCGATCGTTCAAACATTTGGCAATAAAGTTTCTTAAGATTGAATCCTGTTGCCGGTCTTGCGA TGATTATCATATAATTTCTGTTGAATTACGTTAAGCATGTAATAATTAACATGTAATGCATGACGTTATT TATGAGATGGGTTTTTTATGATTAGAGTCCCCGCAATTATACATTTAATACGCGATAGAAAACAAAATATAG ${\tt CGCGCAAACTAGGATAAATTATCGCGCGCGGTGTCATCTATGTTACTG{\tt AATTCGTAATCATGGTCATAGC}$ TGTTTCCTGTGTGAAATTGTTATCCGCTCACAATTCCACAACATACGAGCCGGAAGCATAAAGTGTAA AGCCTGGGGTGCCTAATGAGTGAGCTAACTCACATTAATTGCGTTGCGCTCACTGCCCGCTTTCCAGTCG GGAAACCTGTCGTGCCAGCTGCATTAATGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGTATTGGCT AGAGCAGCTTGCCAACATGGTGGAGCACGACACTCTCGTCTACTCCAAGAATATCAAAGATACAGTCTCA GAAGACCAAAGGGCTATTGAGACTTTTCAACAAAGGGTAATATCGGGAAACCTCCTCGGATTCCATTGCC AGCATCGTGGAAAAAGAAGACGTTCCAAACCACGTCTTCAAAGCAAGTGGATTGATGTGATAACatqqtqq agcacgacactctcgtctactccaagaatatcaaagatacagtctcagaagaccaaagggctattgagacttttcaacaaagggtaatatcgggaaacctcctcggattccattgcccagctatctgtcacttcatcaaa aggacagtagaaaaggaaggtggcacctacaaatgccatcattgcgataaaggaaaggctatcgttcaag tccaaccacgtcttcaaagcaagtggattgatgtgatatctccactgacgtaagggatgacgcacaatcc cactatccttcgcaagaccttcctctatataaggaagttcatttcatttggagaggACACGCTGAAATCACCAGTCTCTCTACAAATCTATCTCTCTCGAGCTTTCGCAGATCCCGGGGGGCAATGAGATATGAAAAA GCCTGAACTCACCGCGACGTCTGTCGAGAAGTTTCTGATCGAAAAGTTCGACAGCGTCTCCGACCTGATG CAGCTCTCGGAGGGCGAAGAATCTCGTGCTTTCAGCTTCGATGTAGGAGGGCGTGGATATGTCCTGCGGG TAAATAGCTGCGCCGATGGTTTCTACAAAGATCGTTATGTTTATCGGCACTTTGCATCGGCCGCGCCCCC GATTCCGGAAGTGCTTGACATTGGGGGAGTTTAGCGAGAGCCTGACCTATTGCATCTCCCGCCGTGCACAG GGTGTCACGTTGCAAGACCTGCCTGAAACCGAACTGCCCGCTGTTCTACAACCGGTCGCGGAGGCTATGG ATGCGATCGCTGCGGCCGATCTTAGCCAGACGAGCGGGTTCGGCCCATTCGGACCGCAAGGAATCGGTCA ATACACTACATGGCGTGATTTCATATGCGCGATTGCTGATCCCCATGTGTATCACTGGCAAACTGTGATG GACGACACCGTCAGTGCGTCCGCCGCGCGGGCTCTCGATGAGCTGATGCTTTGGGCCCGAGGACTGCCCCCG AAGTCCGGCACCTCGTGCACGCGGATTTCGGCTCCAACAATGTCCTGACGGACAATGGCCGCATAACAGC GGTCATTGACTGGAGCGAGGCGATGTTCGGGGGATTCCCAATACGAGGTCGCCAACATCTTCTTCTGGAGG CCGTGGTTGGCTTGTATGGAGCAGCAGCAGCGCGCTACTTCGAGCGGAGCATCCGGAGCTTGCAGGATCGC

brown/lowercase: kanamycin resistance gene

CYAN/UPPERCASE/UNDERLINED: C->A transversion to block vector's BsaI site cyan/lowercase: T-DNA right border GREEN/UPPERCASE: 2x35S CaMV promoter **ORANGE/UPPERCASE:** attB1 BLUE/UPPERCASE: AtMIR390a 5' region RED/UPPERCASE: BsaI site magenta/lowercase: chloramphenicol resistance gene MAGENTA/UPPERCASE: ccdB gene red/lowercase: inverted BsaI site blue/lowercase: AtMIR390a 3' region ORANGE/UPPERCASE/UNDERLINED: attB2 GREY/UPPERCASE/UNDERLINED: Nos terminator green/lowercase: CaMV promoter BROWN/UPPERCASE: hygromycin resistance gene green/lowercase/underlined: CaMV terminator CYAN/UPPERCASE: T-DNA left border

>*pMDC123SB-AtMIR390a-B/c* (11519 bp)

CCAGCCAGCCAACAGCTCCCCGACCGGCAGCTCGGCACAAAATCACCACTCGATACAGGCAGCCCATCAG TCCGGGACGGCGTCAGCGGGAGAGCCGTTGTAAGGCGGCAGACTTTGCTCATGTTACCGATGCTATTCGG AAGAACGGCAACTAAGCTGCCGGGTTTGAAACACGGATGATCTCGCGGAGGGTAGCATGTTGATTGTAAC GATGACAGAGCGTTGCTGCCTGTGATCACCGCGGTTTCAAAATCGGCTCCGTCGATACTATGTTATACGC CAACTTTGAAAACAACTTTGAAAAAGCTGTTTTCTGGTATTTAAGGTTTTTAGAATGCAAGGAACAGTGAA **ATAA**atggctaaaatgagaatatcaccggaattgaaaaaactgatcgaaaaataccgctgcgtaaaagat acggaaggaatgtctcctgctaaggtatataagctggtgggagaaaatgaaaacctatatttaaaaaatgacggacagccggtataaagggaccacctatgatgtggaacgggaaaaggacatgatgctatggctggaagg gccgatggcgtcctttgctcggaagagtatgaagatgaacaaagccctgaaaagattatcgagctgtatg ${\tt cggagtgcatcaggctctttcactccatcgacatatcggattgtccctatacgaatagcttagacagccg}$ ${\tt cttagccgaattggattacttactgaataacgatctggccgatgtggattgcgaaaactgggaagaagaa$ actccatttaaagatccgcgcgagctgtatgattttttaaagacggaaaagcccgaagaggaacttgtct ${\tt tttcccacggcgacctgggagacagcaacatctttgtgaaagatggcaaagtagtggctttattgatct}$ tgggagaagcggcagggcggacaagtggtatgacattgccttctgcgtccggtcgatcagggaggatatcggggaagaacagtatgtcgagctattttttgacttactggggatcaagcctgattgggagaaaataaaatattatattttactggatgaattgttttagTACCTAGAATGCATGACCAAAATCCCTTAACGTGAGTTTTC CTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTA **GTTAGGCCACCACTTCAAGAACTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTG** GCTGCTGCCAGTGGCGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGC AGCGGTCGGGCTGAACGGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAG ATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTA AGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTATAGTC GAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTCACATGTTCTTT GCCGAACGACCGAGCGCGAGCGAGTCAGTGAGCGAGGAAGCGGAAGAGCGCCTGATGCGGTATTTTCTCCT TACGCATCTGTGCGGTATTTCACACCGCATATGGTGCACTCTCAGTACAATCTGCTCTGATGCCGCATAG TTAAGCCAGTATACACTCCGCTATCGCTACGTGACTGGGTCATGGCTGCGCCCCGACACCCCGCCAACACC

CGCTGACGCGCCCTGACGGGCTTGTCTGCTCCCGGCATCCGCTTACAGACAAGCTGTGACCGTCTCCGGG AGCTGCATGTGTCAGAGGTTTTTCACCGTCATCACCGAAAACGCGCGAGGCAGGGTGCCTTGATGTGGGCGC TTGAGCGGCCAGCGGCGCGATAGGCCGACGCGAAGCGGCGGGGGGCGTAGGGAGCGCAGCGAAGGGT AGGCGCTTTTTGCAGCTCTTCGGCTGTGCGCTGGCCAGACAGTTATGCACAGGCCAGGCGGGTTTTAAGA **GTTTTAATAAGTTTTAAAGAGTTTTTAGGCGGAAAAATCGCCTTTTTTTCTCTTTTAATATCAGTCACTTACA** TGTGTGACCGGTTCCCAATGTACGGCTTTGGGTTCCCAATGTACGGGTTCCCGGTTCCCAATGTACGGCTT TGGGTTCCCAATGTACGTGCTATCCACAGGAAAGAGAACTTTTCGACCTTTTTCCCCCTGCTAGGGCAATT TGCCCTAGCATCTGCTCCGTACATTAGGAACCGGCGGATGCTTCGCCCTCGATCAGGTTGCGGTAGCGCA TGACTAGGATCGGGCCAGCCTGCCCGCCTCCTCCTCCAAATCGTACTCCGGCAGGTCATTTGACCCGAT CAGCTTGCGCACGGTGAAACAGAACTTCTTGAACTCTCCGGCGCTGCCACTGCGTTCGTAGATCGTCTTG AACAACCATCTGGCTTCTGCCTTGCCTGCGGCGCGCGCGTGCCAGGCGGTAGAGAAAACGGCCGATGCCGG GATCGATCAAAAAGTAATCGGGGGTGAACCGTCAGCACGTCCGGGGTTCTTGCCCTTCTGTGATCTCGCGGGTA CATCCAATCAGCTAGCTCGATCTCGATGTACTCCGGCCGCCCGGTTTCGCTCTTTACGATCTTGTAGCGG CTAATCAAGGCTTCACCCTCGGATACCGTCACCAGGCGGCCGTTCTTGGCCTTCTTCGTACGCTGCATGG CAACGTGCGTGGTGTTTAACCGAATGCAGGTTTCTACCAGGTCGTCTTTCTGCTTTCCGCCATCGGCTCG CCGGCAGAACTTGAGTACGTCCGCAACGTGTGGACGGAACACGCGGCCGGGCTTGTCTCCCCTTCC CGGTATCGGTTCATGGATTCGGTTAGATGGGAAACCGCCATCAGTACCAGGTCGTAATCCCACACACTGG CCATGCCGGCCGGCCCTGCGGAAACCTCTACGTGCCCGTCTGGAAGCTCGTAGCGGATCACCTCGCCAGC **TCGTCGGTCACGCTTCGACAGACGGGAAAACGGCCACGTCCATGATGCTGCGACTATCGCGGGTGCCCACG** TCATAGAGCATCGGAACGAAAAAATCTGGTTGCTCGTCGCCCTTGGGCGGCGTTCCTAATCGACGGCGCAC CGGCTGCCGGCGGTTGCCGGGATTCTTTGCGGATTCGATCAGCGGCCGCTTGCCACGATTCACCGGGGCG TGCTTCTGCCTCGATGCGTTGCCGCTGGGCGGCCTGCGCGGCCTTCAACTTCTCCACCAGGTCATCACCC AGCGCCGCCGATTTGTACCGGGCCGGATGGTTTGCGACCGTCACGCCGATTCCTCGGGGCTTGGGGGGTT CCAGTGCCATTGCAGGGCCGGCAGACAACCCAGCCGCTTACGCCTGGCCAACCGCCCGTTCCTCCACACA TGGGGCATTCCACGGCGTCGGTGCCTGGTTGTTCTTGATTTTCCATGCCGCCTCCTTTAGCCGCCTAAAAT TCATCTACTCATTTATTCATTTGCTCATTTACTCTGGTAGCTGCGCGATGTATTCAGATAGCAGCTCGGT AATGGTCTTGCCTTGGCGTACCGCGGCAACTGCATCTTCAGCTTGGTGTGATCCTCCGCCGGCAACTGAAAGTTG GGCCGGCACTTAGCGTGTTTGTGCTTTTGCTCATTTTCTCTTTTACCTCATTAACTCAAATGAGTTTTGAT TTAATTTCAGCGGCCAGCGCCTGGACCTCGCGGGCAGCGTCGCCCTCGGGTTCTGATTCAAGAACGGTTG TGCCGGCGGCGGCAGTGCCTGGGTAGCTCACGCGCTGCGTGATACGGGACTCAAGAATGGGCAGCTCGTA CCCGGCCAGCGCCTCGGCAACCTCACCGCCGATGCGCGTGCCTTTGATCGCCCGCGACACGACAAAGGCC

GCTTGTAGCCTTCCATCCGTGACCTCAATGCGCTGCTTAACCAGCTCCACCAGGTCGGCGGTGGCCCATA TGTCGTAAGGGCTTGGCTGCACCGGAATCAGCACGAAGTCGGCTGCCTTGATCGCGGACACAGCCAAGTC GTCGGGCGGTCGATGCCGACAACGGTTAGCGGTTGATCTTCCCGCACGGCCGCCCAATCGCGGGCACTGC CCTGGGGATCGGAATCGACTAACAGAACATCGGCCCCGGCGAGTTGCAGGGCGCGGGCTAGATGGGTTGC GATGGTCGTCTTGCCTGACCCGCCTTTCTGGTTAAGTACAGCGATAACCTTCATGCGTTCCCCCTTGCGTA **TTTGTTTATTTACTCATCGCATCATATACGCAGCGACCGCATGACGCAAGCTGTTTTACTCAAATACACA** CGGCCGCGATCATCTCCGCCTCGATCTCTCGGTAATGAAAAACGGTTCGTCCTGGCCGTCCTGGTGCGG TTTCATGCTTGTTCCTCTTGGCGTTCATTCTCGGCGGCCGCCAGGGCGTCGGCCTCGGTCAATGCGTCCT CACGGAAGGCACCGCGCCGCCTGGCCTCGGTGGGCGTCACTTCCTCGCTGCGCTCAAGTGCGCGGTACAG GGTCGAGCGATGCACGCCAAGCAGTGCAGCCGCCTCTTTCACGGTGCGGCCTTCCTGGTCGATCAGCTCG CGGGCGTGCGCGATCTGTGCCGGGGTGAGGGTAGGGCGGGGGCCAAACTTCACGCCTCGGGCCTTGGCGG CCTCGCGCCCCGCTCCGGGTGCGGTCGATGATTAGGGAACGCTCGAACTCGGCCAATGCCGGCGAACACGGT GCCTCCTGGATGCGCTCGGCAATGTCCAGTAGGTCGCGGGTGCTGCGGGCCAGGCGGTCTAGCCTGGTCA CTGTCACAACGTCGCCAGGGCGTAGGTGGTCAAGCATCCTGGCCAGCTCCGGGCGGCCGCCTGGTGCC TCCGGTTCTAGTCGCAAGTATTCTACTTTATGCGACTAAAACACGCGACAAGAAAACGCCAGGAAAAGGG ${\tt CAGGGCGGCAGCCTGTCGCGTAACTTAGGACTTGTGCGACATGTCGTTTTCAGAAGACGGCTGCACTGAA}$ CGTCAGAAGCCGACTGCACTATAGCAGCGGAGGGGGTTGGATCAAAGTACTTTGATCCCGAGGGGAACCCT **GTGGTTGGCATGCACATACAAATGGACGAACGGATAAACCTTTTCACGCCCTTTTAAATATCCGTTATTC** TAATAAACGCTCTTTTCTCTTAGGtttacccgccaatatatcctgtcaAACACTGATAGTTTAAACTGAA GGCGGGAAACGACAATCTGATCCAAGCTCAAGCTGCTCTAGCATTCGCCATTCAGGCTGCGCAACTGTTG GGAAGGGCGATCGGTGCGGGCCTCTTCGCTATTACGCCAGCTGGCGAAAGGGGGGATGTGCTGCAAGGCGA TTAAGTTGGGTAACGCCAGGGTTTTTCCCAGTCACGACGTTGTAAAACGACGGCCAGTGCCAAGCTTGCAT **GCCTGCA**GGTCAACATGGTGGTGCACGACACACTTGTCTACTCCAAAAATATCTTTGATACAGTCTCAGA AGACCAAAGGGCAATTGAGACTTTTCAACAAAGGGTAATATCCGGAAACCTCCTCGGATTCCATTGCCCA CATCGTGGAAAAAGAAGACGTTCCAACCACGTCTTCAAAGCAAGTGGATTGATGTGATAACATGGTGGAG

CACGACACACTTGTCTACTCCAAAAATATCAAAGATACAGTCTCAGAAGACCAAAGGGCAATTGAGACTT **TTCAACAAAGGGTAATATCCGGAAACCTCCTCGGATTCCATTGCCCAGCTATCTGTCACTTTATTGTGAA** GATAGTGGAAAAGGAAGGTGGCTCCTACAAATGCCATCATTGCGATAAAGGAAAGGCCATCGTTGAAGAT GCCTCTGCCGACAGTGGTCCCCAAAGATGGACCCCCACCACGAGGAGCATCGTGGAAAAAGAAGACGTTC CAACCACGTCTTCAAAGCAAGTGGATTGATGTGATATCTCCACTGACGTAAGGGATGACGCACAATCCCA **CTATCCTTCGCAAGACCCTTCCTCTATATAAGGAAGTTCATTTCATTTGGAGAGGACCTCGACTCTAGAG** GATCCCCGGGTACCGGGCCCCCCCCCCGAGGCGCCAAGCTATCAAAAAGTTTGTACAAAAAAGCAGGC TCGTCTATAAATAGCACCTTCTTCTTCCTCACTTCCACTCCACTTCTTTAGCTTCACTATCTCTCTA TAGGCACCCCAGGCTTTACACTTTATGCTTCCGGCTCGTATAATGTGTGGATTTTGAGTTAGGAGCCGTC ${\tt GAGATTTTCAGGAGCTAAGGAAGCTAAAatggagaaaaaaatcactggatataccaccgttgatatatcc}$ agctggatattacggcctttttaaagaccgtaaagaaaaataagcacaagttttatccggcctttattca cattettgcccgcctgatgaatgctcatccggagttccgtatggcaatgaaagacggtgagctggtgatatgggatagtgttcacccttgttacaccgttttccatgagcaaactgaaacgttttcatcgctctggagtg aataccacgacgatttccggcagtttctacacatatattcgcaagatgtggcgtgttacggtgaaaacct ggcctatttccctaaagggtttattgagaatatgtttttcgtctcagccaatccctgggtgagtttcaccagttttgatttaaacgtggccaatatggacaacttcttcgcccccgttttcaccatgggcaaatattata cgcaaggcgacaaggtgctgatgccgctggcgattcaggttcatcatgccgtttgtgatggcttccatgt $\verb|cggcagaatgcttaatgaattacaacagtactgcgatgagtggcagggggcgtaa \verb|ACGCGTGGAGCC||$ GGCTTACTAAAAGCCAGATAACAGTATGCGTATTTGCGCGCTGATTTTTGCGGTATAAGAATATATACTG ATATGTATACCCGAAGTATGTCAAAAAGAGGTATGCTATGAAGCAGCGTATTACAGTGACAGTTGACAGC GACAGCTATCAGTTGCTCAAGGCATATATGATGTCAATATCTCCGGTCTGGTAAGCACAACCATGCAGAA TGAAGCCCGTCGTCTGCGTGCCGAACGCTGGAAAGCGGAAAATCAGGAAGGGATGGCTGAGGTCGCCCGG TTTATTGAAATGAACGGCTCTTTTGCTGACGAGAACAGGGGGCTGGTGAAATGCAGTTTAAGGTTTACACC TATAAAAGAGAGAGCCGTTATCGTCTGTTTGTGGATGTACAGAGTGATATTATTGACACGCCCGGCCGAC GGATGGTGATCCCCCTGGCCAGTGCACGTCTGCTGTCAGATAAAGTCTCCCGTGAACTTTACCCGGTGGT GCATATCGGGGGATGAAAGCTGGCGCATGATGACCACCGATATGGCCAGTGTGCCGGTTTCCGTTATCGGG GAAGAAGTGGCTGATCTCAGCCACCGCGAAAATGACATCAAAAACGCCATTAACCTGATGTTCTGGGGAA TATAAATGTCAGGCTCCCTTATACACAGCCAGTCTGCACCTCGACqqtctcACATTGGCTCTTCTTACTA CAATGAAAAAGGCCGAGGCAAAAACGCCTAAAATCACTTGAGAATCAATTCTTTTTACTGTCCATTTAAGC

TATCTTTTATAAACGTGTCTTATTTTCTATCTCTTTTGTTTAAACTAAGAAACTATAGTATTTTGTCTAA **AACAAAACATGAAAGAACAGATTAGATCTCATCTTTAGTCTCAAGGGTGGGCGCGCCGACCCAGCTTTCT TGTACAAAGTGGTTCGATAATTCCTTAATTAACTAGTTCTAGAGCGGCCGCCACCGCGGTGGAGCTCGAA** ${\tt TTTCCCCGATCGTTCAAACATTTGGCAATAAAGTTTCTTAAGATTGAATCCTGTTGCCGGTCTTGCGATG$ ATTATCATATAATTTCTGTTGAATTACGTTAAGCATGTAATAATTAACATGTAATGCATGACGTTATTTA CGCAAACTAGGATAAATTATCGCGCGCGGTGTCATCTATGTTACT**AGATCGGGAATTCGTAATCATGGTC** ATAGCTGTTTCCTGTGTGAAATTGTTATCCGCTCACAATTCCACAACATACGAGCCGGAAGCATAAAG TGTAAAGCCTGGGGTGCCTAATGAGTGAGCTAACTCACATTAATTGCGTTGCGCTCACTGCCCGCTTTCC AGTCGGGAAAACCTGTCGTGCCAGCTGCATTAATGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGTAT TGGCTAGAGCAGCTTGCCAACATGGTGGAGCACGACACTCTCGTCTACTCCAAGAATATCAAAGATACAG TCTCAGAAGACCAAAGGGCTATTGAGACTTTTCAACAAAGGGTAATATCGGGAAACCTCCTCGGATTCCA ${\tt CGAGGAGCATCGTGGAAAAAGAAGACGTTCCAACCACGTCTTCAAAGCAAGTGGATTGATGTGATAACat}$ ggtggagcacgacactctcgtctactccaagaatatcaaagatacagtctcagaagaccaaagggctattgagactttttcaacaaagggtaatatcgggaaacctcctcggattccattgcccagctatctgtcacttca tcaaaaqqacaqtaqaaaaqqaaqqtqqcacctacaaatqccatcattqcqataaaqqaaaqqctatcqt tcaagatgcctctgccgacagtggtccccaaagatggacccccaccacgaggagcatcgtggaaaaagaa gacgttccaaccacgtcttcaaagcaagtggattgatgtgatatctccactgacgtaagggatgacgcacaatcccactatccttcgcaagaccttcctctatataaggaagttcatttcatttggagaggACACGCTGA AATCACCAGTCTCTCTACAAATCTATCTCTCTCGAGTCTACCATGAGCCCAGAACGACGCCCGGCCGA CATCCGCCGTGCCACCGAGGCGGACATGCCGGCGGTCTGCACCATCGTCAACCACTACATCGAGACAAGC GCTATCCCTGGCTCGTCGCCGAGGTGGACGGCGAGGTCGCCGGCATCGCCTACGCGGGCCCCTGGAAGGC ACGCAACGCCTACGACTGGACGGCCGAGTCGACCGTGTACGTCTCCCCCCGCCACCAGCGGACGGGACTG GGCTCCACGCTCTACACCCACCTGCTGAAGTCCCTGGAGGCACAGGGCTTCAAGAGCGTGGTCGCTGTCA TCGGGCTGCCCAACGACCCGAGCGTGCGCATGCACGAGGCGCTCGGATATGCCCCCCGCGGCATGCTGCG GGCGGCCGGCTTCAAGCACGGGAACTGGCATGACGTGGGTTTCTGGCAGCTGGACTTCAGCCTGCCGGTA **CCGCCCCGTCCGGTCCTGCCCGTCACCGAGATTTGACTCGAGtttctcccataataatgtgtgagtagttc** ccagataagggaattagggttcctatagggtttcgctcatgtgttgagcatataagaaacccttagtatgtatttqtatttqtaaaatacttctatcaataaaatttctaattcctaaaaccaaaatccaqtactaaaat

<u>ccagatc</u>CCCCGAATTAATTCGGCGTTAATTCAGTACATTAAAAACGTCCGCAATGTGTTATTAAGTTGT CTAAGCGTCAATTTGTTTACACCACAATATATCCTGCCA

brown/lowercase: kanamycin resistance gene

CYAN/UPPERCASE/UNDERLINED: C->A transversion to block vector's BsaI site

cyan/lowercase: T-DNA right border

GREEN/UPPERCASE: 2x35S CaMV promoter

ORANGE/UPPERCASE: attB1

BLUE/UPPERCASE: AtMIR390a 5' region

RED/UPPERCASE: *Bsa*I site

magenta/lowercase: chloramphenicol resistance gene

MAGENTA/UPPERCASE: ccdB gene

red/lowercase: inverted BsaI site

blue/lowercase: AtMIR390a 3' region

ORANGE/UPPERCASE/UNDERLINED: attB2

GREY/UPPERCASE/UNDERLINED: Nos terminator

green/lowercase: CaMV promoter

BROWN/UPPERCASE/UNDERLINED: BASTA resistance gene

green/lowercase/underlined: CaMV terminator

CYAN/UPPERCASE: T-DNA left border

>*pFK210B-AtMIR390-B/c* (7916 bp)

TGGCAGGATATATTGTGGTGTAACGTTATCAGCTTGCATGCCGGTCGATCTAGTAACATAGATGACACCG CGCGCGATAATTTATCCTAGTTTGCGCGCGCTATATTTTGTTTTCTATCGCGTATTAAATGTATAATTGCGG GACTCTAATCATAAAAAACCCATCTCATAAATAACGTCATGCATTACATGTTAATTATTACATGCTTAACG TAATTCAACAGAAATTATATGATAATCATCGCAAGACCGGCAACAGGATTCAATCTTAAGAAACTTTATT GCCAAATGTTTGAACGATCTGCTTGACTCTAGGGGGTCATCAGATTTCGGTGACGGGCAGGACCGGACGGG GCGGCACCGGCAGGCTGAAGTCCAGCTGCCAGAAACCCACGTCATGCCAGTTCCCGTGCTTGAAGCCGGC CGCCCGCAGCATGCCGCGGGGGGGCATATCCGAGCGCCTCGTGCATGCGCACGCTCGGGTCGTTGGGCAGC CCGATGACAGCGACCACGCTCTTGAAGCCCTGTGCCTCCAGGGACTTCAGCAGGTGGGGTGTAGAGCGTGG AGCCCAGTCCCGTCCGCTGGTGGCGGGGGGGGGGGGGGCGTCCAGTCGGCCGTCCAGTCGTAGGCGTT GCGTGCCTTCCAGGGACCCGCGTAGGCGATGCCGGCGACCTCGCCGTCCACCTCGGCGACGAGGCAGGGA TAGCGCTCCCGCAGACGGACGAGGTCGTCCGTCCACTCCTGCGGCTCGGCTCGGTACGGAAGTTGA CCGTGCTTGTCTCGATGTAGTGGTGGATGACGATGCAGACCGCCGGCATGTCCGCCTCGGTGGCACGGCG CTAATTGGATACCGAGGGGAATTTATGGAACGTCAGTGGAGCATTTTTGACAAGAAATATTTGCTAGCTG ATAGTGACCTTAGGCGACTTTTGAACGCGCAATAATGGTTTCTGACGTATGTGCTTAGCTCATTAAACTC CAGAAACCCGCGGGCTCAGTGGCTCCTTCAACGTTGCGGTTCTGTCAGTTCCAAACGTAAAACGGCTTGTC CCGCGTCATCGGCGGGGGGTCATAACGTGACTCCCCTTAATTCTCCGCTCATG**TATCGATAACATTAACGTT** TACAATTTCGCGCCATTCGCCATTCAGGCTGCGCAACTGTTGGGAAGGGCGATCGGTGCGGGCCTCTTCG CTATTACGCCAGCTGGCGAAAGGGGGATGTGCTGCCAAGGCGATTAAGTTGGGTAACGCCAGGGTTTTCCC AGTCACGACGTTGTAAAACGACGGCCAGTGAGCGCGCGTAATACGACTCACTATAGGGCGAATTGGGTAC CGGGCCCCCCCCGAGGTCGACGGTATCGATAAGCTTGATATCGAATTCCTGCAGCCCGGGGGATCCATT CGGTCCCCAGATTAGCCTTTTCAATTTCAGAAAGAATGCTAACCCACAGATGGTTAGAGAGGGCTTACGCA **GCAGGTTCATCAAGACGATCTACCCGAGCAATAATCTCCAGGAAATCAAATACCTTCCCAAGAAGGTTA** AAGATGCAGTCAAAAGATTCAGGACTAACTGCATCAAGAACACAGAGAAAGATATATTTCTCAAGATCAG AAGTACTATTCCAGTATGGACGATTCAAGGCTTGCTTCACAAACCAAGGCAAGTAATAGAGATTGGAGTC TCTAAAAAGGTAGTTCCCACTGAATCAAAGGCCATGGAGTCAAAGATTCAAATAGAGGACCTAACAGAAC TCGCCGTAAAGACTGGCGAACAGTTCATACAGAGTCTCTTACGACTCAATGACAAGAAGAAAATCTTCGT ${f C}$ aacatggtggagcacgacacacttgtctactccaaaaatatcaaagatacagtctcagaagaccaaagg gcaattgagacttttcaacaaagggtaatatccggaaacctcctcggattccattgcccagctatctgtc actttattgtgaagatagtggaaaaggaaggtggctcctacaaatgccatcattgcgataaaggaaaggcaaagaagacgttccaaccacgtcttcaaagcaagtggattgatgtgatatctccactgacgtaagggatg

acgcacaatcccactatccttcgcaagacccttcctctatataaggaagttcatttcatttggagagAAC **ACGGGGGACGAGCTTCTAGAGGATCACAAGTTTGTACAAAAAAGCAGGCTCCGCGGCCGCCCCCTTCACC** TATAGGGGGGAAAAAAAGGTAGTCATCAGATATATATTTTGGTAAGAAAATATAGAAATGAATAATTTCA CGTTTAACGAAGAGGAGATGACGTGTGTTCCTTCGAACCCCGAGTTTTGTTCGTCTATAAATAGCACCTTC **TCTTCTCCTTCTTCCTCACTTCCATCTTTTTAGCTTCACTATCTCTCTATAATCGGTTTTATCTTTCTCT** AAGTCACCAACCCAAAAAAACAAAGTAGAGAAGAATCTGTAAGAGACCATTAGGCACCCCAGGCTTTACAC TTTATGCTTCCGGCTCGTATAATGTGTGGATTTTGAGTTAGGAGCCGTCGAGATTTTCAGGAGCTAAGGA **AGCTAAA**atggagaaaaaaatcactggatataccaccgttgatatatccccaatggcatcgtaaagaacat tttgaggcatttcagtcagttgctcaatgtacctataaccagaccgttcagctggatattacggcctttt taaagaccgtaaagaaaaataagcacaagttttatccggcctttattcacattcttgcccgcctgatgaatgctcatccggagttccgtatggcaatgaaagacggtgagctggtgatatgggatagtgttcacccttgt ${\tt tacaccgttttccatgagcaaactgaaacgttttcatcgctctggagtgaataccacgacgatttccggc}$ agtttctacacatatattcgcaagatgtggcgtgttacggtgaaaacctggcctatttccctaaagggtt ${\tt tattgagaatatgtttttcgtctcagccaatccctgggtgagtttcaccagttttgatttaaacgtggcc}$ aatatggacaacttettegeeeeegtttteaceatgggeaaatattataegeaaggegacaaggtgetga tgccgctggcgattcaggttcatcatgccgtttgtgatggcttccatgtcggcagaatgcttaatgaattacaacagtactgcgatgagtggcgggggggggggcgtaaACGCGTGGAGCCGGCTTACTAAAAGCCAGATAA CAGTATGCGTATTTGCGCGCTGATTTTGCGGTATAAGAATATATACTGATATGTATACCCGAAGTATGT CAAAAAGAGGTATGCTATGAAGCAGCGTATTACAGTGACAGTTGACAGCGACAGCTATCAGTTGCTCAAG **GCATATATGATGTCAATATCTCCGGTCTGGTAAGCACAACCATGCAGAATGAAGCCCGTCGTCTGCGTGC** CGAACGCTGGAAAGCGGAAAATCAGGAAGGGATGGCTGAGGTCGCCCGGTTTATTGAAATGAACGGCTCT CGTCTGTTTGTGGATGTACAGAGTGATATTATTGACACGCCCGGCCGACGGATGGTGATCCCCCTGGCCA **GTGCACGTCTGCTGTCAGATAAAGTCTCCCGTGAACTTTACCCGGTGGTGCATATCGGGGATGAAAGCTG** GCGCATGATGACCACCGATATGGCCAGTGTGCCGGTTTCCGTTATCGGGGAAGAAGTGGCTGATCTCAGC CACCGCGAAAATGACATCAAAAACGCCATTAACCTGATGTTCTGGGGAATATAAATGTCAGGCTCCCTTA TACACAGCCAGTCTGCACCTCGACqqtctcAcattqqctcttcttactacaatqaaaaaqqccqaqqcaa aacgcctaaaatcacttgagaatcaattctttttactgtccatttaagctatcttttataaacgtgtcttattttctatctcttttgtttaaactaagaaactatagtattttgtctaaaaacaaaaacatgaaagaacagattagatctcatctttagtctcAAGGGTGGGCGCGCCGACCCAGCTTTCTTGTACAAAGTGGTGATCCTAG CTTTCGTTCGTATCATCGGTTTCGACAACGTTCGTCAAGTTCAATGCATCAGTTTCATTGCGCACACACC AGAATCCTACTGAGTTTGAGTATTATGGCATTGGGAAAACTGTTTTTCTTGTACCATTTGTTGTGCTTGT

GACCGAAGTTAATATGAGGAGTAAAAACACTTGTAGTTGTACCATTATGCTTATTCACTAGGCAACAAATA TATTTTCAGACCTAGAAAAGCTGCAAATGTTACTGAATACAAGTATGTCCTCTTGTGTTTTAGACATTTA TGAACTTTCCTTTATGTAATTTTCCAGAATCCTTGTCAGATTCTAATCATTGCTTTATAATTATAGTTAT CATGCATCAATCGGAGCTCCAGCTTTTGTTCCCCTTTAGTGAGGGTTAATTCCGAGCTTGGCGTAATCATG GTCATAGCTGTTTCCTGTGTGAAATTGTTATCCGCTCACAATTCCACAACATACGAGCCGGAAGCATA AAGTGTAAAGCCTGGGGTGCCTAATGAGTGAGCTAACTCACATTAATTGCGTTGCGCTCACTGCCCGCTT TCCAGTCGGGAAACCTGTCGTGCCAGCTGCATTAATGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCG TCAGCTCACTCAAAGGCGGTAATACGGTTATCCACAGAATCAGGGGATAACGCAGGAAAGAACATGAAGG ${\tt CCTtgacaggatatattggcgggtaaa} {\tt CTAAGTCGCTGTATGTGTTTGTTTGAGATCTCATGTGAGCAAA}$ AGGCCAGCAAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCT GACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCCGACAGGACTATAAAGATACCAGG CGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGC CTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTC GTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCCTTATCCCGGTAACT **ATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAG** CAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGA ACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAGAAGAGTTGGTAGCTCTTGATCCG ATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGG ATTTTGGTCATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAAATGAAGTTTTAAAT ${\tt CAATCTAAAGTATATATGTGTAACATTGgtctagtgattatttgccgactaccttggtgatctcgccttt$ ${\tt cacgtagtgaacaaattcttccaactgatctgcgcgcgaggccaagcgatcttcttgtccaagataagcc}$ tgcctagcttcaagtatgacgggctgatactgggccggcaggcgctccattgccccagtcggcagcgacat atcgccagcccagtcgggcgggcgagttccatagcgttaaggtttcatttagcgcctcaaatagatcctgt tcaggaaccggatcaaagagttcctccgccgctggacctaccaaggcaacgctatgttctcttgcttttg tcagcaagatagccagatcaatgtcgatcgtggctggctcgaagatacctgcaagaatgtcattgcgctg $\verb|ccattctccaaattgcagttcgcgcttagctggataacgccacggaatgatgtcgtcgtgcacaacaatg||$ gtgacttctacagcgcggagaatctcgctctctccaggggaagccgaagtttccaaaaggtcgttgatca

aagctcgccgcgttgtttcatcaagccttacggtcaccgtaaccagcaaatcaatatcactgtgtggcttcaggccgccatccactgcggagccgtacaaatgtacggccagcaacgtcggttcgagatggcgctcgatg acgccaactacctctgatagttgagtcgatacttcggcgatcaccgcttccctcatAACACCCCTTGTAT TACTGTTTATGTAAGCAGACAGTTTTATTGTTCATGATGATATATTTTTTATCTTGTGCAATGTAACATCA GAGATTTTGAGACACAACGTGGCTTTGTTGAATAAATCGAACTTTTGCTGAGTTGAAGGATCAGATCACG CATCTTCCCGACAACGCAGACCGTTCCGTGGCAAAGCAAAAGTTCAAAAATCACCAACTGGTCCACCTACA CCAACAGCCCGCCGTCGAGCGGGCTTTTTTATCCCCCGGAAGCCTGTGGATAGAGGGTAGTTATCCACGTG AAACCGCTAATGCCCCGCAAAGCCTTGATTCACGGGGCTTTCCGGCCCGCTCCAAAAACTATCCACGTGA AATCGCTAATCAGGGTACGTGAAATCGCTAATCGGAGTACGTGAAATCGCTAATAAGGTCACGTGAAATC GCTAATCAAAAAGGCACGTGAGAACGCTAATAGCCCTTTCAGATCAACAGCTTGCAAAACACCCCTCGCTC TCGCCCTTGGCTTGTGGACAATGCGCTACGCGCACCGGCTCCGCCCGTGGACAACCGCAAGCGGTTGCCC TTTTTGAAAAAGAAAAAGCCCGAAAGGCGGCAACCTCTCGGGCTTCTGGATTTCCGATCCCCGGAATTAG AGATCT

brown/lowercase: spectinomycin resistance gene

CYAN/UPPERCASE/UNDERLINED: C->A transversion to block vector's *Bsa*I site CYAN/UPPERCASE: T-DNA left border GREY/UPPERCASE/UNDERLINED: Nos terminator BROWN/UPPERCASE/UNDERLINED: BASTA resistance gene GREY/UPPERCASE: Nos promoter CYAN/UPPERCASE/UNDERLINED: C->T transversion to block vector's *Bsa*I site GREEN/UPPERCASE: 35S promoter ORANGE/UPPERCASE: attB1 BLUE/UPPERCASE: *AttMIR390a* 5' region RED/UPPERCASE: *Bsa*I site magenta/lowercase: chloramphenicol resistance gene MAGENTA/UPPERCASE: *ccd*B gene red/lowercase: inverted *Bsa*I site blue/lowercase: *AttMIR390a* 3' region ORANGE/UPPERCASE/UNDERLINED: attB2 GREY/UPPERCASE/BOLD: Pea rbcs terminator

cyan/lowercase: T-DNA right border

2. syn-tasiRNA vectors

>*pENTR-AtTAS1c-B/c* (4989 bp)

CGCAGCCGAACGACCGAGCGCAGCGAGTCAGTGAGCGAGGAAGCGGAAGAGCGCCCAATACGCAAACCGC CTCTCCCCGCGCGTTGGCCGATTCATTAATGCAGCTGGCACGACAGGTTTCCCGACTGGAAAGCGGGCAG TGAGCGCAACGCAATTAATACGCGTACCGCTAGCCAGGAAGAGTTTGTAGAAACGCCAAAAAGGCCATCCG CCGTTGCTTCACAACGTTCAAATCCGCTCCCGGCGGATTTGTCCTACTCAGGAGAGCGTTCACCGACAAA CAACAGATAAAACGAAAGGCCCAGTCTTCCGACTGAGCCTTTCGTTTTATTTGATGCCTGGCAGTTCCCT ACTCTCGCGTTAACGCTAGCATGGATGTTTTCCCCAGTCACGACGTTGTAAAACGACGGCCAGTCTTAAGC **TCGGGCCC**CAAATAATGATTTTTTTTTGACTGATAGTGACCTGTTCGTTGCAACAAATTGATGAGCAATG CTTTTTTATAATGCCAACTTTGTACAAAAAGCAGGCTCCGCGGCCGCCCCCTTCACCAAACCTAAACCT AAACGGCTAAGCCCGACGTCAAATACCAAAAAGAGAAAAACAAGAGCGCCGTCAAGCTCTGCAAATACGA TCTGTAAGTCCATCTTAACACAAAAGTGAGATGGGTTCTTAGATCATGTTCCGCCGTTAGATCGAGTCAT **GGTCTTGTCTCATAGAAAGGTACTTTCGTTTACTTCTTTTGAGTATCGAGTAGAGCGTCGTCTATAGTTA** GTTTGAGATTGCGTTTGTCAGAAGTTAGGTTCAATGTCCCGGTCCAATTTTCACCAGCCATGTGTCAGTT TCGTTCCTTCCCGTCCTCTTTCGATTTCGTTGGGTTACGGATGTTTTCGAGATGAAACAGCATTGTTT TGTTGTGATTTTTCTCTACAAGCGAATAGACCATTTATCGGTGGATCTTAGAAAATTAAGAGACCATTAG GCACCCCAGGCTTTACACTTTATGCTTCCGGCTCGTATAATGTGTGGATTTTGAGTTAGGAGCCGTCGAG ATTTTCAGGAGCTAAGGAAGCTAAAatggagaaaaaaatcactggatataccaccgttgatatatcccaa tggcatcgtaaagaacattttgaggcatttcagtcagttgctcaatgtacctataaccagaccgttcagc tggatattacggcctttttaaagaccgtaaagaaaaataagcacaagttttatcccggcctttattcacattettgecegeetgatgaatgeteateeggagtteegtatggeaatgaaagaeggtgagetggtgatatgg gatagtgttcacccttgttacaccgtttttccatgagcaaactgaaacgtttttcatcgctctggagtgaat accacgacgatttccggcagtttctacacatatattcgcaagatgtggcgtgttacggtgaaaacctggcctatttccctaaaqqqtttattqaqaatatqtttttcqtctcaqccaatccctqqqtqaqtttcaccaqttttgatttaaacgtggccaatatggacaacttcttcgcccccgttttcaccatgggcaaatattatacgc aaggcgacaaggtgctgatgccgctggcgattcaggttcatcatgccgtttgtgatggcttccatgtcgg TTACTAAAAGCCAGATAACAGTATGCGTATTTGCGCGCTGATTTTGCGGGTATAAGAATATATACTGATA TGTATACCCGAAGTATGTCAAAAAGAGGTATGCTATGAAGCAGCGTATTACAGTGACAGTTGACAGCGAC AGCTATCAGTTGCTCAAGGCATATATGATGTCAATATCTCCGGTCTGGTAAGCACAACCATGCAGAATGA

AGCCCGTCGTCTGCGTGCCGAACGCTGGAAAGCGGAAAATCAGGAAGGGATGGCTGAGGTCGCCCGGTTT ATTGAAATGAACGGCTCTTTTGCTGACGAGAACAGGGGCTGGTGAAATGCAGTTTAAGGTTTACACCTAT AAAAGAGAGAGCCGTTATCGTCTGTTTGTGGATGTACAGAGTGATATTATTGACACGCCCGGCCGACGGA TGGTGATCCCCCTGGCCAGTGCACGTCTGCTGTCAGATAAAGTCTCCCGTGAACTTTACCCGGTGGTGCA TATCGGGGATGAAAGCTGGCGCATGATGACCACCGATATGGCCAGTGTGCCGGTTTCCGTTATCGGGGAA GAAGTGGCTGATCTCAGCCACCGCGAAAATGACATCAAAAACGCCATTAACCTGATGTTCTGGGGAATAT AAATGTCAGGCTCCCTTATACACAGCCAGTCTGCACCTCGACggtctcAgaactagaaaagacattggac ${\tt atattccaggatatgcaaaagaaaacaatgaatattgttttgaatgtgttcaagtaaatgagattttcaa$ ${\tt tattcgaggatatgcagaaaaaaagatgtttgttattttgaaaaagcttgagtagtttctctccgaggtgt$ agcgaagaagcatcatctactttgtaatgtaattttctttatgttttcactttgtaattttatttgtgtt aatgtaccatggccgatatcggttttattgaaagaaaatttatgttacttctgtttttggctttgcaatca ${\tt gttatgctagttttcttataccctttcgtaagcttcctaaggaatcgttcattgatttccactgcttcat}$ ${\tt tgtatattaa} a a ctttaca a ctgtatcgaccatcatata a ttctgggtca a gagatgaa a a taga a cacc$ acatcgtaaagtgaaatAAGGGTGGGCGCGCCGACCCAGCTTTCTTGTACAAAGTTGGCATTATAAGAAA **GCATTGCTTATCAATTTGTTGCAACGAACAGGTCACTATCAGTCAAAATAAAATCATTATTTGCCATCCA GCTGATATC**CCCTATAGTGAGTCGTATTACATGGTCATAGCTGTTTCCTG**GCAGCTCTGGCCCGTGTCTC** AAAATCTCTGATGTTACATTGCACAAGATAAAAATATATCATCATGAACAATAAAACTGTCTGCTTACAT AAACAGTAATACAAGGGGTGTTatgagccatattcaacgggaaacgtcgaggccgcgattaaattccaac atggatgctgatttatatgggtataaatgggctcgcgataatgtcgggcaatcaggtgcgacaatctatc gcttgtatgggaagcccgatgcgccagagttgtttctgaaacatggcaaaggtagcgttgccaatgatgt $\verb+tacagatgagatggtcagactaaactggctgacggaatttatgcctcttccgaccatcaagcattttatc$ ${\tt cgtactcctgatgatgcatggttactcaccactgcgatccccggaaaaacagcattccaggtattagaag}$ aatatcctgattcaggtgaaaatattgttgatgcgctggcagtgttcctgcgccggttgcattcgattcc tgcataaacttttgccattctcaccggattcagtcgtcactcatggtgatttctcacttgataaccttat $\tt ttttgacgaggggaaattaataggttgtattgatgttggacgagtcggaatcgcagaccgataccaggat$ $\verb"cttgccatcctatggaactgcctcggtgagttttctccttcattacagaaacggctttttcaaaaatatg"$ $gtattgataatcctgatatgaataaattgcagtttcatttgatgctcgatgagtttttc{\tt TAATCAGAATT}$ GGTTAATTGGTTGTAACACTGGCAGAGCATTACGCTGACTTGACGGGACGGCGCAAGCTCATGACCAAAA TCCCTTAACGTGAGTTACGCGTCGTTCCACTGAGCGTCAGACCCCCGTAGAAAAGATCAAAGGATCTTCTT

PURPLE/UPPERCASE: M13-F binding site orange/lowercase: attL1 BLUE/UPPERCASE: AtTAS1c 5' region RED/UPPERCASE: BsaI site red/lowercase: inverted BsaI site magenta/lowercase: Chloramphenicol resistance gene MAGENTA/UPPERCASE: ccdB gene blue/lowercase: AtTAS1c 3' region orange/lowercase/underlined: attL2 PURPLE/UPPERCASE/UNDERLINED: M13-R binding site brown/lowercase: Kanamycin resistance gene

>*pMDC32B-AtTAS1c-B/c* (12550 bp)

CCAGCCAGCCAACAGCTCCCCGACCGGCAGCTCGGCACAAAATCACCACTCGATACAGGCAGCCCATCAG TCCGGGACGGCGTCAGCGGGAGAGCCGTTGTAAGGCGGCAGACTTTGCTCATGTTACCGATGCTATTCGG AAGAACGGCAACTAAGCTGCCGGGTTTGAAACACGGATGATCTCGCGGAGGGTAGCATGTTGATTGTAAC GATGACAGAGCGTTGCTGCCTGTGATCACCGCGGTTTCAAAATCGGCTCCGTCGATACTATGTTATACGC CAACTTTGAAAACAACTTTGAAAAAGCTGTTTTCTGGTATTTAAGGTTTTTAGAATGCAAGGAACAGTGAA **ATAA**atggctaaaatgagaatatcaccggaattgaaaaaactgatcgaaaaataccgctgcgtaaaagat acggaaggaatgtctcctgctaaggtatataagctggtgggagaaaatgaaaacctatatttaaaaaatgacggacagccggtataaagggaccacctatgatgtggaacgggaaaaggacatgatgctatggctggaagggccgatggcgtcctttgctcggaagagtatgaagatgaacaaagccctgaaaagattatcgagctgtatg ${\tt cggagtgcatcaggctctttcactccatcgacatatcggattgtccctatacgaatagcttagacagccg}$ ${\tt cttagccgaattggattacttactgaataacgatctggccgatgtggattgcgaaaaactgggaagaagac}$ actccatttaaagatccgcgcgagctgtatgattttttaaagacggaaaagcccgaagaggaacttgtcttgggagaagcggcagggcggacaagtggtatgacattgccttctgcgtccggtcgatcagggaggatatcggggaagaacagtatgtcgagctattttttgacttactggggatcaagcctgattgggagaaaaataaaaatattatattttactggatgaattgttttagTACCTAGAATGCATGACCAAAATCCCTTAACGTGAGTTTTC CTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTA **GTTAGGCCACCACTTCAAGAACTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTG** GCTGCTGCCAGTGGCGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGC AGCGGTCGGGCTGAACGGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAG ATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTA AGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTATAGTC GAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTCACATGTTCTTT GCCGAACGACCGAGCGCGAGCGAGTCAGTGAGCGAGGAAGCGGAAGAGCGCCTGATGCGGTATTTTCTCCT TACGCATCTGTGCGGTATTTCACACCGCATATGGTGCACTCTCAGTACAATCTGCTCTGATGCCGCATAG TTAAGCCAGTATACACTCCGCTATCGCTACGTGACTGGGTCATGGCTGCGCCCCGACACCCCGCCAACACC

CGCTGACGCGCCCTGACGGGCTTGTCTGCTCCCGGCATCCGCTTACAGACAAGCTGTGACCGTCTCCGGG AGCTGCATGTGTCAGAGGTTTTTCACCGTCATCACCGAAAACGCGCGAGGCAGGGTGCCTTGATGTGGGCGC TTGAGCGGCCAGCGGCGCGATAGGCCGACGCGAAGCGGCGGGGGGCGTAGGGAGCGCAGCGAAGGGT AGGCGCTTTTTGCAGCTCTTCGGCTGTGCGCTGGCCAGACAGTTATGCACAGGCCAGGCGGGTTTTAAGA **GTTTTAATAAGTTTTAAAGAGTTTTTAGGCGGAAAAATCGCCTTTTTTTCTCTTTTAATATCAGTCACTTACA** TGTGTGACCGGTTCCCAATGTACGGCTTTGGGTTCCCAATGTACGGGTTCCCGGTTCCCAATGTACGGCTT TGGGTTCCCAATGTACGTGCTATCCACAGGAAAGAGAACTTTTCGACCTTTTTCCCCCTGCTAGGGCAATT TGCCCTAGCATCTGCTCCGTACATTAGGAACCGGCGGATGCTTCGCCCTCGATCAGGTTGCGGTAGCGCA TGACTAGGATCGGGCCAGCCTGCCCGCCTCCTCCTCCAAATCGTACTCCGGCAGGTCATTTGACCCGAT CAGCTTGCGCACGGTGAAACAGAACTTCTTGAACTCTCCGGCGCTGCCACTGCGTTCGTAGATCGTCTTG AACAACCATCTGGCTTCTGCCTTGCCTGCGGCGCGCGCGTGCCAGGCGGTAGAGAAAACGGCCGATGCCGG GATCGATCAAAAAGTAATCGGGGGTGAACCGTCAGCACGTCCGGGGTTCTTGCCCTTCTGTGATCTCGCGGGTA CATCCAATCAGCTAGCTCGATCTCGATGTACTCCGGCCGCCCGGTTTCGCTCTTTACGATCTTGTAGCGG CTAATCAAGGCTTCACCCTCGGATACCGTCACCAGGCGGCCGTTCTTGGCCTTCTTCGTACGCTGCATGG CAACGTGCGTGGTGTTTAACCGAATGCAGGTTTCTACCAGGTCGTCTTTCTGCTTTCCGCCATCGGCTCG CCGGCAGAACTTGAGTACGTCCGCAACGTGTGGACGGAACACGCGGCCGGGCTTGTCTCCCCTTCC CGGTATCGGTTCATGGATTCGGTTAGATGGGAAACCGCCATCAGTACCAGGTCGTAATCCCACACACTGG CCATGCCGGCCGGCCCTGCGGAAACCTCTACGTGCCCGTCTGGAAGCTCGTAGCGGATCACCTCGCCAGC **TCGTCGGTCACGCTTCGACAGACGGAAAAACGGCCACGTCCATGATGCTGCGACTATCGCGGGTGCCCACG** TCATAGAGCATCGGAACGAAAAAATCTGGTTGCTCGTCGCCCTTGGGCGGCGTTCCTAATCGACGGCGCAC CGGCTGCCGGCGGTTGCCGGGATTCTTTGCGGATTCGATCAGCGGCCGCTTGCCACGATTCACCGGGGCG TGCTTCTGCCTCGATGCGTTGCCGCTGGGCGGCCTGCGCGGCCTTCAACTTCTCCACCAGGTCATCACCC AGCGCCGCCGATTTGTACCGGGCCGGATGGTTTGCGACCGTCACGCCGATTCCTCGGGGCTTGGGGGGTT CCAGTGCCATTGCAGGGCCGGCAGACAACCCAGCCGCTTACGCCTGGCCAACCGCCCGTTCCTCCACACA TGGGGCATTCCACGGCGTCGGTGCCTGGTTGTTCTTGATTTTCCATGCCGCCTCCTTTAGCCGCCTAAAAT TCATCTACTCATTTATTCATTTGCTCATTTACTCTGGTAGCTGCGCGATGTATTCAGATAGCAGCTCGGT AATGGTCTTGCCTTGGCGTACCGCGGCAACTGCATCTTCAGCTTGGTGTGATCCTCCGCCGGCAACTGAAAGTTG GGCCGGCACTTAGCGTGTTTGTGCTTTTGCTCATTTTCTCTTTTACCTCATTAACTCAAATGAGTTTTGAT TTAATTTCAGCGGCCAGCGCCTGGACCTCGCGGGCAGCGTCGCCCTCGGGTTCTGATTCAAGAACGGTTG TGCCGGCGGCGGCAGTGCCTGGGTAGCTCACGCGCTGCGTGATACGGGACTCAAGAATGGGCAGCTCGTA CCCGGCCAGCGCCTCGGCAACCTCACCGCCGATGCGCGTGCCTTTGATCGCCCGCGACACGACAAAGGCC

GCTTGTAGCCTTCCATCCGTGACCTCAATGCGCTGCTTAACCAGCTCCACCAGGTCGGCGGTGGCCCATA TGTCGTAAGGGCTTGGCTGCACCGGAATCAGCACGAAGTCGGCTGCCTTGATCGCGGACACAGCCAAGTC GTCGGGCGGTCGATGCCGACAACGGTTAGCGGTTGATCTTCCCGCACGGCCGCCCAATCGCGGGCACTGC CCTGGGGATCGGAATCGACTAACAGAACATCGGCCCCGGCGAGTTGCAGGGCGCGGGCTAGATGGGTTGC GATGGTCGTCTTGCCTGACCCGCCTTTCTGGTTAAGTACAGCGATAACCTTCATGCGTTCCCCCTTGCGTA TTTGTTTATTTACTCATCGCATCATATACGCAGCGACCGCATGACGCAAGCTGTTTTACTCAAATACACA CGGCCGCGATCATCTCCGCCTCGATCTCTCGGTAATGAAAAACGGTTCGTCCTGGCCGTCCTGGTGCGG TTTCATGCTTGTTCCTCTTGGCGTTCATTCTCGGCGGCCGCCAGGGCGTCGGCCTCGGTCAATGCGTCCT CACGGAAGGCACCGCGCCGCCTGGCCTCGGTGGGCGTCACTTCCTCGCTGCGCTCAAGTGCGCGGTACAG GGTCGAGCGATGCACGCCAAGCAGTGCAGCCGCCTCTTTCACGGTGCGGCCTTCCTGGTCGATCAGCTCG CGGGCGTGCGCGATCTGTGCCGGGGTGAGGGTAGGGCGGGGGCCAAACTTCACGCCTCGGGCCTTGGCGG CCTCGCGCCCCGCTCCGGGTGCGGTCGATGATTAGGGAACGCTCGAACTCGGCCAATGCCGGCGAACACGGT GCCTCCTGGATGCGCTCGGCAATGTCCAGTAGGTCGCGGGTGCTGCGGGCCAGGCGGTCTAGCCTGGTCA CTGTCACAACGTCGCCAGGGCGTAGGTGGTCAAGCATCCTGGCCAGCTCCGGGCGGCCGCCTGGTGCC TCCGGTTCTAGTCGCAAGTATTCTACTTTATGCGACTAAAACACGCGACAAGAAAACGCCAGGAAAAGGG CAGGGCGGCAGCCTGTCGCGTAACTTAGGACTTGTGCGACATGTCGTTTTCAGAAGACGGCTGCACTGAA CGTCAGAAGCCGACTGCACTATAGCAGCGGAGGGGGTTGGATCAAAGTACTTTGATCCCGAGGGGAACCCT **GTGGTTGGCATGCACATACAAATGGACGAACGGATAAACCTTTTCACGCCCTTTTAAATATCCGTTATTC** TAATAAACGCTCTTTTCTCTTAGGtttacccgccaatatatcctgtcaAACACTGATAGTTTAAACTGAA GGCGGGAAACGACAATCTGATCCAAGCTCAAGCTGCTCTAGCATTCGCCATTCAGGCTGCGCAACTGTTG GGAAGGGCGATCGGTGCGGGCCTCTTCGCTATTACGCCAGCTGGCGAAAGGGGGGATGTGCTGCAAGGCGA TTAAGTTGGGTAACGCCAGGGTTTTTCCCAGTCACGACGTTGTAAAACGACGGCCAGTGCCAAGCTTGGCG **TGCCTGCA**GGTCAACATGGTGGAGCACGACACACTTGTCTACTCCAAAAATATCAAAGATACAGTCTCAG AAGACCAAAGGGCAATTGAGACTTTTCAACAAAGGGTAATATCCGGAAACCTCCTCGGATTCCATTGCCC GCATCGTGGAAAAAGAAGACGTTCCAACCACGTCTTCAAAGCAAGTGGATTGATGTGATAACATGGTGGA

GCACGACACTTGTCTACTCCAAAAATATCAAAGATACAGTCTCAGAAGACCAAAGGGCAATTGAGACT TTTCAACAAAGGGTAATATCCGGAAACCTCCTCGGATTCCATTGCCCAGCTATCTGTCACTTTATTGTGA AGATAGTGGAAAAGGAAGGTGGCTCCTACAAATGCCATCATTGCGATAAAGGAAAGGCCATCGTTGAAGA TGCCTCTGCCGACAGTGGTCCCAAAGATGGACCCCCACCACGAGGAGCATCGTGGAAAAAGAAGACGTT CCAACCACGTCTTCAAAGCAAGTGGATTGATGTGATATCTCCACTGACGTAAGGGATGACGCACAATCCC **ACTATCCTTCGCAAGACCCTTCCTCTATATAAGGAAGTTCATTTCATTTGGAGAGGACCTCGACTCTAGA GGATCCCCGGGTACCGGGCCCCCCCCCCGAGGCGCGCCAAGCTATCAAACAAGTTTGTACAAAAAAGCAGG CTCCGCGGCCGCCCCTTCACCCTTCACCCTAAACCTAAACCGCTAAGCCCGACGTCAAATACCA** AAAAGAGAAAAACAAGAGCGCCGTCAAGCTCTGCAAATACGATCTGTAAGTCCATCTTAACACAAAAGTG AGATGGGTTCTTAGATCATGTTCCGCCGTTAGATCGAGTCATGGTCTTGTCTCATAGAAAGGTACTTTCG TCGTTGGGTTACGGATGTTTTCGAGATGAAACAGCATTGTTTTGTTGTGATTTTTCTCTACAAGCGAATA **GACCATTTATCGGTGGATCTTAGAAAAATTAAGAGACCATTAGGCACCCCAGGCTTTACACTTTATGCTTC** CGGCTCGTATAATGTGTGGATTTTGAGTTAGGAGCCGTCGAGATTTTCAGGAGCTAAGGAAGCTAAAatq gagaaaaaaatcactggatataccaccgttgatatatcccaatggcatcgtaaagaacattttgaggcatttcagtcagttgctcaatgtacctataaccagaccgttcagctggatattacggcctttttaaagaccgt aaagaaaaataagcacaagttttatccggcctttattcacattcttgcccgcctgatgaatgctcatccg gagttccgtatggcaatgaaagacggtgagctggtgatatggggatagtgttcacccttgttacaccgttt tccatgagcaaactgaaacgttttcatcgctctggagtgaataccacgacgatttccggcagtttctacacatatattcqcaaqatqtqqcqtqttacqqtqaaaacctqqcctatttccctaaaqqqtttattqaqaat atgtttttcgtctcagccaatccctgggtgagtttcaccagttttgatttaaacgtggccaatatggacaacttettegeeceegtttteaceatgggeaaatattataegeaaggegaeaaggtgetgatgeegetggegattcaggttcatcatgccgtttgtgatggcttccatgtcggcagaatgcttaatgaattacaacagtactgcgatgagtggcaggggggggtaaACGCGTGGAGCCGGCTTACTAAAAGCCAGATAACAGTATGCGT ATTTGCGCGCTGATTTTTGCGGTATAAGAATATATACTGATATGTATACCCGAAGTATGTCAAAAAGAGG TATGCTATGAAGCAGCGTATTACAGTGACAGTTGACAGCGACAGCTATCAGTTGCTCAAGGCATATATGA TGTCAATATCTCCGGTCTGGTAAGCACAACCATGCAGAATGAAGCCCGTCGTCTGCGTGCCGAACGCTGG AAAGCGGAAAATCAGGAAGGGATGGCTGAGGTCGCCCGGTTTATTGAAATGAACGGCTCTTTTGCTGACG TGGATGTACAGAGTGATATTATTGACACGCCCGGCCGACGGATGGTGATCCCCCCTGGCCAGTGCACGTCT **GCTGTCAGATAAAGTCTCCCGTGAACTTTACCCGGTGGTGCATATCGGGGGATGAAAGCTGGCGCATGATG** ACCACCGATATGGCCAGTGTGCCGGTTTCCGTTATCGGGGAAGAAGTGGCTGATCTCAGCCACCGCGAAA

ATGACATCAAAAAACGCCATTAACCTGATGTTCTGGGGAATATAAATGTCAGGCTCCCTTATACACAGCCA GTCTGCACCTCGACggtctcAgaactagaaaagacattggacatattccaggatatgcaaaagaaaacaa tgaatattgttttgaatgtgttcaagtaaatgagattttcaagtcgtctaaagaacagttgctaatacag $\verb+tacttatttcaataaataattggttctaataatacaaaacatattcgaggatatgcagaaaaaaagatg$ ${\tt tttgttattttgaaaagcttgagtagtttctctccgaggtgtagcgaagaagcatcatctactttgtaat$ gtaattttctttatgttttcactttgtaattttatttgtgttaatgtaccatggccgatatcggttttat $\verb+tgaaagaaaatttatgttacttctgttttggctttgcaatcagttatgctagttttcttataccctttcg$ $\verb+taagetteetaaggaategtteattgattteeaetgetteattgtatattaaaaetttaeaaetgtateg$ accatcatataattctgggtcaagagatgaaaatagaacaccaccatcgtaaagtgaaat AAGGGTGGGCG ${\tt ACCGCGGTGGAGCTC} {\tt GAATTTTCCCCCGATCGTTCAAACATTTGGCAATAAAGTTTCTTAAGATTGAATCCT}$ GTTGCCGGTCTTGCGATGATTATCATATAATTTCTGTTGAATTACGTTAAGCATGTAATAATTAACATGT AATGCATGACGTTATTTATGAGATGGGTTTTTTATGATTAGAGTCCCGCAATTATACATTTAATACGCGAT TAATCATGGTCATAGCTGTTTCCTGTGTGAAATTGTTATCCGCTCACAATTCCACAACATACGAGCCG GCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGCATTAATGAATCGGCCAACGCGCGGGGAGAGGC GGTTTGCGTATTGGCTAGAGCAGCTTGCCAACATGGTGGAGCACGACACTCTCGTCTACTCCAAGAATAT CAAAGATACAGTCTCAGAAGACCAAAGGGCTATTGAGACTTTTCAACAAAGGGTAATATCGGGAAACCTC ${\tt AATGCCATCATTGCGATAAAGGAAAGGCTATCGTTCAAGATGCCTCTGCCGACAGTGGTCCCAAAGATGG}$ ACCCCCACCACGAGGAGCATCGTGGAAAAAGAAGACGTTCCAACCACGTCTTCAAAGCAAGTGGATTGA ${\tt TGTGATAAC} atggtggagcacgacactctcgtctactccaagaatatcaaagatacagtctcagaagacc$ aaagggctattgagacttttcaacaaagggtaatatcgggaaacctcctcggattccattgcccagctat $\verb+ctgtcacttcatcaaaaggacagtagaaaaggaaggtggcacctacaaatgccatcattgcgataaagga$ aaggetategtteaagatgeetetgeegaeagtggteeeaaagatggaeeeeaegaggageateg tggaaaaagaagacgttccaaccacgtcttcaaagcaagtggattgatgtgatatctccactgacgtaagggatgacgcacaatcccactatccttcgcaagaccttcctctatataaggaagttcatttcatttggaga**AATGAGAT**ATGAAAAAGCCTGAACTCACCGCGACGTCTGTCGAGAAGTTTCTGATCGAAAAGTTCGACAG CGTCTCCGACCTGATGCAGCTCTCGGAGGGCGAAGAATCTCGTGCTTTCAGCTTCGATGTAGGAGGGCGT GGATATGTCCTGCGGGTAAATAGCTGCGCCGATGGTTTCTACAAAGATCGTTATGTTTATCGGCACTTTG CATCGGCCGCGCTCCCGATTCCGGAAGTGCTTGACATTGGGGAGTTTAGCGAGAGCCTGACCTATTGCAT

GTCGCGGAGGCTATGGATGCGATCGCTGCGGCCGATCTTAGCCAGACGAGCGGGTTCGGCCCATTCGGAC CGCAAGGAATCGGTCAATACACTACATGGCGTGATTTCATATGCGCGGATTGCTGATCCCCATGTGTATCA GCCGAGGACTGCCCCGAAGTCCGGCACCTCGTGCACGCGGATTTCGGCTCCAACAATGTCCTGACGGACA ATGGCCGCATAACAGCGGTCATTGACTGGAGCGAGGCGATGTTCGGGGGATTCCCCAATACGAGGTCGCCAA CATCTTCTTCTGGAGGCCGTGGTTGGCTTGTATGGAGCAGCAGCGCGCTACTTCGAGCGGAGGCATCCG GAGCTTGCAGGATCGCCACGACTCCGGGCGTATATGCTCCGCATTGGTCTTGACCAACTCTATCAGAGCT TGGTTGACGGCAATTTCGATGATGCAGCTTGGGCGCAGGGTCGATGCGACGCAATCGTCCGATCCGGAGC CGGGACTGTCGGGCGTACACAAATCGCCCGCAGAAGCGCGGCCGTCTGGACCGATGGCTGTGTAGAAGTA CTCGCCGATAGTGGAAACCGACGCCCCAGCACTCGTCCGAGGGCAAAGAAATAGAGTAGATGCCGACCGG ${\tt ATCTGTCGATCGACAAGCTCGAGtttctccataataatgtgtgagtagttccccagataagggaattaggg}$ ${\tt ttcctatagggtttcgctcatgtgttgagcatataagaaacccttagtatttgtatttgtaaaata}$ $\verb|cttctatcaataaaatttctaattcctaaaaccaaaatccagtactaaaatccagatcCCCCGAATTAAT||$ TCGGCGTTAATTCAGTACATTAAAAAACGTCCGCAATGTGTTATTAAGTTGTCTAAGCGTCAATTTGTTTA CACCACAATATATCCTGCCA

brown/lowercase: kanamycin resistance gene

CYAN/UPPERCASE/UNDERLINED: C->A transversion to block vector's BsaI site cyan/lowercase: T-DNA right border GREEN/UPPERCASE: 2x35S CaMV promoter ORANGE/UPPERCASE: attB1 BLUE/UPPERCASE: AtTAS1c 5' region RED/UPPERCASE: BsaI site magenta/lowercase: chloramphenicol resistance gene MAGENTA/UPPERCASE: ccdB gene red/lowercase: inverted BsaI site blue/lowercase: AtTAS1c 3' region ORANGE/UPPERCASE/UNDERLINED: attB2 GREY/UPPERCASE/UNDERLINED: Nos terminator green/lowercase: CaMV promoter BROWN/UPPERCASE: hygromycin resistance gene green/lowercase/underlined: CaMV terminator

CYAN/UPPERCASE: T-DNA left border

>*pMDC123SB-AtTAS1c-B/c* (12017 bp)

CCAGCCAGCCAACAGCTCCCCGACCGGCAGCTCGGCACAAAATCACCACTCGATACAGGCAGCCCATCAG TCCGGGACGGCGTCAGCGGGAGAGCCGTTGTAAGGCGGCAGACTTTGCTCATGTTACCGATGCTATTCGG AAGAACGGCAACTAAGCTGCCGGGTTTGAAACACGGATGATCTCGCGGAGGGTAGCATGTTGATTGTAAC GATGACAGAGCGTTGCTGCCTGTGATCACCGCGGTTTCAAAATCGGCTCCGTCGATACTATGTTATACGC CAACTTTGAAAACAACTTTGAAAAAGCTGTTTTCTGGTATTTAAGGTTTTTAGAATGCAAGGAACAGTGAA **ATAA**atggctaaaatgagaatatcaccggaattgaaaaaactgatcgaaaaataccgctgcgtaaaagat acggaaggaatgtctcctgctaaggtatataagctggtgggagaaaatgaaaacctatatttaaaaaatgacggacagccggtataaagggaccacctatgatgtggaacgggaaaaggacatgatgctatggctggaagg gccgatggcgtcctttgctcggaagagtatgaagatgaacaaagccctgaaaagattatcgagctgtatg ${\tt cggagtgcatcaggctctttcactccatcgacatatcggattgtccctatacgaatagcttagacagccg}$ ${\tt cttagccgaattggattacttactgaataacgatctggccgatgtggattgcgaaaactgggaagaagac}$ actccatttaaagatccgcgcgagctgtatgattttttaaagacggaaaagcccgaagaggaacttgtcttgggagaagcggcagggcggacaagtggtatgacattgccttctgcgtccggtcgatcagggaggatatcggggaagaacagtatgtcgagctattttttgacttactggggatcaagcctgattgggagaaaataaaatattatattttactggatgaattgttttagTACCTAGAATGCATGACCAAAATCCCTTAACGTGAGTTTTC CTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTA **GTTAGGCCACCACTTCAAGAACTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTG** GCTGCTGCCAGTGGCGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGC AGCGGTCGGGCTGAACGGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAG ATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTA AGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTATAGTC GAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTCACATGTTCTTT GCCGAACGACCGAGCGCGAGCGAGTCAGTGAGCGAGGAAGCGGAAGAGCGCCTGATGCGGTATTTTCTCCT TACGCATCTGTGCGGTATTTCACACCGCATATGGTGCACTCTCAGTACAATCTGCTCTGATGCCGCATAG TTAAGCCAGTATACACTCCGCTATCGCTACGTGACTGGGTCATGGCTGCGCCCCGACACCCCGCCAACACC

CGCTGACGCGCCCTGACGGGCTTGTCTGCTCCCGGCATCCGCTTACAGACAAGCTGTGACCGTCTCCGGG AGCTGCATGTGTCAGAGGTTTTTCACCGTCATCACCGAAAACGCGCGAGGCAGGGTGCCTTGATGTGGGCGC TTGAGCGGCCAGCGGCGCGATAGGCCGACGCGAAGCGGCGGGGGGCGTAGGGAGCGCAGCGAAGGGT AGGCGCTTTTTGCAGCTCTTCGGCTGTGCGCTGGCCAGACAGTTATGCACAGGCCAGGCGGGTTTTAAGA **GTTTTAATAAGTTTTAAAGAGTTTTTAGGCGGAAAAATCGCCTTTTTTTCTCTTTTAATATCAGTCACTTACA** TGTGTGACCGGTTCCCAATGTACGGCTTTGGGTTCCCAATGTACGGGTTCCCGGTTCCCAATGTACGGCTT TGGGTTCCCAATGTACGTGCTATCCACAGGAAAGAGAACTTTTCGACCTTTTTCCCCCTGCTAGGGCAATT TGCCCTAGCATCTGCTCCGTACATTAGGAACCGGCGGATGCTTCGCCCTCGATCAGGTTGCGGTAGCGCA TGACTAGGATCGGGCCAGCCTGCCCGCCTCCTCCTCCAAATCGTACTCCGGCAGGTCATTTGACCCGAT CAGCTTGCGCACGGTGAAACAGAACTTCTTGAACTCTCCGGCGCTGCCACTGCGTTCGTAGATCGTCTTG AACAACCATCTGGCTTCTGCCTTGCCTGCGGCGCGCGCGTGCCAGGCGGTAGAGAAAACGGCCGATGCCGG GATCGATCAAAAAGTAATCGGGGGTGAACCGTCAGCACGTCCGGGGTTCTTGCCCTTCTGTGATCTCGCGGGTA CATCCAATCAGCTAGCTCGATCTCGATGTACTCCGGCCGCCCGGTTTCGCTCTTTACGATCTTGTAGCGG CTAATCAAGGCTTCACCCTCGGATACCGTCACCAGGCGGCCGTTCTTGGCCTTCTTCGTACGCTGCATGG CAACGTGCGTGGTGTTTAACCGAATGCAGGTTTCTACCAGGTCGTCTTTCTGCTTTCCGCCATCGGCTCG CCGGCAGAACTTGAGTACGTCCGCAACGTGTGGACGGAACACGCGGCCGGGCTTGTCTCCCCTTCC CGGTATCGGTTCATGGATTCGGTTAGATGGGAAACCGCCATCAGTACCAGGTCGTAATCCCACACACTGG CCATGCCGGCCGGCCCTGCGGAAACCTCTACGTGCCCGTCTGGAAGCTCGTAGCGGATCACCTCGCCAGC **TCGTCGGTCACGCTTCGACAGACGGAAAAACGGCCACGTCCATGATGCTGCGACTATCGCGGGTGCCCACG** TCATAGAGCATCGGAACGAAAAAATCTGGTTGCTCGTCGCCCTTGGGCGGCGTTCCTAATCGACGGCGCAC CGGCTGCCGGCGGTTGCCGGGATTCTTTGCGGATTCGATCAGCGGCCGCTTGCCACGATTCACCGGGGCG TGCTTCTGCCTCGATGCGTTGCCGCTGGGCGGCCTGCGCGGCCTTCAACTTCTCCACCAGGTCATCACCC AGCGCCGCCGATTTGTACCGGGCCGGATGGTTTGCGACCGTCACGCCGATTCCTCGGGGCTTGGGGGGTT CCAGTGCCATTGCAGGGCCGGCAGACAACCCAGCCGCTTACGCCTGGCCAACCGCCCGTTCCTCCACACA TGGGGCATTCCACGGCGTCGGTGCCTGGTTGTTCTTGATTTTCCATGCCGCCTCCTTTAGCCGCCTAAAAT TCATCTACTCATTTATTCATTTGCTCATTTACTCTGGTAGCTGCGCGATGTATTCAGATAGCAGCTCGGT AATGGTCTTGCCTTGGCGTACCGCGGCAACTGCATCTTCAGCTTGGTGTGATCCTCCGCCGGCAACTGAAAGTTG GGCCGGCACTTAGCGTGTTTGTGCTTTTGCTCATTTTCTCTTTTACCTCATTAACTCAAATGAGTTTTGAT TTAATTTCAGCGGCCAGCGCCTGGACCTCGCGGGCAGCGTCGCCCTCGGGTTCTGATTCAAGAACGGTTG TGCCGGCGGCGGCAGTGCCTGGGTAGCTCACGCGCTGCGTGATACGGGACTCAAGAATGGGCAGCTCGTA CCCGGCCAGCGCCTCGGCAACCTCACCGCCGATGCGCGTGCCTTTGATCGCCCGCGACACGACAAAGGCC

GCTTGTAGCCTTCCATCCGTGACCTCAATGCGCTGCTTAACCAGCTCCACCAGGTCGGCGGTGGCCCATA TGTCGTAAGGGCTTGGCTGCACCGGAATCAGCACGAAGTCGGCTGCCTTGATCGCGGACACAGCCAAGTC GTCGGGCGGTCGATGCCGACAACGGTTAGCGGTTGATCTTCCCGCACGGCCGCCCAATCGCGGGCACTGC CCTGGGGATCGGAATCGACTAACAGAACATCGGCCCCGGCGAGTTGCAGGGCGCGGGCTAGATGGGTTGC GATGGTCGTCTTGCCTGACCCGCCTTTCTGGTTAAGTACAGCGATAACCTTCATGCGTTCCCCCTTGCGTA **TTTGTTTATTTACTCATCGCATCATATACGCAGCGACCGCATGACGCAAGCTGTTTTACTCAAATACACA** CGGCCGCGATCATCTCCGCCTCGATCTCTCGGTAATGAAAAACGGTTCGTCCTGGCCGTCCTGGTGCGG TTTCATGCTTGTTCCTCTTGGCGTTCATTCTCGGCGGCCGCCAGGGCGTCGGCCTCGGTCAATGCGTCCT CACGGAAGGCACCGCGCCGCCTGGCCTCGGTGGGCGTCACTTCCTCGCTGCGCTCAAGTGCGCGGTACAG GGTCGAGCGATGCACGCCAAGCAGTGCAGCCGCCTCTTTCACGGTGCGGCCTTCCTGGTCGATCAGCTCG CGGGCGTGCGCGATCTGTGCCGGGGTGAGGGTAGGGCGGGGGCCAAACTTCACGCCTCGGGCCTTGGCGG CCTCGCGCCCCGCTCCGGGTGCGGTCGATGATTAGGGAACGCTCGAACTCGGCCAATGCCGGCGAACACGGT GCCTCCTGGATGCGCTCGGCAATGTCCAGTAGGTCGCGGGTGCTGCGGGCCAGGCGGTCTAGCCTGGTCA CTGTCACAACGTCGCCAGGGCGTAGGTGGTCAAGCATCCTGGCCAGCTCCGGGCGGCCGCCTGGTGCC TCCGGTTCTAGTCGCAAGTATTCTACTTTATGCGACTAAAACACGCGACAAGAAAACGCCAGGAAAAGGG CAGGGCGGCAGCCTGTCGCGTAACTTAGGACTTGTGCGACATGTCGTTTTCAGAAGACGGCTGCACTGAA CGTCAGAAGCCGACTGCACTATAGCAGCGGAGGGGGTTGGATCAAAGTACTTTGATCCCGAGGGGAACCCT **GTGGTTGGCATGCACATACAAATGGACGAACGGATAAACCTTTTCACGCCCTTTTAAATATCCGTTATTC** TAATAAACGCTCTTTTCTCTTAGGtttacccgccaatatatcctgtcaAACACTGATAGTTTAAACTGAA GGCGGGAAACGACAATCTGATCCAAGCTCAAGCTGCTCTAGCATTCGCCATTCAGGCTGCGCAACTGTTG GGAAGGGCGATCGGTGCGGGCCTCTTCGCTATTACGCCAGCTGGCGAAAGGGGGGATGTGCTGCAAGGCGA TTAAGTTGGGTAACGCCAGGGTTTTTCCCAGTCACGACGTTGTAAAACGACGGCCAGTGCCAAGCTTGCAT **GCCTGCA**GGTCAACATGGTGGTGCACGACACACTTGTCTACTCCAAAAATATCTTTGATACAGTCTCAGA AGACCAAAGGGCAATTGAGACTTTTCAACAAAGGGTAATATCCGGAAACCTCCTCGGATTCCATTGCCCA CATCGTGGAAAAAGAAGACGTTCCAACCACGTCTTCAAAGCAAGTGGATTGATGTGATAACATGGTGGAG

CACGACACACTTGTCTACTCCAAAAATATCAAAGATACAGTCTCAGAAGACCAAAGGGCAATTGAGACTT **TTCAACAAAGGGTAATATCCGGAAACCTCCTCGGATTCCATTGCCCAGCTATCTGTCACTTTATTGTGAA** GATAGTGGAAAAGGAAGGTGGCTCCTACAAATGCCATCATTGCGATAAAGGAAAGGCCATCGTTGAAGAT GCCTCTGCCGACAGTGGTCCCCAAAGATGGACCCCCCACCACGAGGAGCATCGTGGAAAAAGAAGACGTTC CAACCACGTCTTCAAAGCAAGTGGATTGATGTGATATCTCCACTGACGTAAGGGATGACGCACAATCCCA **CTATCCTTCGCAAGACCCTTCCTCTATATAAGGAAGTTCATTTCATTTGGAGAGGACCTCGACTCTAGAG** GATCCCCGGGTACCGGGCCCCCCCCCCGAGGCGCCAAGCTATCAAAAAGTTTGTACAAAAAAGCAGGC **TCCGCGGCCGCCCCTTCACCAAACCTAAACCGCTAAGCCCGACGTCAAATACCAAAAAGAGAA** AAACAAGAGCGCCGTCAAGCTCTGCAAATACGATCTGTAAGTCCATCTTAACACAAAAGTGAGATGGGTT ${\tt CTTAGATCATGTTCCGCCGTTAGATCGAGTCATGGTCTTGTCTCATAGAAAGGTACTTTCGTTTACTTCT}$ **TTTGAGTATCGAGTAGAGCGTCGTCTATAGTTAGTTTGAGATTGCGTTTGTCAGAAGTTAGGTTCAATGT TACGGATGTTTTCGAGATGAAACAGCATTGTTTTGTTGTGATTTTTCTCTACAAGCGAATAGACCATTTA TCGGTGGATCTTAGAAAATTAAGAGACC**ATTAGGCACCCCAGGCTTTACACTTTATGCTTCCGGCTCGTA TAATGTGTGGATTTTGAGTTAGGAGCCGTCGAGATTTTCAGGAGCTAAGGAAGCTAAAatgqaqaaaaaaa ttgctcaatgtacctataaccagaccgttcagctggatattacggcctttttaaagaccgtaaagaaaaa taagcacaagttttatccggcctttattcacattcttgcccgcctgatgaatgctcatccggagttccgtatggcaatgaaagacggtgagctggtgatatgggatagtgttcacccttgttacaccgttttccatgagcaaactgaaacgttttcatcgctctggagtgaataccacgacgatttccggcagtttctacacatatattc gcaagatgtggcgtgttacggtgaaaacctggcctatttccctaaagggtttattgagaatatgtttttc gtctcagccaatccctgggtgagtttcaccagttttgatttaaacgtggccaatatggacaacttcttcg cccccgtttttcaccatgggcaaatattatacgcaaggcgacaaggtgctgatgccgctggcgattcaggt tcatcatgccgtttgtgatggcttccatgtcggcagaatgcttaatgaattacaacagtactgcgatgag tggcaggggggggtaaACGCGTGGAGCCGGCTTACTAAAAGCCAGATAACAGTATGCGTATTTGCGCG CTGATTTTTGCGGTATAAGAATATATACTGATATGTATACCCGAAGTATGTCAAAAAGAGGTATGCTATG AAGCAGCGTATTACAGTGACAGTTGACAGCGACAGCTATCAGTTGCTCAAGGCATATATGATGTCAATAT CTCCGGTCTGGTAAGCACAACCATGCAGAATGAAGCCCGTCGTCTGCGTGCCGAACGCTGGAAAGCGGAA AATCAGGAAGGGATGGCTGAGGTCGCCCGGTTTATTGAAATGAACGGCTCTTTTGCTGACGAGAACAGGG **GCTGGTGAA**ATGCAGTTTAAGGTTTACACCTATAAAAGAGAGAGCCGTTATCGTCTGTTTGTGGATGTAC AGAGTGATATTATTGACACGCCCGGCCGACGGATGGTGATCCCCCTGGCCAGTGCACGTCTGCTCAGA TAAAGTCTCCCGTGAACTTTACCCGGTGGTGGCATATCGGGGGATGAAAGCTGGCGCATGATGACCACCGAT ATGGCCAGTGTGCCGGTTTCCGTTATCGGGGAAGAAGTGGCTGATCTCAGCCACCGCGAAAATGACATCA

AAAACGCCATTAACCTGATGTTCTGGGGAATATAAATGTCAGGCTCCCTTATACACAGCCAGTCTGCACC TCGACqqtctcAGAACTAGAAAAGACATTGGACATATTCCAGGATATGCAAAAGAAAACAATGAATATTG TTTTGAATGTGTTCAAGTAAATGAGATTTTCAAGTCGTCTAAAGAACAGTTGCTAATACAGTTACTTATT **TTGAAAAGCTTGAGTAGTTTCTCTCCGAGGTGTAGCGAAGAAGCATCATCTACTTTGTAATGTAATTTTC** ATTTATGTTACTTCTGTTTTGGCTTTGCAATCAGTTATGCTAGTTTTCTTATACCCTTTCGTAAGCTTCC **TAAGGAATCGTTCATTGATTTCCACTGCTTCATTGTATATTAAAACTTTACAACTGTATCGACCATCATA** TAATTCTGGGTCAAGAGATGAAAATAGAACACCACATCGTAAAGTGAAATAAGGGTGGGCGCGCCGACCC **AGCTC**GAATTTCCCCCGATCGTTCAAACATTTGGCAATAAAGTTTCTTAAGATTGAATCCTGTTGCCGGTC TTGCGATGATTATCATATAATTTCTGTTGAATTACGTTAAGCATGTAATAATTAACATGTAATGCATGAC **GTTATTTATGAGATGGGTTTTTATGATTAGAGTCCCGCAATTATACATTTAATACGCGATAGAAAACAAA** ATATAGCGCGCAAACTAGGATAAATTATCGCGCGCGGTGTCATCTATGTTACTAGATCGGGAATTCGTAA TCATGGTCATAGCTGTTTCCTGTGTGAAATTGTTATCCGCTCACAATTCCACAACATACGAGCCGGAA GCATAAAGTGTAAAGCCTGGGGTGCCTAATGAGTGAGCTAACTCACATTAATTGCGTTGCGCTCACTGCC CGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGCATTAATGAATCGGCCAACGCGCGGGGAGAGGCGGT TTGCGTATTGGCTAGAGCAGCTTGCCAACATGGTGGAGCACGACACTCTCGTCTACTCCAAGAATATCAA AGATACAGTCTCAGAAGACCAAAGGGCTATTGAGACTTTTCAACAAAGGGTAATATCGGGAAACCTCCTC GCCATCATTGCGATAAAGGAAAGGCTATCGTTCAAGATGCCTCTGCCGACAGTGGTCCCAAAGATGGACC CCCACCCACGAGGAGCATCGTGGAAAAAGAAGACGTTCCAACCACGTCTTCAAAGCAAGTGGATTGATGT ${\tt GATAAC} atggtggagcacgacactctcgtctactccaagaatatcaagatacagtctcagaagaccaaa$ gggctattgagacttttcaacaaagggtaatatcgggaaacctcctcggattccattgcccagctatctgtcacttcatcaaaaggacagtagaaaaggaaggtggcacctacaaatgccatcattgcgataaaggaaag gctatcgttcaagatgcctctgccgacagtggtcccaaagatggacccccaccacgaggagcatcgtgg aaaaagaagacgttccaaccacgtcttcaaagcaagtggattgatgtgatatctccactgacgtaaggga $\verb+tgacgcacaatcccactatccttcgcaagaccttcctctatataaggaagttcatttcatttggagagg A$ CCGGCCGACATCCGCCGTGCCACCGAGGCGGACATGCCGGCGGTCTGCACCATCGTCAACCACTACATCG GCGGGAGCGCTATCCCTGGCTCGTCGCCGAGGTGGACGGCGAGGTCGCCGGCATCGCCTACGCGGGCCCC TGGAAGGCACGCAACGCCTACGACTGGACGGCCGAGTCGACCGTGTACGTCTCCCCCCGCCACCAGCGGA
CGGGACTGGGCTCCACGCTCTACACCCACCTGCTGAAGTCCCTGGAGGCACAGGGCTTCAAGAGCGTGGT CGCTGTCATCGGGCTGCCCAACGACCCGAGCGTGCGCATGCACGAGGCGCTCGGATATGCCCCCGCGGC ATGCTGCGGGCCGGCCGGCTTCAAGCACGGGAACTGGCATGACGTGGGTTTCTGGCAGCTGGACTTCAGCC TGCCGGTACCGCCCGTCCGGTCCTGCCCGTCACCGAGATTTGACTCGAGtttctccataataatgtgtg agtagttcccagataagggaattagggttcctatagggtttcgctcatgtgttgagcatataagaaaccc ttagtatgtatttgtatttgtaaaatacttctatcaataaaatttctaattcctaaaaaccaaaatccagt actaaaatccagatcCCCCGAATTAATTCGGCGTTAATTCAGTACATTAAAAACGTCCGCAATGTGTTAT TAAGTTGTCTAAGCGTCAATTTGTTTACACCCACAATATATCCTGCCA

brown/lowercase: kanamycin resistance gene

CYAN/UPPERCASE/UNDERLINED: C->A transversion to block vector's BsaI site cyan/lowercase: T-DNA right border GREEN/UPPERCASE: 2x35S CaMV promoter ORANGE/UPPERCASE: attB1 BLUE/UPPERCASE: AtTAS1c 5' region RED/UPPERCASE: BsaI site magenta/lowercase: chloramphenicol resistance gene MAGENTA/UPPERCASE: ccdB gene red/lowercase: inverted BsaI site blue/lowercase: attTAS1c 3' region ORANGE/UPPERCASE/UNDERLINED: attB2 GREY/UPPERCASE/UNDERLINED: Nos terminator green/lowercase: CaMV promoter BROWN/UPPERCASE/UNDERLINED: BASTA resistance gene green/lowercase/underlined: CaMV terminator

CYAN/UPPERCASE: T-DNA left border

SUPPLEMENTAL REFERENCES

- Ali I, Amin I, Briddon RW, Mansoor S (2013) Artificial microRNA-mediated resistance against the monopartite begomovirus *Cotton leaf curl Burewala virus*. Virol J **10:** 231
- Alvarez JP, Pekker I, Goldshmidt A, Blum E, Amsellem Z, Eshed Y (2006) Endogenous and synthetic microRNAs stimulate simultaneous, efficient, and localized regulation of multiple targets in diverse species. Plant Cell **18**: 1134-1151
- Eamens AL, Agius C, Smith NA, Waterhouse PM, Wang MB (2011) Efficient silencing of endogenous microRNAs using artificial microRNAs in *Arabidopsis thaliana*. Mol Plant **4:** 157-170
- Liang G, He H, Li Y, Yu D (2012) A new strategy for construction of artificial miRNA vectors in Arabidopsis. Planta 235: 1421-1429
- Molnar A, Bassett A, Thuenemann E, Schwach F, Karkare S, Ossowski S, Weigel D, Baulcombe D (2009) Highly specific gene silencing by artificial microRNAs in the unicellular alga *Chlamydomonas reinhardtii*. Plant J **58**: 165-174
- Montgomery TA, Howell MD, Cuperus JT, Li D, Hansen JE, Alexander AL, Chapman EJ, Fahlgren N, Allen E, Carrington JC (2008) Specificity of ARGONAUTE7-miR390 interaction and dual functionality in TAS3 *trans*acting siRNA formation. Cell **133**: 128-141
- Niu QW, Lin SS, Reyes JL, Chen KC, Wu HW, Yeh SD, Chua NH (2006) Expression of artificial microRNAs in transgenic *Arabidopsis thaliana* confers virus resistance. Nat Biotechnol **24:** 1420-1428
- **Qu J, Ye J, Fang R** (2007) Artificial microRNA-mediated virus resistance in plants. J Virol **81:** 6690-6699
- Schwab R, Ossowski S, Riester M, Warthmann N, Weigel D (2006) Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell 18: 1121-1133
- Shi R, Yang C, Lu S, Sederoff R, Chiang VL (2010) Specific down-regulation of PAL genes by artificial microRNAs in Populus trichocarpa. Planta **232**: 1281-1288
- **Tang Y, Wang F, Zhao J, Xie K, Hong Y, Liu Y** (2010) Virus-based microRNA expression for gene functional analysis in plants. Plant Physiol **153**: 632-641

- **Vu TV, Roy Choudhury N, Mukherjee SK** (2013) Transgenic tomato plants expressing artificial microRNAs for silencing the pre-coat and coat proteins of a begomovirus, Tomato leaf curl New Delhi virus, show tolerance to virus infection. Virus Res **172:** 35-45
- **Zhao T, Wang W, Bai X, Qi Y** (2009) Gene silencing by artificial microRNAs in Chlamydomonas. Plant J **58:** 157-164